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The relation between the complexity of organisms and proteins and their evolution rates has been dis-
cussed in the context of multiple generic models. The main robust claim from most such models is the
negative relation between complexity and the accumulation rate of mutations.

Viruses accumulate escape mutations in their epitopes to avoid detection and destruction of their host
cell by CD8+ T cells. The extreme regime of immune escape, namely, strong selection and high mutation
rate, provide an opportunity to extend and validate the existing models of relation between complexity
and evolution rate as proposed by Fisher and Kimura.

Using epitope prediction algorithms to compute the epitopes presented on the most frequent human
HLA alleles in over 100 fully sequenced human viruses, and over 900 non-human viruses, we here study
the correlation between viruses/proteins complexity (as measured by the number of proteins in the virus
and the length of each protein, respectively) and the rate of accumulation of escape mutation. The latter is
evaluated by measuring the normalized epitope density of viral proteins.

If the virus/protein complexity prevents the accumulation of escape mutations, the epitope density is
expected to be positively correlated with both the number of proteins in the virus and the length of pro-
teins. We show that such correlations are indeed observed for most human viruses. For non-human
viruses the correlations were much less significant, indicating that the correlation is indeed induced by
human HLA molecules.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Evolution is driven by a combination of mutations and selec-
tion. The balance between the two is a function of the cost of muta-
tions and the strength of selection. Mutations can have, on the one
hand, an environmental advantage and, on the other hand, a fitness
cost (Soderholm et al., 2006). A typical example of this dual effect
is escape mutations from CD8+ T cells (CTLs) in viruses. While
these mutations can lead to a higher survival probability, they of-
ten lead to a lower probability of producing functional virions. We
here use bioinformatics tools to analyze the relation between the
frequency of escape mutations and the organisms’ complexity.

CTLs recognize virally infected cells through small (typically 8–
10 amino acid long) peptides, denoted epitopes. These epitopes are
presented in the binding groove of MHC class I molecules located
on the surface of these cells (Williams et al., 2002). When an appro-
priate CTL encounters a host cell expressing such epitopes, the host
cell is rapidly destroyed along with its hosted virus (Aebischer
et al., 1991; Bowen and Walker, 2005; McMichael and Phillips,
1997). This leads to an evolutionary pressure on viruses to avoid
this detection in order to survive and infect new cells. Peptide
binding to MHC-I groove requires well-defined binding motifs.
Only a few percent of the possible peptides have such a motif, lim-
iting the number of possible epitopes in every protein to approxi-
mately 1–2% of all possible nine-mers for a given HLA allele
(Yewdell, 2006). The HLA polymorphism challenges viruses with
a changing environment that may result in back-and-forth (tog-
gling) escape mutations (Delport et al., 2008) and thus limit the fix-
ation of mutation. However, mutations in the cleavage sites of the
highly conserved proteasome or in positions that binds to con-
served HLA motifs can lead to a removal of epitopes at the popula-
tion level. Thus, in principle, a very limited number of properly
positioned mutations can completely hide a viral protein from
CTLs.

Many viruses indeed acquire escape mutations in epitopes pre-
sented to CTLs (Bowen and Walker, 2005; McMichael and Phillips,
1997; Agranovich et al., 2011; Alcami, 2003; Poppema et al., 1998;
Timm et al., 2004; Yates et al., 2007). These mutations have the
obvious advantage of reducing the probability that a CTL would kill
the virus. The balance between the fitness cost and the advantage
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Fig. 1. Algorithm for the SIR score computation. Each viral protein is divided into all
nine-mers and the appropriate flanking regions (a). For each nine-mer a cleavage
score is computed (b). We compute a TAP binding for all nine-mers with a positive
cleavage score and choose only supra-threshold peptides (c). Using the MLVO
algorithm, the MHC binding scores of all TAP binding and cleaved nine-mers are
computed (d). Nine-mers passing all these stages are defined as epitopes. We then
compute the number of epitopes per protein per HLA allele (e).
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obtained by escape mutation leads to a non-uniform epitope den-
sity distribution among different viral proteins. We have recently
shown, for example, that proteins expressed early in the viral life
cycle have a lower epitope density than proteins expressed late
in the viral life cycle (Agranovich et al., 2011; Vider-Shalit et al.,
2009a, 2007), and that proteins with a low copy number have more
epitopes than proteins with a high copy number (Maman et al.,
2011a). Here, we study the relation between the accumulation of
escape mutations and the viral complexity (as shall be further de-
fined). Specifically, we test whether the (dis)advantage of a given
mutation is determined by the mutation itself or whether it is re-
lated to the complexity of the entire protein or perhaps even the
entire organism.

The relation between complexity and selection was initially
studied by the pioneering work of Fisher in 1930 (Fisher, 1930).
Fisher proposed that as the dimensionality of the phenotype in-
creases, the probability of a mutation being beneficial decreases
due to its pleiotropic effects and different dimensions of the pheno-
type. The phenotype dimensionality is defined by the number of
organism’s parts (phenotypic characters –denoted hereafter as n).
Kimura and Orr then expanded Fisher’s work and showed that Fish-
er underestimated the cost of complexity by not incorporating the
lower fixation probability of mutations with a limited phenotypic
effect following the effect of stochastic drift (Kimura, 1983; Orr,
2000). Orr (2000) further showed that the average fitness increase
rate is inversely proportional to n for small and medium n and much
faster for large n. In other words, the adaptation rate of complex
organisms is lower than the one of simpler ones. Welch and Wax-
man (2003) examined the robustness of Orr’s model by introducing
different mechanisms (such as varying magnitude of mutations,
modularity (Wagner, 1996; Wagner and Altenberg, 1996; Baatz
and Wagner, 1997) and a constant mean mutational chance per
phenotypic character). They showed that the relation between the
complexity and adaptation rate is robust to most variations of the
model. Gillespie (1994, 1984, 1983) extended Fisher’s model and
proposed the mutational landscape model. Orr (2003, 2002) further
extended his work and found different patterns that characterize
the adaptation of DNA sequences. His model was tested using single
stranded DNA viruses (Rokyta et al., 2005). These studies were done
in the regime of weak selection and low mutation rate.

In contrast with the above mentioned models, viral escape from
immune recognition is characterized by strong selection and a high
mutation rate. Most viruses budding from a given cell are de-
stroyed and most infected cells can be cleared extremely fast in
the presence of an immune response, since CTLs can induce apop-
tosis in infected cells within minutes (Regoes et al., 2007; Macken
and Perelson, 1984) (for reviews see Yates et al., 2007; Regoes
et al., 2007). The mutation rate of viruses can reach 1.e�4 muta-
tions per base pair per replication (Sanjuan et al., 2010). We here
show, using bioinformatics measurements, a direct relation be-
tween organisms’ complexity (as defined by their proteins’ length
and their number) and their epitope density. The ratio between the
epitope density and the expected epitope density based on the
amino acid composition of each protein are used to estimate the
accumulation of escape mutations. Viruses with a low number of
proteins accumulate more escape mutations per protein than large
ones, and short proteins accumulate more escape mutations than
long ones, even in steady state.

Protein length and number are obviously a simplistic proxy for
complexity and ‘‘phenotype dimensionality’’. However, in viruses
where the number of proteins is highly limited, such an approxi-
mation is probably reasonable. Note that large viruses may have
developed other alternatives, such as specific proteins that
down-modulate MHC or MHC loading. In other words, the cost of
removing mutations may be too high for them, leading them to
alternative pathways to modulate the immune response.
2. Results

2.1. Evolution rate assessment using theSIR Score

The Size of Immune Repertoire (SIR) score for a given HLA allele
(an allele that encodes for a human MHC class I molecules) is an
estimate of the average normalized CTL epitope density of a given
protein in this allele. Specifically, the SIR score of an amino acid se-
quence for a given HLA allele is the ratio between the predicted CTL
epitope density in this sequence and the epitope density expected
in a random sequence. (See Methods for detailed description). It is
based on multiple Bioinformatic algorithms used to compute all
stages of epitope processing and presentation, and was tested to
be precise in multiple previous studies (Vider-Shalit et al.,
2009a,b, 2007; Maman et al., 2011a,b; Vider-Shalit and Louzoun,
2010; Kovjazin et al., 2011).

In order to unify the score over all alleles, the SIR score of a pro-
tein sequence in a population is defined as the weighted average
SIR score for all HLAs, weighted by the HLA allele frequency in that
population. An average SIR score of less than 1 represents a se-
quence with less epitopes than expected; conversely, an average
SIR score of more than 1 represents a sequence with more epitopes
than expected. A schematic description of the SIR score is given in
Fig. 1.

The SIR score of a virus is then defined as the average SIR score
of all its proteins. Note that large and small proteins have equal
weights in this analysis.
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2.2. Correlation between the number of proteins and the epitope
density

The complexity of an organism can be measured by its protein
number. Thus, if for complex organisms the fixation probability of
escape mutation is lower, we expect a positive correlation between
the average SIR score of an entire virus and the number of proteins
in the virus. In other words, we expect viruses with fewer proteins
to have a lower average epitopes density (ratio between epitope
numbers and Protein lengths).

We have analyzed the proteins of all viruses (human and non-
human) with at least 4 proteins with a RefSeq identifier (Pruitt
et al., 2007). A full list of the studied viruses and proteins is given
in the Supplementary Material.

A positive correlation was observed between the average SIR
score of all proteins in a virus and the number of proteins in the
virus, in viruses infecting humans (Spearman R = 0.23, p < 0.0016)
(Fig. 2).While in general most of the viruses have average SIR scores
lower than 1 (T test p value 9.2e�6), viruses with a small number
of proteins (less than 40) are more biased toward a lower scores
(average 0.87) than viruses with a large number of proteins (aver-
age 0.97).

RNA viruses tend to undergo more mutations and probably gen-
erate more escape mutations. Also, their genome size is relatively
smaller as compared to DNA viruses. A simple hypothesis could
have been that the protein number effect is induced by the differ-
ence between RNA and DNA viruses. We have thus performed a
regression analysis on the virus type (DNA vs. RNA) and the protein
number (data not shown). We found that indeed RNA viruses had a
significantly lower SIR score than DNA viruses (p < 0.001). How-
ever, even the virus type was incorporated, the regression coeffi-
cient of the SIR score on the number of proteins was positive and
significant (p < 0.001).

In order to test the assumption that the observed correlation is
indeed a result of selection against epitope presentation, we have
performed a similar analysis in viruses infecting non-human hosts.
Such viruses, which have never met human HLA alleles, are not ex-
pected to accumulate escape mutations with respect to these hu-
man HLA alleles. Indeed, the Spearman correlation of the protein
number and the SIR score in viruses infecting non human hosts is
Fig. 2. Number of proteins in a virus versus its average SIR score. Thex axis is the
protein number for each virus. The y axis is the average SIR score. Each dot is a virus
infecting a human host. Viruses with a low number of proteins have on average a
low SIR score, while viruses with a large number of proteins have an SIR score of
slightly less than 1. Note that some large viruses show a limited extent of selection.
Furthermore, some small viruses have an SIR score higher than 1, as is expected
from the low number of proteins in such viruses and the random variability in the
epitope density. (Pearson, R = 0.17, p < 0.015; Spearman R = 0.23, p < 0.0016).
Epitope prediction was done by the MLVO algorithm.
practically null (Fig. S1, R = 0.08, p = 0.44). Note that since there
is some similarity between human and non-human MHC mole-
cules, peptides that are epitopes for non-human MHC molecules
are sometimes also epitopes for human MHC molecules. Moreover,
since the proteasome is highly conserved among species, human
and non-human hosts share a similar pool of cleaved peptides that
can serve as ligands for MHC-I binding.

Many of the studied viruses are quite similar (e.g. HIV I and HIV
II). The significant correlation may be the result of the similarity
between viruses (adding more degrees of freedom than there actu-
ally are). In order to exclude this possibility, we repeated the same
analysis grouping all viruses from the same family (e.g., all HPVs,
all Herpesviruses, all Influenza viruses). The result is an even
clearer correlation between the SIR score and the Log protein num-
ber (Spearman R = 0.36, p < 0.001) (Supplementary Material,
Fig. SS4). Again, performing a similar analysis on non-human
viruses yields no significant correlation (p = 0.44).
2.3. Correlation between protein length and epitope density

Another measurement that could reflect complexity is the pro-
tein length. While the number of proteins represents the complex-
ity of different viruses, the protein length is correlated to the
complexity within the virus. Obviously, a viral protein may include
several domains and have several functions, and protein length is
not completely equivalent to the complexity. However, as a first
approximation, we can expect a correlation between protein
length and complexity within a virus. We therefore tested the cor-
relation between protein length and the epitope density in a virus
specific manner.

If indeed selection is more active in shorter proteins than in
longer proteins, we expect again a positive correlation between
the proteins0 length and their epitope density. If this correlation
is indeed due to selection, it should only be observed more in
viruses infecting human hosts, than in viruses not infecting human
hosts.

We tested the correlation between SIR score and protein length
for each virus and plotted the distribution of the correlation coef-
ficient for human viruses (Fig. 3)). In viruses infecting human hosts,
this correlation is positive for most cases (about 80% of cases), and
the average Spearman correlation is 0.25 and is significantly higher
than 0 (one sample T test with the average correlation per virus,
p = 3.e�15).

A similar test on non-human virus produced a smaller, yet sig-
nificant deviation from zero (average R = 0.1, p = 0.025, Fig. S2).
When comparing the average correlation in human and non-hu-
man viruses, non-human viruses have a much lower average corre-
lation (two sample T test with the average correlation per virus T
test, p < 0.01). Again, the presence of some correlation between
protein length and SIR score in non-human viruses is probably
the result of the partial similarity between the MHC binding motifs
among mammals. Note that for some viruses random fluctuations
or other elements affecting the epitope density could induce nega-
tive correlations. Therefore, although not the ultimate factor, the
organism ‘‘size’’ is a major factor affecting the selection against epi-
tope presentation.

In order to ensure that the results are not due to a single family
of viruses, we repeated the analysis for each family separately. This
resulted in similar results (Fig. S3). One can see that for most fam-
ilies, the correlation coefficient is positive.

As we have shown previously, the selection acts mainly on
viruses with a limited number of proteins (Fig. 2). Therefore, if in-
deed the correlation between the protein length and the SIR score
is induced by selection, we expect the SIR-length correlation coef-
ficients to be correlated with the number of proteins in the virus.



Fig. 3. Histogram of Spearman correlation coefficients for viruses infecting human
hosts. We computed the correlation between the SIR Score and the protein length
for all proteins within each human virus. The R values of the correlations are clearly
biased toward positive values (one sample T test with the average correlation per
virus, p = 3.e�15). There are practically no viruses with very negative correlations,
but there are some viruses with very high positive correlations between the protein
length and the SIR score of the protein. Epitope prediction was done by the MLVO
algorithm.

Fig. 5. Virus proteome size versus its averaged SIR score. For each virus, the lengths
of all of its proteins were summed and tested for correlation with the SIR score. The
x axis is the total number of A. A in a virus (the sum of the protein lengths in the
virus), and the y axis is the average SIR score for the same virus. One can see that
this correlation is stronger than the correlation of the SIR score with either protein
length or number of proteins alone (Spearman R = 0.41, p < 1.e�10). Epitope
prediction was done by the MLVO algorithm.
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Indeed, viruses with a high number of proteins have no correla-
tion between the protein length and the SIR score, while practically
all small viruses have such a correlation. Specifically, the correla-
tion between the number of proteins in the virus and the SIR-
length correlation coefficients is significant in human viruses
(R = �0.27, p < 1.e�5) (Fig. 4). No such correlation exists in non-hu-
man viruses (R = 0.08, p = 0.44). Thus, through multiple measures
within and between viruses, one can clearly see a correlation be-
tween the SIR score and the protein length.

To summarize, these results suggest that the relation between
the organism’s complexity and the fixation of advantageous muta-
tions extends from the single protein to the full organism. The dif-
ference between viruses infecting humans and viruses infecting
other species suggests that these results are indeed due to selec-
tion against epitope presentation on human HLA molecules and
not to properties of short and long proteins in general or generic
features of small and large viruses. One could argue that this effect
Fig. 4. Number of proteins in virus versus the correlation coefficient of SIR score
and protein length. The x axis is the coefficient of the SIR score – protein length
correlation and the y axis is the number of proteins. Viruses with a small number of
proteins have a higher SIR score-protein length correlation than viruses with large
number of proteins. (R = �0.27, p < 1.e�5). This can be very clearly seen by the large
number of small viruses with high correlation coefficients (lower right part of the
distribution), and the absence of a parallel distribution of small viruses with
negative correlation coefficients. Epitope prediction was done by the MLVO
algorithm.
is due to the similarity at the sequence level between proteins in
the group of viruses. However, even when all viruses belonging
to the same group are clustered to a single point, the relation be-
tween the number of proteins and the average SIR score can be
clearly observed.

Given the correlation between the SIR score, and both the pro-
tein length and their number, we hypothesized that their combina-
tion is even more correlated with the SIR score. To test that, we
computed the correlation of the SIR score with the total proteome
size for each virus (the sum of the virus protein lengths). As ex-
pected, this combination resulted in an even higher correlation
(R = 0.41, p < 1.e�10) (Fig. 5).
3. Discussion

We have here shown, using bioinformatics tools and large scale
genetic data sets that selection for escape mutations (specifically,
mutations that remove CTL epitopes) in viruses is mainly focused
on short proteins and small viruses. Such results are expected gi-
ven that in large proteins/viruses the removal of epitopes has a fit-
ness cost, but no significant survival advantage. This is an
extension of previous models on the incompatibility between the
fitness cost and the phenotypic advantage of each mutation in
complex organisms (Orr, 2000; Wagner and Altenberg, 1996). As
the organism becomes more complex, the probability that a muta-
tion should increase the organism’s fitness decreases, while the
cost of each mutation stays constant.

A positive correlation was here described between the epitope
density (as measured by the SIR score using the MLVO MHC-I bind-
ing prediction algorithm) of each protein and the protein length. A
similar correlation was observed between the average epitope den-
sity in a full virus and the number of proteins in the virus. The re-
sults were also validated using the classical, yet less precise, BIMAS
algorithm for MHC binding (Fig. S5, Table S1). These correlations
were observed in viruses infecting humans, and to a much lesser
extent in viruses infecting non-human hosts.

It is important to mention that the proteasome and the TAP
channels which are highly conserved among species and human
MHC also show some level of similarity to non-human MHC, and
hence a correlation was seen in non-human viruses as well. How-
ever, the stronger correlation in human viruses shows that the
reduction in the epitope number is indeed the result of immune-
induced selection against epitope presentation.
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In order to avoid the destruction of its host cell, the virus
evolves to remove a large fraction of the epitopes. Removing a lim-
ited part of the epitopes has a very limited advantage and can have
a high fitness cost. Thus, even if the cost per mutation is larger in
small viruses (and the more so if it is constant), the increase in
the number of total required mutations makes it harder for large
viruses to adapt. Thus, the very clear negative correlation between
the number of proteins and the accumulation of escape mutations
may be a result of the ‘‘all or none’’ selection force affecting viruses.

An alternative explanation for the negative correlation between
selection against epitopes and the number of proteins is that
viruses with a large number of proteins have a higher probability
of expressing immune regulatory proteins and hence are less
threatened by CTL recognition. However, it seems that this is not
the main factor that determines selection against epitopes, since
some of the small viruses do express immune-regulatory proteins
(HIV Vigerust et al., 2005; Piguet and Trono, 2001; Piguet et al.,
2004, HCV (Zimmermann et al., 2008; Kim et al., 2012), and they,
as other small viruses, have a low epitope density.

Among all of the peptides that presented on the MHC-I mole-
cule, only a small fraction will eventually induce T cell response
(i.e. Immunodominant epitopes (Yewdell, 2006).

Although most presented peptides will probably not induce a T
cell response, the systematic removal of these peptides will lower
the probability of appearance of immunodominant epitopes.
Therefore a lower number of presented peptides may account for
a stronger selection against T cell response.

Note that if indeed a small number of presented peptides are
immunodominant, and many of the peptides computed to be pre-
sented in the current analysis do not induce a T cell response, then
the observed decrease of the average epitope density to 70% of its
expected value in small viruses, may actually represent a removal
of all immunodominant epitopes. In such a case, the effect of the
viral complexity may actually be much more significant that we
present here.

From a theoretical point of view, immunodominance is also ex-
pected to increase the effect of the viral complexity on the accumu-
lation of escape mutations. Assume that only very few presented
peptides can induce a strong immune response. In such a case,
for a small virus it is enough to mutate a few epitopes and com-
pletely escape from the immune system. For large viruses, it may
be impossible to remove enough epitopes to prevent an immuno-
dominant response, and as such gain nothing from escape
mutations.

Although epitope density is used as a measure for selection, the
relation between these two is not straight forward. In previous
studies we have demonstrated that inherent characters of a protein
influence its epitope density regardless to the presence of selection
(Maman et al., 2011a). For example, hydrophobic proteins natu-
rally have more epitopes that hydrophilic proteins, due to the nat-
ure of the MHC-I binding groove. Therefore, viruses that have an
hydrophobic proteins, might have higher SIR score even though
they are under strong selection for epitope removal. One striking
example for this is the Human coronavirus that have low number
of proteins but relatively high average SIR score (1.46) (Fig. 2,
Table S1).

More generally, we have shown in the past that Viruses infect-
ing humans have less epitopes that viruses infecting non-human
hosts on human HLA alleles. Within the human viruses, there are
multiple factors affecting the epitope density. We have here shown
that the complexity of the virus is one of the major elements shap-
ing this density, but not the only one.

The genetic complexity as represented by the number of pro-
teins and their length does not completely capture the phenotypic
complexity, which is much more complex to define and measure.
However, the presence of such a clear correlation suggests that
these measures are at least related to the organism complexity.

Most recent studies on evolution have been done in a regime of
weak selection and low mutation rate (Rokyta et al., 2005, 2006;
Fudenberg et al., 2006; Lande, 2009) (for a review see Orr, 2005).
One could have assumed that in viruses, with the extreme regime
of high levels of both selection and mutation rates, the relation be-
tween complexity and adaptation would be lost, and viruses would
be able to optimally adapt their sequence to avoid detection. We
have here shown that even in such extreme cases, a balance be-
tween complexity and adaptation exists.

These results have implications far beyond the specific issue of
escape mutations. We have shown that beyond 40 proteins, viruses
fail to adapt their genome to the host immune system. Actually,
beyond 40 proteins, there is practically no adaptation. One can
therefore ask, how can much more complex organisms, with a
much lower mutation rate (1.e�4 vs 1.e�9), a much longer life-cy-
cle (hours vs. years), and a much smaller population (thousands to
billions per species for most advanced species vs. more than 1.e10
in each different host for many viruses) evolve to adapt to their
environment.

The simple answer may be modularity. We have previously
shown in the case of herpesviruses and bacteria (Vider-Shalit
et al., 2007; Maman et al., 2011c) that while most proteins do
not avoid detection, limited groups of proteins, such as Herpesvirus
latent protein, or Type III secretion system effectors of gram-nega-
tive bacteria do accumulate escape mutations (Vider-Shalit et al.,
2007; Maman et al., 2011c). The same thing may be true for the
evolution of advanced species: while the full genome (or even
groups of tens to hundred ore genes) is way too complex to adapt,
limited gene groups may adapt to their environment.
4. Material and methods

4.1. SIR score

We have analyzed the ratio between the number of epitopes
presented in viral proteins and the number of epitopes in random
proteins with the same length and typical viral amino acid compo-
sition. This ratio was defined as the Size of Immune Repertoire
(SIR) score. The epitope number was computed using three algo-
rithms: a proteasomal cleavage algorithm (Ginodi et al., 2008), a
TAP binding algorithm developed by Peters et al. and the MLVO
MHC binding (Vider-Shalit and Louzoun, 2010) algorithms. The
algorithms’ quality was systematically validated using epitope dat-
abases and was found to induce low FP and FN error rates. Differ-
ent alleles present different set of epitopes. Thus, the analysis is
first performed at the single allele level. For instance, if a sequence
from a viral protein X has 4 epitopes that can bind the groove of the
HLA allele A⁄0201 and a random sequence with a similar length
and a typical viral amino acid distribution is expected to have 10
HLA A⁄0201 epitopes, then the SIR score of X for HLA A⁄0201
would be 0.4 (4/10). We have computed epitopes for the 39 most
common HLA alleles and weighted the results according to the al-
lele frequency in the Caucasian population (Newell et al., 1996).
The computation of the SIR scores can be performed through our
web-server at http://peptibase.cs.biu.ac.il/index.html.

4.2. Cleavage score

Given a peptide with N- and C-terminal flanking residues FN
and FC and residues

P1,. .Pi,.. Pn, where Pi represents any residue 1, and n represents C
and N positions, the following score was defined:
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SðpeptideÞ ¼ S1ðFNÞ þ S2ðP1Þ þ
Xn�1

i¼2

S3ðPiÞ þ S4ðPnÞ þ S5ðFCÞ:

A peptide with a high score, S, has a high probability of being pro-
duced, while a low score corresponds to a low probability of pro-
duction. The appropriate values for S1 to S5 were learned using a
simulated annealing process. The algorithm was validated to give
a rate of false positives of less than 16% and a rate of false negatives
of less than 10% (Ginodi et al., 2008).
4.3. MHC binding analysis using multi-label vector optimization
(MLVO)

The MLVO algorithm (Vider-Shalit and Louzoun, 2010) for MHC
binding prediction finds a classifier (w) using three label types that
are combined into a single constrained optimization problem. The
method finds the optimal combination of binary classification of
peptides known to bind or not to bind the MHC molecule, a linear
regression based on the measured affinities of peptides with a
known IC50 or EC50 binding concentrations and a guess (often
based on information on similar alleles). Solving this optimization
problem results in a Position Weight Matrix for each HLA alleles.
These matrices estimate the contribution of each amino acid at
each position to the total binding strength. The accuracy of MHC
binding prediction for the vast majority of MHC-I alleles in the
MLVO is over 0.95 (with AUC of over 0.98). As in all other cases,
the SIR results presented are an average weighted over alleles of
the ratio between the computed epitope density and the one ex-
pected in a random sequence. The SIR scores of the viral proteins
in this study are presented in Supplementary Material Table S1.
4.3. Thresholds

The MHC binding prediction algorithm provides a binding score
for each nine-mer. In order to produce an epitope list, a cutoff
should be applied to these scores for each allele. The way the cutoff
is determined is based on the competition for the presentation on a
limited number of MHC molecules. For example, an allele such as
B⁄2705 is expected to present a very large number of epitopes
from self proteins. Thus a viral protein with a large number of epi-
topes would have to compete with a similarly high number of epi-
topes in human proteins. While this approach may lead to the
exclusion of some real viral epitopes, it should not affect the ratio
between the number of computed epitopes in human and non-hu-
man viruses.
4.4. Epitope computation server

We have designed a CTL epitope SQL based library webserver
(http://peptibase.cs.biu.ac.il). This website provides detailed CTL
epitope libraries for the human and mouse genomes as well as
for most fully sequenced viruses. It also allows users to upload a
file and produce an epitope library. All viral proteins in this study
were analyzed for their epitope using this webserver.
4.5. Statistics

All comparisons were performed using two-sided unequal var-
iance T tests. The correlation between length and SIR score was
computed using a Spearman Correlation since the distribution of
the protein lengths is approximately log normal (Supplementary
Material Fig. S6) and not normal.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.meegid.2013.
07.030.
References

Aebischer, T., Moskophidis, D., Rohrer, U.H., Zinkernagel, R.M., Hengartner, H., 1991.
In vitro selection of lymphocytic choriomeningitis virus escape mutants by
cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA 88 (24), 11047–11051.

Agranovich, A., Vider-Shalit, T., Louzoun, Y., 2011. Optimal viral immune
surveillance evasion strategies. Theor. Popul. Biol. 80 (4), 233–243, PubMed
PMID: 21925527. Pubmed Central PMCID: 3218222. Epub 2011/09/20. eng.

Alcami, A., 2003. Viral mimicry of cytokines, chemokines and their receptors. Nat.
Rev. Immunol. 3 (1), 36–50.

Baatz, M., Wagner, G.P., 1997. Adaptive inertia caused by hidden pleiotropic effects⁄
1. Theor. Popul. Biol. 51 (1), 49–66.

Bowen, D.G., Walker, C.M., 2005 Jun 6. Mutational escape from CD8+ T cell
immunity: HCV evolution, from chimpanzees to man. J. Exp. Med. 201 (11),
1709–1714.

Delport, W., Scheffler, K., Seoighe, C., 2008. Frequent toggling between alternative
amino acids is driven by selection in HIV-1. PLoS Pathog. 4 (12), e1000242,
PubMed PMID: 19096508. Pubmed Central PMCID: 2592544. Epub 2008/12/20.
eng.

Fisher, R.A., 1930. The Genetical Theory Of Natural Selection. Oxford University
Press, Oxford, UK.

Fudenberg, D., Nowak, M.A., Taylor, C., Imhof, L.A., 2006. Evolutionary game
dynamics in finite populations with strong selection and weak mutation. Theor.
Popul. Biol. 70 (3), 352–363.

Gillespie, J.H., 1983. A simple stochastic gene substitution model. Theor. Popul. Biol.
23 (2), 202–215.

Gillespie, J.H., 1984. Molecular evolution over the mutational landscape. Evolution,
1116–1129.

Gillespie, J.H., 1994. The causes of molecular evolution. Oxford University Press,
USA.

Ginodi, I., Vider-Shalit, T., Tsaban, L., Louzoun, Y., 2008. Precise score for the
prediction of peptides cleaved by the proteasome. Bioinformatics 24 (4), 477–
483, PubMed PMID: 18216070. Epub 2008/01/25. eng.

Kim, H., Mazumdar, B., Bose, S.K., Meyer, K., Di Bisceglie, A.M., Hoft, D.F., et al., 2012.
Hepatitis C virus-mediated inhibition of cathepsin S increases invariant-chain
expression on hepatocyte surface. J. Virol. 86 (18), 9919–9928, PubMed PMID:
22761382. Pubmed Central PMCID: 3446550. Epub 2012/07/05. eng.

Kimura, M., 1983. The neutral theory of molecular evolution. Cambrige University
Press.

Kovjazin, R., Ilan, V., Yair, D., Vider-Shalit, T., Azran, R., Tsaban, L., et al., 2011. Signal
peptides and trans-membrane regions are broadly immunogenic and have high
CD8+ T cell epitope densities: Implications for vaccine development. Mol.
Immunol., In Press. PubMed PMID: 19730693. Pubmed Central PMCID:
2731216. eng.

Lande, R., 2009. The maintenance of genetic variability by mutation in a polygenic
character with linked loci. Genet. Res. 26 (03), 221–235.

Macken, C.A., Perelson, A.S., 1984. A multistage model for the action of cytotoxic T
lymphocytes in multicellular conjugates. J. Immunol. 132 (4), 1614.

Maman, Y., Blancher, A., Benichou, J., Yablonka, A., Efroni, S., Louzoun, Y., 2011a.
Immune induced evolutionary selection focused on a single reading frame in
overlapping HBV proteins. J. Virol., JVI. 02142-10v1.

Maman, Y., Nir-Paz, R., Louzoun, Y., 2011b. Bacteria modulate the CD8+ T cell
epitope repertoire of host cytosol-exposed proteins to manipulate the host
immune response. PLoS Comput. Biol. 7 (10), e1002220.

Maman, Y., Nir-Paz, R., Louzoun, Y., 2011c. Bacteria modulate the CD8+ T cell
epitope repertoire of host cytosol-exposed proteins to manipulate the host
immune response. PLoS Comput. Biol. 7 (10), e1002220, PubMed PMID:
22022257. Pubmed Central PMCID: 3192822. Epub 2011/10/25. eng.

McMichael, A.J., Phillips, R.E., 1997. Escape of human immunodeficiency virus from
immune control. Annu. Rev. Immunol. 15, 271–296.

Newell, W.R., Trowsdale, J., Beck, S., 1996. MHCDB: database of the human MHC
(release 2). Immunogenetics 45 (1), 6–8.

Orr, H.A., 2000. Adaptation and the cost of complexity. Evolution 54 (1), 13–20.
Orr, H.A., 2002. The population genetics of adaptation: the adaptation of DNA

sequences. Evolution 56 (7), 1317–1330.
Orr, H.A., 2003. The distribution of fitness effects among beneficial mutations.

Genetics 163 (4), 1519.
Orr, H.A., 2005. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6

(2), 119–127.
Piguet, V., Trono, D., 2001. Living in oblivion: HIV immune evasion. Semin.

Immunol. 13 (1), 51–57, PubMed PMID: 11289799. Epub 2001/04/06. eng.
Piguet, V., Wan, L., Borel, C., Mangasarian, A., Demaurex, N., Thomas, G., et al., 2004.

HIV-1 Nef protein binds to the cellular protein PACS-1 to downregulate class I
major histocompatibility complexes. Nat. Cell Biol. 2 (3), 163–167, PubMed
PMID: 10707087. Pubmed Central PMCID: 1475706. Epub 2000/03/09. eng.

Poppema, S., Potters, M., Visser, L., Van Den Berg, A.M., 1998. Immune escape
mechanisms in Hodgkin’s disease. Ann. Oncol. 9 (Suppl. 5), S21.

http://dx.doi.org/10.1016/j.meegid.2013.07.030
http://dx.doi.org/10.1016/j.meegid.2013.07.030
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0005
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0005
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0005
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0015
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0015
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0020
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0020
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0025
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0025
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0025
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0035
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0035
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0040
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0040
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0040
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0045
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0045
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0050
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0050
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0055
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0055
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0070
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0070
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0080
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0080
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0085
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0085
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0090
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0090
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0090
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0095
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0095
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0095
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0105
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0105
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0110
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0110
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0115
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0120
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0120
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0125
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0125
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0130
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0130
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0145
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0145


A. Agranovich et al. / Infection, Genetics and Evolution 20 (2013) 71–77 77
Pruitt, K.D., Tatusova, T., Maglott, D.R., 2007. NCBI reference sequences (RefSeq): a
curated non-redundant sequence database of genomes, transcripts and
proteins. Nucleic Acids Res. 35 (Database issue), D61–D65, PubMed PMID:
17130148. Pubmed Central PMCID: 1716718. Epub 2006/11/30. eng.

Regoes, R.R., Barber, D.L., Ahmed, R., Antia, R., 2007. Estimation of the rate of killing
by cytotoxic T lymphocytes in vivo. Proc. Natl. Acad. Sci. 104 (5), 1599.

Regoes, R.R., Yates, A., Antia, R., 2007. Mathematical models of cytotoxic T-
lymphocyte killing. Immunol. Cell Biol. 85 (4), 274–279.

Rokyta, D.R., Joyce, P., Caudle, S.B., Wichman, H.A., 2005. An empirical test of the
mutational landscape model of adaptation using a single-stranded DNA virus.
Nat. Genet. 37 (4), 441–444.

Rokyta, D.R., Beisel, C.J., Joyce, P., 2006. Properties of adaptive walks on uncorrelated
landscapes under strong selection and weak mutation. J. Theor. Biol. 243 (1),
114–120.

Sanjuan, R., Nebot, M.R., Chirico, N., Mansky, L.M., Belshaw, R., 2010. Viral Mutation
Rates. J. Virol. 84 (19), 9733–9748.

Soderholm, J., Ahlen, G., Kaul, A., Frelin, L., Alheim, M., Barnfield, C., et al., 2006.
Relation between viral fitness and immune escape within the hepatitis C virus
protease. Gut 55 (2), 266–274.

Timm, J., Lauer, G.M., Kavanagh, D.G., Sheridan, I., Kim, A.Y., Lucas, M., et al., 2004.
CD8 epitope escape and reversion in acute HCV infection. J. Exp. Med. 200 (12),
1593.

Vider-Shalit, T., Louzoun, Y., 2010. MHC-I prediction using a combination of T cell
epitopes and MHC-I binding peptides. J. Immunol. Meth., PubMed PMID:
20920507. Pubmed Central PMCID: 3044214. Epub 2010/10/06. Eng.

Vider-Shalit, T., Fishbain, V., Raffaeli, S., Louzoun, Y., 2007. Phase-dependent
immune evasion of herpesviruses. J. Virol. 81 (17), 9536–9545, PubMed
PMID: 17609281. Pubmed Central PMCID: 1951411. Epub 2007/07/05. eng.
Vider-Shalit, T., Almani, M., Sarid, R., Louzoun, Y., 2009a. The HIV hide and seek
game: an immunogenomic analysis of the HIV epitope repertoire. AIDS 23 (11),
1311–1318, PubMed PMID: 19550286. Epub 2009/06/25. eng.

Vider-Shalit, T., Sarid, R., Maman, K., Tsaban, L., Levi, R., Louzoun, Y., 2009b. Viruses
selectively mutate their CD8+ T-cell epitopes-a large-scale immunomic
analysis. Bioinformatics 25 (12), i39–i44.

Vigerust, D.J., Egan, B.S., Shepherd, V.L., 2005. HIV-1 Nef mediates post-translational
down-regulation and redistribution of the mannose receptor. J. Leukoc. Biol. 77
(4), 522–534, PubMed PMID: 15637102. Epub 2005/01/08. eng.

Wagner, G.P., 1996. Homologues, natural kinds and the evolution of modularity.
Integr. Comp. Biol. 36 (1), 36.

Wagner, G.P., Altenberg, L., 1996. Perspective: complex adaptations and the
evolution of evolvability. Evolution 50 (3), 967–976.

Welch, J.J., Waxman, D., 2003. Modularity and the cost of complexity. Evolution 57
(8), 1723–1734.

Williams, A., Peh, C.A., Elliott, T., 2002. The cell biology of MHC class I antigen
presentation. Tissue Antigens 59 (1), 3–17, PubMed PMID: 11972873. Epub
2002/04/26. eng.

Yates, A., Graw, F., Barber, D.L., Ahmed, R., Regoes, R.R., Antia, R., 2007. Revisiting
estimates of CTL killing rates in vivo. PLoS One 2 (12), 1301.

Yewdell, J.W., 2006. Confronting complexity: real-world immunodominance in
antiviral CD8+ T cell responses. Immunity 25 (4), 533–543, PubMed PMID:
17046682. Epub 2006/10/19. eng.

Zimmermann, M., Flechsig, C., La Monica, N., Tripodi, M., Adler, G., Dikopoulos, N.,
2008. Hepatitis C virus core protein impairs in vitro priming of specific T cell
responses by dendritic cells and hepatocytes. J. Hepatol. 48 (1), 51–60, PubMed
PMID: 17998148. Epub 2007/11/14. eng.

http://refhub.elsevier.com/S1567-1348(13)00296-7/h0155
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0155
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0160
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0160
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0165
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0165
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0165
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0170
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0170
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0170
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0175
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0175
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0180
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0180
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0180
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0185
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0185
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0185
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0205
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0205
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0205
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0215
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0215
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0220
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0220
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0225
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0225
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0235
http://refhub.elsevier.com/S1567-1348(13)00296-7/h0235

