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ABSTRACT

Cells respond to environmental stress by inducing
translation of a subset of mRNAs important for
survival or apoptosis. CHOP, a downstream
transcriptional target of stress-induced ATF4, is
also regulated translationally in a uORF-dependent
manner under stress. Low concentration of
anisomycin induces CHOP expression at both
transcriptional and translational levels. To study
specifically the translational aspect of CHOP
expression, and further clarify the regulatory
mechanisms underlying stress-induced translation
initiation, we developed a CMV promoter-regulated,
uORFchop-driven reporter platform. Here we show
that anisomycin-induced CHOP expression
depends on phosphorylated eIF4E/S209 and eIF2a/
S51. Contrary to phospho-eIF2a/S51, phospho-
eIF4E/S209 is not involved in thapsigargin-induced
CHOP expression. Studies using various kinase
inhibitors and mutants uncovered that both the
p38MAPK-Mnk and mTOR signaling pathways
contribute to stress-responsive reporter and CHOP
expression. We also demonstrated that anisomycin-
induced translation is tightly regulated by partner
binding preference of eIF4E. Furthermore, mutating
the uORF sequence abolished the anisomycin-
induced association of chop mRNA with phospho-
eIF4E and polysomes, thus demonstrating the
significance of this cis-regulatory element in con-
ferring on the transcript a stress-responsive
translational inducibility. Strikingly, although insulin
treatment activated ERK-Mnk and mTOR pathways,
and consequently eIF4E/S209 phosphorylation, it
failed to induce phospho-eIF2a/S51 and reporter
translation, thus pinpointing a crucial determinant
in stress-responsive translation.

INTRODUCTION

Cellular genes are expressed in a coordinated fashion that
requires regulation at multiple levels. Among the regula-
tory mechanisms, translational control is an immediate
early response that becomes crucial in the absence of tran-
scription. When mammalian cells encounter stress
conditions such as during development, differentiation,
nutrient deprivation, chemical exposure and pathogenic
infection, a family of protein kinase is activated to
phosphorylate eukaryotic initiation factor 2a (eIF2a)
(1,2). The phosphorylation of eIF2a on Ser51 results in
sequestration of eIF2B and reduction of the eIF2–GTP–
tRNAi ternary complex (2,3). Notably, ER stress-induced
phosphorylation of eIF2a/S51 is known to up-regulate the
translation of a class of stress responsive mRNAs, such as
activating transcription factor 4 (ATF4) (4). Through the
upstream open reading frame elements (uORFs) in its
mRNA, the expression of ATF4 protein is responsive
only to ER stress and consequently leads to
transcriptional activation of downstream target genes
[e.g. CHOP (CCAAT/enhancer-binding protein homolo-
gous protein) and GADD34] (5–8). The expression of
CHOP are increased at both the transcriptional and
translational levels during environmental stress, in line
with its important role in various cellular processes such
as programmed cell death, growth and differentiation in
mammalian cells (9). Like atf4, a single uORF element in
the 50UTR of chop mRNA is responsible for the increase
of CHOP protein level under ER stress conditions (10).
Previously, Jousse et al. demonstrated a role of uORF
from chop in limiting ribosomal access to downstream ini-
tiation sites (11). It was thought to permit re-initiation
by allowing processive scanning of ribosomes after
terminating at the uORF stop codon (11). Although the
roles of uORF in stress-responsive translation have been
analyzed in numerous mRNAs, the underlying molecular
mechanisms remain poorly understood. To further inves-
tigate the regulation of uORFchop-driven translation, we
have created a uORFchop-reporter platform that facilitates
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analysis of stress-induced translational control in the
absence of transcription.

Treatment of cells with translation inhibitor anisomycin
at high concentration (10 mM) activates p38 MAPK and
SAPK/JNK signaling pathways and induces transcription
of a number of genes including chop while inhibits protein
synthesis (12). However, when low concentration (0.5 mM)
is used, it activates p38 MAPK signaling pathway and
induces transcription of stress response genes such as
chop without significant inhibition of protein synthesis.
The roles for SAPK pathway in the cellular adaptive
response to stress have been firmly established (13). On
the other hand, anisomycin activation of p38 MAPK
and its downstream target Mnk1 (MAPK-activated
protein kinase 1) leads to phosphorylation of eIF4G-
bound eIF4E at the residue S209 (14–18). The eIF4G
serves as a scaffold protein for assembly of eIF4E and
eIF4A to form eIF4F, which, with further recruitment
of eIF4B, eIF3 and eIF1 and 40S ribosome, underlies for-
mation of pre-initiation complex. Despite the key
involvement of eIF4E in cap-dependent translation initia-
tion, the importance of its phosphorylation at S209
remains uncertain as Mnk-deficient mice seems healthy
and fertile (19). However, phosphorylated eIF4E/S209
may be required for coping with stress situations.
Another critical regulator of stress-responsive translation
is the mammalian Target of Rapamycin, (mTOR), which
functions in integrating extracellular signals (such as
growth factors and hormones), amino-acid availability,
and intracellular energy status to control translation
rates and additional metabolic processes (20). It affects
translation initiation through phosphorylating two major
targets: the eIF4E-binding proteins (4E-BPs) and eIF4G,
thereby controlling the activity of the eIF4F complex.
4E-BP1, one of the eIF4E-binding proteins, is a repressor
of the eIF4F complex. The 4E-BP1/eIF4E complex
is regulated at the level of 4E-BP1 phosphorylation:
hypophosphorylated 4E-BP1 favors the complex forma-
tion, whereas the hyperphosphorylated form favors its
dissociation (21).

In this article, we report that the phosphorylation of
eIF4E/S209, 4E-BP1 and eIF2a/S51 plays a key role in
anisomycin-induced translation of uORFchop-driven
reporter or endogenous CHOP. By combining phar-
macologic, genetic, biochemical and cellular approaches,
we have elucidated a convergence of anisomycin-activated
p38MAPK-Mnk1 and mTOR signaling pathways at
the level of phosphorylated eIF4E/S209 and 4E-BP1.
Furthermore, we demonstrated that anisomycin-induced
endogenous CHOP expression was decreased by over-
expression of eIF4E/S209A/T210A. In cell line known to
have low level of eIF2a (e.g. MCF-7), drug-induced
expression of uORFchop-driven reporter or endogenous
CHOP is also low as compared to other cell lines.
Additionally, insulin failed to induce uORFchop-driven
translation albeit it could activate ERK, Mnk1 and
mTOR leading to phosphorylation of eIF4E/S209 but
not eIF2a/S51. Thus, the fundamental difference
between growth factor-induced general translation initia-
tion and anisomycin-induced uORFchop-driven translation
hinges on the phosphorylation of both eIF4E/S209 and

eIF2a/S51. Taken together, our present results suggest
that anisomycin-induced, uORF-driven CHOP translation
requires the activation of both mTOR and p38-Mnk1
pathways, in addition to phosphorylated eIF2a/S51.

MATERIALS AND METHODS

Plasmid constructs

All constructs were generated by PCR using LA-Taq
polymerase (TaKaRa) from placenta cDNA library. The
cDNA of human uORF-CHOP was generated by PCR
using the forward 50-ATGTTAAAGATGAGCGGGTG
GCAG-30 and the reverse or 50-GATGCTCCCAATCTC
GAGTGCTTGGTG-30 primers. The PCR fragment was
cloned into TOPO-TA vector (Invitrogen) and subcloned
into pCMV-Tag4 (termed uORF-CHOP-Flag). The
uORF fragment was generated by PCR using the
forward 50-ATGTTAAAGATGAGCGGGTGGCAG-30

and the reverse 50-GATGCTCCCAATTGTTCATGCTT
GGTG-30 primers and cloned into pcDNA3 (termed
pcDNA-uORF). The mutant version of the uORFchop

was generated by PCR using forward 50-AAGTTAAAG
AAGAGCGGGTGGCAG-30 and the reverse 50-GATGC
TCCCAATTGTTCTTGCTTGGTG-30 primers, and
subsequently cloned into pcDNA3 (termed pcDNA-
uORF*). The firefly luciferase-reporter (Lu) gene was
inserted into HindIII and XbaI restriction sites of the
above constructs. To generate the dual monocistronic
reporter constructs, CMV promoter-Renilla luciferase-
reporter (Rlu) gene was inserted into the NruI and BglII
restriction sites of pcDNA-uORF-Lu and pcDNA-
uORF*-Lu. The constructs of wild-type eIF4E and its
mutants (S209A/T210A and S209D) were generated by
PCR using the forward 50-AATGAATTCAAGATGGC
GATCGTC-30 and reverse 50-GGCGATATCTTAAAC
AACAAACCT-30 primers for eIF4E, 50-GGCGATATC
TTAAACAACAAACCTATTTTTAGTGGTGTCGCC-30

for S209D, and 50-GGCGATATCTTAAACAACAAAC
CTATTTTTAGTGGCGGCGCC-30 for S209A/T210A.
The constructsn of wild-type 4E-BP1 and its mutant
(F114A) were generated by PCR using the forward 50-AT
AGATATCATGTCCGGGGGCAGC-30 and reverse
50-GCGCTCGAGTTAAATGTCCATCTC-30 primers for
4E-BP1 and 50-GCGCTCGAGTTAAATGTCCATCTCA
GCCTGTGACTC-30 for F114A. The PCR fragments
were cloned into pCMV2B vector (with Flag-tag,
Stratagene) by EcoRI-EcoRV (for eIF4E) and EcoRV-
XhoI (for 4E-BP1) restriction sites. The constructs of
eIF2a/S51 and eIF2a (S51A) form were kindly provided
by Dr Woan-Yuh Tarn (Institute of BioMedical Sciences,
Academia Sinica, Taiwan), p38 MAPK, and p38 (AGF)
were from Dr Jia-Huai Han (Scripps Research Institute).

Cell culture, transfection and drug treatment

293T cells were cultured in Dulbecco’s modified
Eagle medium (DMEM) and PC3 cells were cultured
in RPMI-1640 medium supplemented with 10%
FBS (HyClone) and 100U/ml penicillin-streptomycin
(Invitrogen) at 37�C in humidified incubator containing
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5% CO2. Cells were seeded in a 10-cm dish the day before
transfection. 293T cells at a concentration of 5� 106 cells
per dish were transfected with 0.25 mg (for uORF’s
constructs) or 5 mg (for eIF2a, eIF4E, eIF4G and 4E-
BP1 constructs) DNA using calcium phosphate precipita-
tion method. PC3, MCF-7 and HeLa cells at a concentra-
tion of 1� 107 cells per dish were transfected with 0.25 mg
(for uORF’s constructs) or 5 mg (for eIF2a and eIF4E
constructs) DNA using LipofectamineTM 2000 method
(Invitrogen). After 16 h, the cultures were changed to
fresh medium for 1.5 h and then added DMSO, 1 mM
thapsigargin (Sigma), 0.5mM anisomycin (Sigma), 6 nM
to 60 mM cycloheximide (Sigma), 1 mM SB203580
(Sigma), 1 mM SP600125 (Biomol), 1 mM U0126
(Biomol), 10 mM CGP57380 (Sigma), 1 mM Rapamycin
(Bioaustralis) or 2.5mM insulin. Cells were harvested
after 0–4 h post-treatment.

Western blot analysis and dual luciferase assay

The cells were harvested and centrifuged for 5min at
6000 g, and washed twice with PBS. Cell pellets were re-
suspended by gently pipetting in whole cell extraction
(WCE) buffer [20mM Hepes (pH 7.6), 10% glycerol,
0.4M NaCl, 0.5% Triton X-100, 0.5mM dithiothreitol
(DTT), 1mM EDTA, 1mM EGTA, 1mM PMSF,
1 mg/ml leupeptin and 1 mg/ml pepstatin A] at 0.5� 106

to 1.0� 106 cells/100 ml. Cell lysate was prepared by vor-
texing at 4�C for 30min. Protein concentration was deter-
mined by the Bradford reagent (Bio-Rad). Western blot
analysis was performed after electrophoretic separation of
polypeptides by 7.5–15% SDS–PAGE and transfer to
PVDF membranes. Blots were probed with the indicated
primary and appropriate secondary antibodies and
detected by ECL chemiluminescence (Amersham
Biosciences). Monoclonal antibody to anti-tubulin (clone
10D8) and rabbit anti-mTOR, anti-eIF2a, anti-eIF4E,
anti-CHOP and anti-eIF4G antibodies were generated
by our own laboratory. Rabbit antibodies to phospho-
mTOR/S2481 (#2974), phospho-eIF4E/S209 (#9741),
phospho-eIF4G/S1108 (#2441), phospho-S6K1/T389
(#9206), phospho-ERK/T202/Y204 (#4376), phospho-
p38/T180/Y182 MAPK (#9211), phospho-4E-BP1/S65
(#9451), phospho-Mnk1/T197/202 (#2111), Mnk1
(#2195), S6K1 (#9202) and 4E-BP1 (#9452) were
obtained from Cell Signaling. Anti-p38 MAPK (sc-535)
and anti-ERK1 (sc-93) antibodies were obtained from
Santa Cruz Biotech. Dual luciferase assays were carried
out according to manufacturer’s instructions (Promega).
1 mg of extract was assayed for firefly and Renilla luciferase
activities. Ratio is the unit of firefly luciferse after
normalized with Renilla luciferase, and each value was
derived from three independent experiments.

RNA extraction and RT–PCR

Total RNAs were extracted from cell cultures using an EZ
EXTRACTION Solution Kit (Genomics Biosci & Tech)
supplemented with RNasin (Promega). Contaminating
DNA was digested with RNase-free DNase according to
the manufacturer’s instructions (Promega). For RT–PCR
analysis, 2.5 mg of total RNA was reverse-transcribed into

cDNA using random primers (Invitrogen) and Superscript
II Reverse Transcriptase (Invitrogen) Kit. The following
primers were used for PCR (5min denaturation at 94�C
and then 30 cycles of amplification at 94�C for 30 s, 50�C
for 30 s and 72�C for 45 s):

CHOP, 50-AGAGATGGCAGCTGAGTCATTGCC-30,
and 50-GCAGATTCACCATTCGGTCA-30;
GAPDH, 50-ACCACAGTCCATGCCATCAC-30, and
50-GTCGCTGTTGAAGTCAGAGGAGAC-30; CHOP-
Flag, 50-ATGTTAAAGATGAGCGGGTGGCAG-30, and
T7 primer;
Lusiferase, 50-CCATGGAAGACGCCAAAAAC-30, and
50-CTTGTCCCTATCGAAGGACTCT-30.

Polysome profile analysis by sucrose gradient centrifugation

Polysome profile by sucrose gradient was done as
described in a previous study (22). After transfection
for 16 h, cells were cultured with fresh media for 1.5 h
and treated with DMSO or anisomycin (0.5 mM) for 1 h.
Next, cells were incubated with cycloheximide (100mg/ml)
for 3min at 37�C and washed three times with 1x PBS.
Lysis buffer (15mM Tris–HCl, pH 7.4, 15mM MgCl2,
200mM NaCl, 1% Triton X-100 (v/v), 100mg/ml
cycloheximide, 1mg/ml heparin) was used to harvest
cells directly. The cell lysates were clarified by centrifug-
ing at 12 000 g for 10min at 4�C, and the resulting
supernatants were applied to the 10–50% (w/v) sucrose
gradient and centrifuged at 15 100 g for 4 h in a SW41
rotor at 4�C. Using the fraction collector and a syringe
pump system, fractions were collected from the top to
bottom. To purify RNA, we took 400 ml of each fraction
and add 600 ml of guanidine-HCL and 600 ml of
isopropanol. After vigorous vortexing, the samples were
incubated at �20�C O/N and then centrifuged at 9 100 g
for 25min. The pellet was subsequently washed by 70%
EtOH and resuspend in 100 ml of water. Equal volumes of
fractionated RNA were subjected to RT–PCR and
amplified by T7 and Lusiferase primers (50-CTTGTCCC
TATCGAAGGACTCT-30).

Immunoprecipitation and RNA immunoprecipitation
(RNA-IP)

Cells were harvested by spinning for 5min, washed with
PBS and resuspended (0.5� 106 to 1.0� 106 cells/400 ml)
by gently pipetting in cold whole cell extraction (WCE)
buffer and vigorously vortexed for 30min at 4�C. After
centrifugation for 15min in 12 740 g at 4�C, the cell
extracts were incubated with protein G-Sepharose beads
(Pharmacia) for 1 h rotating at 4�C. The pre-cleared
extracts were incubated with desired antibodies for 2–3 h
rotating at 4�C. The beads were washed with WCE buffer
for three times followed by SDS–PAGE and western blot
analysis. For RNA-IP, M2 beads (contained protein
and RNA, Sigma) were extracted directly by using an
EZ EXTRACTION Solution Kit and subjected to
RT–PCR. We used the T7 and Lusiferase primers (50-CT
TGTCCCTATCGAAGGACTCT-30) in the cDNA ampli-
fication step.
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RNA interference

The pSUPER shRNA-producing plasmid (Oligoengine)
was directed against the following target sequence:
4E-BP1-50-GTTTGAGATGGACATTTAA-30 (23). HEK
293T cells were co-transfected with 0.25mg of dual
construct and 5 mg of pSUPER-4E-BP1 or pSUPER (as
control). After 16 h, the cultures were changed to fresh
medium for 24 h and then changed to fresh medium
again for 1.5 h. After being treated with DMSO, 1 mM
thapsigargin, and 0.5 mM anisomycin for 2 h, cells were
harvested for luciferase assay and western blot analysis.

Statistical and quantitative analysis

The Student’s t-test was used to estimate statistical signif-
icance of differences between two groups. Differences
between groups were considered statistically significant
at P< 0.05. Quantitative ratios were presented as protein
or RNA levels that were normalized with internal controls
(such as tubulin or GAPDH) through using the NIH
ImageJ software.

RESULTS

Stress-responsive expression of uORFchop-driven reporter
and endogenous CHOP

When used at high concentration (i.e. 10 mM), anisomycin
could induce chop mRNA transcription while inhibit its
translation. However, low concentration (i.e. 0.5mM) of
anisomycin could induce both transcription of chop
mRNA and translation of CHOP protein (Figure 1A,
upper and lower panels). To investigate the underlying
mechanisms that govern the uORF-driven CHOP transla-
tion, we constructed a plasmid that directs the transcrip-
tion of uORF-CHOP under a CMV promoter control and
fused Flag-tag at its C-terminus (uORF-CHOP-Flag,
Figure 1B, upper panel). The results of western blot
analysis indicated that CHOP-Flag expression was also
repressed by high concentration of anisomycin but
induced by low-concentration treatment (Figure 1B,
lower panel). RT–PCR confirmed that the mRNA of
CHOP-Flag was constitutively expressed without
response to anisomycin treatment (Figure 1B, upper
panel), therefore excluding the possibility that stress-
responsive reporter induction is mediated at the
transcriptional level. For an efficient assay platform, we
constructed a plasmid that directs the transcription of
uORF-firefly luciferase (CMV-uORFchop-Lu, Figure 1C,
upper panel) under a CMV promoter control. Under such
setting, the reporter firefly luciferase (FL) transcript was
translated in a uORFchop-driven manner while the control
Renilla luciferase (RL) transcript (CMV-Rlu) was
translated in a non-uORF-driven manner. The FL expres-
sion depends almost exclusively on stress conditions (i.e.
anisomycin treatment, Figure 1C). In contrast, we found
that reporter expression from the dual reporter system was
not induced by treatment with cycloheximide (Figure 1C,
lower panel), although de novo CHOP synthesis under
stress condition was shown repressed by this eukaryotic

protein synthesis inhibitor (24). Both thapsigargin and
anisomycin could induce uORFchop-driven FL expression
effectively (Figure 1D, upper panel). RT–PCR also con-
firmed that the expression of FL mRNA was not respon-
sive to either thapsigargin or anisomycin treatment
(Figure 1D, lower panel). Our results further
demonstrated that the kinetics of FL expression from
this dual reporter system is faster than that of the
endogenous CHOP induction under anisomycin treatment
(Figure 1C, lower panel). This difference in induction
kinetics is likely due to the availability of reporter versus
endogenous gene transcripts, which are generated by dif-
ferent promoters, at the time of the drug treatment.
Together these results show that the dual reporter
plasmid is a specific and effective platform for addressing
the mechanisms of anisomycin-induced uORFchop-driven
translation.

Role of eIF2a/S51 phosphorylation in thapsigargin- or
anisomycin-induced uORFchop-driven reporter translation

The ER stress-activated phosphorylation of translation
initiation factor eIF2a/S51 is known to be important for
thapsigargin-induced ATF4 or CHOP translation (5,10).
To examine whether phosphorylated eIF2a/S51 is crucial
for both thapsigargin- and anisomycin-induced
uORFchop-FL expression, we tested the effect of eIF2a/
S51A mutation on the expression of FL. We found that
thapsigargin was more effective than anisomycin
in inducing phosphorylation of eIF2a/S51 (Figure 1D,
lower panel). Furthermore, when the non-phosphorylatable
eIF2a/S51A mutant was over-expressed, the thapsigargin-
induced FL expression was almost completely abolished
while anisomycin-induced expression was only partially
reduced (Figure 1E, upper panel). Anisomycin-activated
p38 MAPK-Mnk pathway leads to phosphorylation of
eIF4E/S209 (25). We next sought to analyze whether
Mnk1 and eIF4E are involved in the anisomycin-induced
uORFchop-driven FL expression. When cell lysates were
probed with phosphospecific antibodies to p38, Mnk1
and eIF4E, the phosphorylation levels of all three
proteins were found increased after anisomycin treatment
(Figure 1E, lower panel). In sharp contrast, thapsigargin
treatment had no effect on the phosphorylation levels of
these proteins. These results thus suggest that
thapsigargin-induced uORFchop-FL reporter expression is
dependent exclusively on phosphorylated eIF2a/S51 while
such modification showed minor effects for the anisomycin-
induced reporter translation.

The p38/MAPK-Mnk-eIF4E pathway plays an
essential role in the anisomycin-induced translation
of uORFchop-driven reporter

To analyze whether the p38/MAPK-Mnk pathway is
involved in the anisomycin-induced uORFchop-driven FL
expression, cells were treated with p38 inhibitor. As shown
in Figure 2A (upper panel), inhibition of p38 activity by
SB203580 led to a significant reduction of anisomycin-
induced uORFchop-driven FL expression, but had no
effect on thapsigargin treatment. Western blot results
showed that, while SB203580 treatment had no effect on
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Figure 1. Induction of CHOP expression by anisomycin. (A) 293T cells were treated with high (10mM) or low (0.5 mM) dose of anisomycin for the
indicated time lengths (0–8 h) and analyzed by western blot (lower panel) with the indicated antibodies (anti-CHOP and anti-tubulin) or by RT–PCR
(upper panel). (B) Cells were transfected with the CMV promoter-driven uORF-CHOP-Flag construct (upper panel) as described in the ‘Materials
and Methods’ section. Cells were subsequently treated with DMSO, 10 mM or 0.5 mM anisomycin (An) for 0–8 h, and harvested for RT–PCR and
western blot analysis. (C) Schematic representation of the dual reporter construct, ulR-uORF-Lu (upper panel). Compare to firefly luciferase (FL),
we named the Renilla luciferase (Rlu) as ulR because the direction of it is antisence/reverse in relation to the FL. 293T cells were transfect with this
construct and subjected to drug treatment as in (B) or treatment with indicated concentrations of cycloheximide for 4 h (lower panel), and
subsequently harvested and assayed with Dual-Luciferase Reporter Assay system (Promega). Ratio represents the activity of firefly luciferase
divided by that of Renilla luciferase. Experiments were done in triplicate (mean±SD, P< 0.05). (D) The dual-reporter construct (ulR-uORF-Lu)
were transfected into cells, which were subsequently treated with DMSO, 1mM thapsigargin (Tg), or 0.5 mM anisomycin (An). After 0–4 h, cells were
harvested for Dual-Luciferase Reporter Assay (upper panel, mean±SD, P< 0.05), RT–PCR and western blot analysis (lower panel). Blots were
probed with the indicated primary (anti-CHOP, anti-tubulin, anti-phosphorylated eIF2a/S51 and anti-eIF2a) and appropriate secondary antibodies.
(E) The dual reporter construct (ulR-uORF-Lu) was co-transfected with vector (as negative control), eIF2a (wild-type, wt), or eIF2a (S51A) into
293T cells, and subsequently subjected to drug treatment as in (D). After 4 h, cells were harvested for Dual-Luciferase Reporter Assay (upper panel,
mean±SD, P< 0.05). Cell lysates (from Figure 1D) were probed with antibodies against phosphorylated p38 MAPK (p38-P), p38 MAPK,
phosphorylated Mnk1 (Mnk1-P), Mnk1, phosphorylated eIF4E/S209 (eIF4E-P) and eIF4E, as indicated on the left of lower panel.
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the protein levels of p38, Mnk1, eIF2a and eIF4E
(Figure 2A, lower panel), it decreased the phosphorylated
eIF2a/S51 level slightly after 1–2 h treatment (Figure 2A,
lower panel). To further characterize the involvement of
p38, we performed genetic experiments by co-transfecting
wild-type or dominantly negative mutant p38 (i.e. p38/

AGF) with the uORFchop-luciferase plasmid. Western
blot results showed that p38/AGF blocked the phos-
phorylation of Mnk1 and eIF4E under anisomycin treat-
ment (Figure 2B, lower panel), implicating these factors in
the p38 signaling pathway under stress. We further found
that overexpression of p38/AGF efficiently diminished

Figure 2. The p38 MAPK signaling pathway is required for anisomycin-, but not thapsigargin-induced uORFchop-driven translation. (A) The dual
reporter construct (ulR-uORF-Lu) was transfected into 293T cells as described in the ‘Materials and Methods’ section. Cells were subsequently
treated with DMSO, 1 mM thapsigargin (Tg), 0.5 mM anisomycin (An), 1 mM SB203580, thapsigargin plus SB203580 (Tg+SB), or anisomycin plus
SB203580 (An+SB). After 0–4 h, cell extracts were prepared for Dual-Luciferase Reporter Assay (upper panel, mean±SD, P< 0.05) and western
blot analysis (lower panel). Blots were probed with the indicated antibodies. (B) The dual reporter construct was co-transfected with vector (as
negative control), p38 MAPK (WT), or p38 MAPK dominant negative mutant (AGF) into 293T cells. After 0–4 h of treatment with DMSO,
thapsigargin (Tg), or anisomycin (An), cells were harvested for Dual-Luciferase Reporter Assay (top panel) and western blot analysis (bottom panel).
Ratio in each experiment represents the activity of firefly luciferase divided by that Renilla luciferase (mean±SD, P< 0.05). (C) The dual reporter
construct was transfected into 293T cells, which were subsequently treated with DMSO, thapsigargin (Tg), anisomycin (An), 1 mM U0126,
thapsigargin plus U0126 (Tg+U0126), or anisomycin plus U0126 (An+U0126). After 0–4 h, cell extracts were prepared for Dual-Luciferase
Reporter Assay (top panel) (mean±SD, P< 0.05) and western blot analysis (bottom panel). (D) The dual reporter construct was transfected
into cells, which were then treated with DMSO, thapsigargin (Tg), anisomycin (An), 10 mM CGP57380, thapsigargin plus CGP57380
(Tg+CGP), or anisomycin plus CGP57380 (An+CGP). The cultures were subjected to luciferase assay and western blot analysis as detailed in
(A). (E) Dual reporter constructs (ulR-uORF-Lu) was co-transfected with vector (as negative control), eIF4E-WT, or eIF4E mutants (S209A/T210A
and S209D) into 293T cells. Cells were treated with anisomycin (An) for the indicated time lengths and subsequently harvested for reporter
assay analysis. The asterisk indicates significant increase of this ratio as compared to the control.
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anisomycin-, but not thapsigargin-induced luciferase
expression (Figure 2B, upper panel), strengthening the
role of p38 and its associated signaling cascade in this
translational control.
To address whether other MAPKs may also be involved

in the anisomycin-induced reporter protein translation, we
tested the effect of ERK and JNK inhibitors. ERK is an
extracellular signal regulated kinase that has been
reported to regulate translation through phosphorylating
Mnk1 and Mnk2 (26,27). The expression of uORFchop-
driven FL decreased only slightly when the activity of
ERK is inhibited by U0126 (Figure 2C, upper panel).
We further found that while ERK phosphorylation
was inhibited by U0126 under anisomycin treatment,
phosphorylation of p38, Mnk1 and eIF4E remained
unchanged (Figure 2C, lower panel). While stress-
activated protein kinase 1 (SAPK1/JNK) was also
known to be activated by anisomycin (28), its activity
was dispensable in the anisomycin-induced reporter
expression based on studies using JNK inhibitor
SP600125 (data not shown). Therefore, these data
indicate that p38 MAPK is the major kinase for activating
the anisomycin-mediated induction of uORFchop-
mediated FL expression.
To further demonstrate that the downstream target of

p38, Mnk1, is also important for the anisomycin-mediated
induction of uORF-luciferase, we treated the cells with
Mnk inhibitor, CGP57380. Anisomycin-, but not
thapsigargin-induced FL expression was inhibited by
CGP57380 (Figure 2D, upper panel). CGP57380 had no
effect on the protein levels of p38, Mnk1 or eIF4E, or the
activity of p38 (i.e. phosphorylated p38). However, in the
presence of this inhibitor, the phosphorylation of Mnk1
was decreased while that of eIF4E/S209 was completely
inhibited (Figure 2D, lower panel). These results suggest
that the Mnk1-mediated phosphorylation of eIF4E/S209
plays a crucial role for anisomycin-induced uORFchop-
driven luciferase expression. To further strengthen this
notion, we performed co-transfection of wild-type,
phospho-defective (S209A/T210A) or phospho-mimetic
(S209D) variant of eIF4E with the uORFchop-FL
plasmid into 293T cells and tested their effect on drug-
induced reporter expression. As shown in Figure 2E, the
induction of uORFchop-driven FL by anisomycin was
compromised by eIF4E/S209A/T210A, but not by
eIF4E/S209D, signifying the importance of eIF4E
phosphorylation. On the contrary, both eIF4E mutants
have no effects on thapsigargin-induced uORFchop-
driven FL expression (data not shown). Collectively,
these findings and the results of Figure 2 indicate that
the phosphorylated eIF4E/S209 is crucial for the induc-
tion of uORFchop-driven FL by anisomycin, but does not
play considerable role in the thapsigargin-driven
induction.

Preferential translation of CHOP under stress condition
requires an intact uORF element and the involvement of
phosphorylated eIF4E

To assess whether the stress-responsive translation of the
uORF-containing mRNA is dependent on the start

codons within this cis-regulatory sequence, we generated
a variant of the ulR-uORF-Lu reporter constructs in
which the AUGs of uORFchop were mutated to AAGs
(ulR-uORF*-Lu). Upon treatment with thapsigargin or
anisomycin, we found that, while reporter induction was
evident from the wild-type dual reporter construct, the
uORF-minus (ulR-Lu) or the uORF mutant (ulR-
uORF*-Lu) constructs did not exhibit such induction
(Figure 3A). Furthermore, the basal reporter expression
from the latter two constructs was significantly elevated as
compared to the wild-type construct, consistent with the
notion that uORF plays a repressive role in general
mRNA translation. Next, to directly examine the role of
uORFchop in mediating mRNA translation during the
stress condition, lysates from the transfected cells
previously treated with DMSO or anisomycin were sub-
jected to polysome profiling analysis (Figure 3B). Upon
fractionation, RNA was extracted and subjected to RT–
PCR analysis for the luciferase reporter mRNA. As shown
in Figure 3C, mutant uORF-containing mRNA (from
ulR-uORF*-Lu) displayed a greater degree of polysome
association (fractions 7–10) under non-stress condition,
whereas association of wild-type transcripts was
minimal. This observation is in line with the reporter
assay in Figure 3A, which illustrated that the loss of an
intact uORF element derepresses mRNA translation, par-
ticularly in a non-stress context. Interestingly, under
anisomycin treatment, there was a significant increase in
the presence of the wild-type mRNA in the polysome
fractions, signifying a rise in translation. On the other
hand, the association of the uORF-mutated mRNA with
polysomes underwent a slight reduction. Therefore, our
results pinpoint the uORF element of the chop mRNA
as an important determinant for regulating downstream
transcript translation.

To further characterize the mechanism underlying the
uORFchop-driven translation during anisomycin treat-
ment, we next set out to examine the involvement of
eIF4E phosphorylation. To this end, we transfected the
wild-type eIF4E and its mutants (S209A/T210A and
S209D) into 293T cells and performed RNA immunopre-
cipitation (RNA-IP) on the lysates to dissect their associ-
ation with the uORF-containing reporter mRNA. As
shown in Figure 3D, anisomycin treatment promoted
the co-precipitation of the wild-type uORF-containing
mRNA with eIF4E/WT (lower panel). However, under
the same condition, association of RNA with eIF4E/
S209A/T210A was weakened. Furthermore, while there
was a basal interaction between the mutant uORF-
containing mRNA and eIF4 proteins, such association
did not exhibit any stress-responsive changes. Together
with the above polysome profiling data, our results
provide strong evidence that the phosphorylated eIF4E/
S209 is crucial for the induction of uORFchop-driven FL
by anisomycin.

To further confirm the function of eIF4E in CHOP reg-
ulation, we attempted to perform siRNA-mediated knock-
down of eIF4E expression in 293T cells. However, such
approach did not permit further functional analysis due to
side effects from down-regulating this essential gene (data
not shown). Published results have documented that the
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rate of protein synthesis in the cells is regulated by eIF4E
and eIF2a, and that the activity and expression of both
factors vary in different cancer cell lines (29,30). First, we
analyzed the protein level of eIF2a and eIF4E in 293T,
MCF-7, HeLa and PC3 cells by western blot analysis
(Supplementary Data, Figure S1A, upper panel).
Quantitative determination revealed that expression of
eIF4E was at a higher level in 293T than other three
cells while lower level of eIF2a was detected in MCF-7
as compared with others (Supplementary Data,
Figure S1A, lower panel). To further investigate the
effects of eIF2a and eIF4E expression levels on CHOP
expression in different cancer cells, 293T, PC3, HeLa
and MCF-7 cells were treated with thapsigargin and

anisomycin for 8 h. The RT–PCR results showed that
both thapsigargin and anisomycin could significantly
induce chop mRNA level in PC3 cells (Supplementary
Data, Figure S1B). However, drug-induced chop mRNA
expression varied slightly in other cells, with the lowest
level of induction evident in HeLa cells during anisomycin
treatment. Furthermore, we also analyzed the protein level
of CHOP under stress condition. Both thapsigargin and
anisomycin induced high level of CHOP expression
in both PC3 and 293T cells (Supplementary Data,
Figure S1C). However, the induced CHOP protein level
did not correlate with the drug-induced mRNA levels.
These results thus suggest that eIF4E level may be
crucial in regulating CHOP expression at the translation

Figure 3. Anisomycin induces translation of the reporter mRNA in a phosphorylated eIF4E/S209- and uORF-dependent manner. (A) 293T cells
were transfected with dual reporter construct (ulR-uORF-Lu) or its mutant version in which the uORFchop was altered (ulR-uORF*-Lu) and
subjected to drug treatment as in Figure 1B, and subsequently harvested for Dual-Luciferase Reporter Assay system (mean±SD, P< 0.05).
(B and C) In addition, after DMSO or anisomycin treatment for 1 h, the cell lysates of the transfectants were also applied to polysome profile
analysis (B), with resulting fractions subsequently subjected to RT–PCR assay (C). The top to bottom of the sucrose gradient was shown from left to
right, respectively. The sedimentation of the 40S, 60S, 80S and polysomes are also indicated. (D) The constructs of eIF4E-WT, or eIF4E mutants
(S209A/T210A and S209D) were transfected into 293T cells. Cells were treated with drugs for 1 h and subsequently harvested for the RNA-IP
analysis (see ‘Materials and Methods’ section). (E) The eIF4E-WT or eIF4E mutant (S209A/T210A) was transfected into 293T and HeLa cells. After
16 h, the culture was changed to fresh medium and cultured for additional 3 h, then treated with DMSO, thapsigargin (Tg) or anisomycin (An)
for 8 h. Cell extracts were analyzed by western blot and probed with anti-CHOP, anti-Flag and anti-tubulin antibodies, as indicated.
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initiation step. Next, we over-expressed wild-type eIF4E in
HeLa cells, which was shown to express a relatively lower
level of endogenous eIF4E, and subsequently observed
an elevated anisomycin-induced CHOP expression as
compared with the plasmid control (Figure 3E, lower
panel). Such further induction was not seen in the 293T
cells, which already expressed high level of eIF4E.
Additionally, over-expression of the eIF4E phospho-
defective mutant (eIF4E/S209A/T210A) decreased
anisomycin-induced CHOP expression both in HeLa
and 293T cells (Figure 3E). Together, these results
demonstrated that both the protein and phosphorylation
levels of eIF4E are required for anisomycin-induced
CHOP expression.

Involvement of mTOR signaling in anisomycin-induced
uORFchop-driven translation

The mechanism underlying the involvement of
phosphorylated eIF4E/S209 in anisomycin-induced
uORFchop-mediated FL expression remains unclear. The
competitive interaction of eIF4E with either 4E-BPs or
eIF4G underlies the cap-dependent translation and is
known to be regulated by mTOR (20). We therefore
tested whether rapamycin could inhibit the anisomycin-
induced reporter expression. As shown in Figure 4A
(upper panel), rapamycin treatment diminished
anisomycin-mediated induction, but did not show any
evident effect on the thapsigargin-induced expression.
Intriguingly, we found that the phosphorylation of
S2481 on mTOR was stimulated by anisomycin and was
only partially inhibited with the additional treatment of
rapamycin. Additionally, the protein level of mTOR was
slightly elevated by anisomycin or anisomycin and
rapamycin treatment (Figure 4A, lower panel). We also
assessed the phosphorylation levels of several mTOR
downstream targets (S6K, 4E-BP1 and eIF4G), as an indi-
cation of the activity of mTOR (Figure 4A). Such per-
sisted activation of mTOR may explain why the
induction of uORFchop-driven reporter expression by
anisomycin cannot be inhibited completely by rapamycin
(Figure 4A, upper panel).
Paradoxically, western blot results showed that the

phosphorylation levels of both Mnk1 and eIF4E/S209
were elevated by rapamycin treatment while the level of
phosphorylated p38 was not affected (Figure 4A, lower
panel). These results thus imply that there might be
another kinase affecting the phosphorylation of Mnk1 in
a rapamycin-dependent manner. Results from a previous
report suggested that ERK could be a candidate Mnk-1-
targeting kinase (27). Indeed, ERK was activated by
rapamycin or anisomycin treatment (Figure 4A, lower
panel). However, such activation was suppressed when
cells were treated with both of these drugs (Figure 4A,
lower panel). In line with our observations on the
rapamycin treatment, knockdown of mTOR was shown
to abrogate rapamycin-induced eIF4E/S209 phos-
phorylation via Mnk-dependent mechanism (31). Our
results therefore suggest that rapamycin-induced
phosphorylation of eIF4E/S209 may be through ERK-
driven phosphorylation of Mnk1. Furthermore, levels of

both the protein and S2481 phosphorylation of mTOR
were stimulated by anisomycin (Figure 4A, lower panel),
thus suggesting that both mTOR and Mnk1 activities are
important for the anisomycin-induced uORFchop-driven
FL expression.

Unlike anisomycin treatment, uORFchop-driven FL
expression did not increase under rapamycin treatment
even though Mnk1 and eIF4E/S209 were phosphorylated
(Figure 4A). We thus postulate that the phosphoryla-
tion of eIF4E/S209 per se may not be sufficient for a full
induction of uORFchop-driven FL translation. It is a
formal possibility that, despite the rapamycin-induced
phosphorylation, eIF4E may exist in a complex with
4E-BP1 and is thus still translation-incompetent. To
resolve this issue, we performed immunoprecipitation
experiments using anti-eIF4E antibody. We found that
the level of 4E-BP1 associated with eIF4E or
phosphorylated eIF4E/S209 was dramatically enhanced
by rapamycin treatment (Figure 4B). Under the same con-
dition, the phosphorylaion of eIF4G/S1108 (Figure 4A)
and the association of eIF4G with eIF4E (Figure 4B)
underwent significant reduction. These results are thus
consistent with the notion that mTOR plays a pivotal
role in regulating the assembly of the eIF4F complex
that contains both eIF4E/pS209 and eIF4G/pS1108 and,
consequently, the uORFchop-driven FL translation under
anisomycin treatment.

We next sought to determine whether the observed
effects of the various kinase inhibitors on the
anisomycin-induced reporter expression (Figures 2 and
4) also reflect the response of endogenous CHOP expres-
sion regulation under stress. To this end, cells were treated
with inhibitor of the p38, Mnk, ERK or mTOR signaling
pathway in the presence or absence of anisomycin. As
shown in Figure 4C, we found that addition of SB, CGP
or rapamycin effectively abolished the anisomycin-induced
CHOP protein expression. In contrast, the ERK inhibitor
imparted little effect on the CHOP induction. These
results thus demonstrate the relevance of our dual
reporter platform in assessing the stress-responsive regu-
lation of endogenous CHOP protein.

Anisomycin-induced uORFchop-driven translation is
tightly regulated by partner binding preference of eIF4E

To further assess the mechanism underlying the
involvement of eIF4E in drug-induced translation, we
next performed immunoprecipitation assays to character-
ize eIF4E-associated complex formation. We first found
that the interaction between eIF4E and 4E-BP1 under-
went a discernable decrease at 2–4 h post-anisomycin
treatment, but remained unchanged during the
tharpsgargin treatment (Figure 5A, upper panel). Next,
we examined whether the eIF4E-4E-BP1 association
depends on the phosphorylation of eIF4E, which was
previously shown to increase in response to drug treat-
ment. Western blots of immunoprecipitates showed
that, as compared to the wild-type and S209A/T210A
mutant of eIF4E, less 4E-BP1 was associated with the
eIF4E/S209D variant (Figure 5A, lower panel) in the
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absence of drugs, thus indicating a negative role of phos-
phorylation in such complex formation. Paradoxically,
uORFchop-driven luciferase activity did not increase
significantly when we over-expressed the eIF4E/S209D
mutant in the cells (Figure 2E), raising the possibility
that phosphorylated 4E-BP1 may be also involved in
regulating reporter expression. To address this issue, we
created a variant of 4E-BP1 with a mutation in the TOS
motif (F114A), which renders 4E-BP1 unable to interact
with and be targeted by mTOR/Raptor (32). By over-
expressing 4E-BP1 or its mutant (4E-BP1/F114A), we
observed a reduction or even absence of drug-responsive
reporter induction (Figure 5B). Furthermore, knock-
down of the endogenous 4E-BP1 in the cells by shRNA
(Figure 5C, lower panel) led to a more rapid induc-
tion of the uORFchop-driven luciferase activity under
anisomycin treatment as compared to the control
(Figure 5C, upper panel). Additionally, we demonstrated
that down-regulation of 4E-BP1 reversed the negative
effect of rapamycin on the anisomycin-induced reporter
expression, thus implying that the inhibition by rapamycin
may be mediated through 4E-BP1 (Figure 5D).

Collectively, these data suggest that anisomycin induces
a dissociation of the eIF4E-4EBP complex that conse-
quently contributes to the anisomycin-induced reporter
expression.
Furthermore, our results also showed that the

phosphorylation of eIF4E affects its association with
eIF4G (Figure 5E). We next characterized the formation
of eIF4F complex under anisomycin treatment. When
treated with anisomycin, eIF4E mutant (S209A/T210A)
partially lost its interaction with eIF4G, demonstrating
that eIF4E phosphorylation may be critical for the
formation of eIF4F under drug treatment. In a reverse
co-immunoprecipitation experiment, our results further
showed that levels of eIF4E, phospho-eIF4E, and
Mnk1 immunoprecipitated with Flag-eIF4G after
anisomycin treatment were higher than those in the
DMSO control or thapsigargin treatment (Figure 5E).
Together with the above results, these findings indi-
cate that a phosphorylation-dependent shift in the inter-
acting partners of eIF4E may be a critical determinant
in the stimulation of uORFchop-driven translation
initiation.

Figure 4. Rapamycin treatment represses anisomycin-, but not thapsigargin-induced uORFchop-driven translation. (A) 293T cells were transfected
with dual reporter construct (ulR-uORF-Lu) and treated with anisomycin (An, 0.5 mM), thapsigargin (Tg, 1 mM), rapamycin (Ra, 1 mM) or a
combination of An+Ra or Tg+Ra. Cell extracts were harvested for Dual-Luciferase Reporter Assay (upper panel, mean±SD, P< 0.05) and
western blot analysis (lower panel). The blots were probed with the indicated antibodies. Anisomycin treatment induced both the protein level and
the activated form of mTOR (i.e. phosphorylated mTOR/S2481) and its targets, such as eIF4G, S6K1, and 4E-BP1. (B) Extracts from cells subjected
to drug treatment (1 h) as in (A) were immunoprecipitated with anti-eIF4E antibody followed by western blot analysis. The blots were probed with
anti-eIF4E, anti-eIF4E/S209 (eIF4E-P), anti-4E-BP1, anti-eIF4G and anti-Mnk1 antibodies. (C) Cells were treated with anisomycin, or with kinase
inhibitor targeting either p38, ERK, Mnk or mTOR, in the presence or absence (�) of anysomycin. Cell extracts were harvested for western blot
analysis using antibody against CHOP. The asterisk indicates significant increase of this ratio as compared to the control.
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Stress-induced uORFchop-driven translation is
fundamentally different from growth factor
(i.e. insulin)-induced translation

Non-stress condition, such as insulin treatment, is known
to induce the activation of ERK and Mnk1, also leading
to phosphorylation of eIF4E/S209 (27). To test whether
such similar activation of signaling pathways could also

induce uORFchop-driven translation, we performed
reporter expression and western blot assays of extracts
derived from insulin-treated transfectants. Insulin, when
compared to the anisomycin, induced minimal reporter
expression (Supplementary Data, Figure S2A, upper
panel). However, consistent with previous results, this
treatment efficiently induced phosphorylation of ERK

Figure 5. Regulation of uORFchop-driven translation depends on dissociation of eIF4E/4E-BP1 and association of eIF4E/eIF4G. (A) 293T cells were
transfected with wild-type Flag-eIF4E (WT). After the drug treatment (for 0–4 h, as indicated), cell extracts were immunoprecipitated with anti-Flag
antibody followed by western blots with anti-4E-BP1 and anti-Flag antibodies (upper panel). The eIF4E-WT or eIF4E mutants (S209A/T210A and
S209D) were transfected into 293T cells. After drug treatment, cell extracts were immunoprecipitated with anti-Flag antibody followed by western
blots with anti-4E-BP1, anti-eIF4G and anti-Flag antibodies (lower panel). (B) 293T cells were co-transfected with dual reporter construct (ulR-
uORF-Lu) and wild-type 4E-BP1 (WT) or mutant 4E-BP1/F114A. Cells were then treated with DMSO, thapsigargin (Tg), or anisomycin (An) for
4 h, and haravested for Dual-Luciferase Reporter Assay (Promega). The relative induction represents the ratio of drug treatment divided by the ratio
of mock treatment. (C) The dual reporter construct (ulR-uORF-Lu) was co-transfected with vector or sh4E-BP1 into 293T cells. After 16 h, the
culture was changed to fresh medium and cultured for 24 h. The culture was again changed to fresh medium culture for additional 1.5 h before being
treated with DMSO, thapsigargin (Tg) or anisomycin (An) for 2 h. Cells were harvested for Dual-Luciferase Reporter Assay (upper panel) and
western blot analysis (lower panel). (D) Transfection was done as in (C) for 16 h, after which transfectants were treated with anisomycin, rapamycin
or a combination of An+Ra. Cell extracts were harvested for Dual-Luciferase Reporter Assay (mean±SD, P< 0.05). (E) 293T cells were
transfected with Flag-eIF4G and subjected to drug treatment as above with DMSO, thapsigargin (Tg), or anisomycin (An) for 2 h. Cell extracts
were immunoprecipitated with anti-Flag antibody and probed with the indicated antibodies. The asterisk indicates significant increase of this ratio as
compared to the control.
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and Mnk1, while phosphorylation of eIF4E/S209 was
observed only at 4 h post-treatment. In contrast, insulin
failed to induce phosphorylations of both p38 and eIF2a/
S51 (Supplementary Data, Figure S2A, lower panel).

It has been shown that MCF-7 cell line contains lower
level of eIF2a than other cells (Supplementary Data,
Figure S1A, upper panel). When cells over-expressing
eIF2a or its phosphorylation-site mutant (S51A) were
treated with anisomycin and thapsigargin, the
uORFchop-driven FL expression can be restored by over-
expressing eIF2a/WT in MCF-7 cells, especially
thapsigargin (Supplementary Data, Figure S2B). These
results thus suggest that phosphorylated eIF2a/S51
functions in conjunction with phosphorylated eIF4E/
S209 for activating uORFchop-driven stress gene
expression.

DISCUSSION

In this study, we reported the use of a reporter platform
for the analysis of the regulatory mechanisms underlying
stress-induced expression of the CHOP protein, particu-
larly at the translation initiation level. Expression of our
reporter plasmid, which is under a constitutive CMV
promoter and encodes a short half-life of protein (33),
bypasses the transcriptional and protein stability control
and exhibited a kinetic response that was expectedly faster
than that of endogenous CHOP protein under anisomycin
treatment. Unexpectedly, a slightly delayed response (i.e.
2–4 h) to anisomycin treatment was observed. Based on
our findings, this delayed activation can be explained by
a two-layered regulation: dissociation of eIF4E–4E–BP1
complex and formation of eIF4E–eIF4G complex. Results
from kinetic analysis showed that anisomycin-induced
uORFchop-driven translation was tightly controlled by
the dissociation of phosphorylated eIF4E/S209 from
4E-BP1 (Figure 5), which is likely the rate-limiting step
in uORFchop-driven translation.

A key finding of our study is that the phosphorylation
of both eIF4E/S209 and eIF2a/S51 is crucial for
anisomycin-induced uORF-driven CHOP translation.
Our results delineated the upstream signaling pathways
associated with such translational regulation, and further
revealed the distinct signaling consequences between
anisomycin and thapsigargin treatments (Figure 6). In
sharp contrast to anisomycin, thapsigargin-induced
uORF-driven CHOP translation is independent of
phosphorylated eIF4E/S209. Intriguingly, although acti-
vation of both Mnks and mTOR by anisomycin is
required for translation of CHOP, our results showed
that mere activation of Mnks and mTOR by insulin-
mediated signaling pathway could not fully induce
uORFchop-driven translation. The key difference between
insulin-induced general cap-dependent translation and
anisomycin-induced uORFchop-driven translation lies in
the phosphorylation of eIF2a/S51 by anisomycin treat-
ment. Although low concentration of anisomycin is gen-
erally regarded as non-ER stress inducing reagent,
the kinase cascade involved in anisomycin-induced
phosphorylation of eIF2a/S51 may be mediated by

anisomycin-activated PKR (as suggested in Ref. 34) as
opposed to the thapsigargin-activated PERK. It is well-
established that phosphorylated eIF2a/S51 is crucial
for translation of some stress-induced proteins, either
in a uORF- or uAUG-mediated (cap-dependent) or
IRESs-mediated (cap-independent) manner (35).
Interestingly, over-expression of eIF2a/S51A could
abolish thapsigargin—but decrease only slightly
anisomycin-induced uORFchop-driven expression of our
reporter construct. Furthermore, while the induction of
ATF4 translation correlated with the level of
phosphorylated eIF2a/S51 induced by ER stress, our
results showed that uORFatf4-driven translation could
not be induced by anisomycin (data not shown). These
observations suggest that stress-responsive translation of
various uORF-driven mRNA may occur in a context-
dependent manner and respond differently to stress-
activated translation initiation factors. The specific roles
of as well as the interplay between the phosphorylated
eIF2a/S51 and Mnk-phosphorylated eIF4E/S209 under
these conditions are intriguing issues that remain to be
addressed.
The uORFchop was thought to promote re-initiation by

allowing the terminating ribosome to resume scanning
after termination at the uORF stop codon, and it
appeared that initiation factor eIF4G must be retained
during translation of the uORF for scanning to resume
(36). Our present work demonstrated that eIF4E, when
phosphorylated at S209 under anisomycin treatment,
was preferentially recruited to the eIF4G complex
(Figure 5E), further linking phospho-eIF4E to the
uORF-driven translation. The most likely scenario for
anisomycin-induced formation of this phosphorylated
eIF4E/S209-containing eIF4F complex lies in the

Figure 6. Schematic model depicting the involvement of
phosphorylated eIF4E and eIF2a in stress-responsive, uORF-
mediated translation regulation. Upon anisomycin treatment, p38,
Mnk1 and mTOR signaling pathways converge at eIF4E for the
uORFchop-driven translation, with phospho-eIF2a also playing certain
role in this regulation. In contrast, under thapsigargin treatment,
uORFchop-driven translation depends exclusively on the induced
phosphorylation of eIF2a/S51. See text for detailed discussion on the
roles of these signaling pathways and their interplay.
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mTOR-dependent dissociation of phosphorylated eIF4E/
S209-4E-BP1 and subsequent association with eIF4G and
eIF3. This postulation is consistent with a previous report
on mTOR-dependent stimulation of cap-dependent trans-
lation initiation through association of eIF4G and eIF3
under insulin treatment (37). As effective cap-dependent
translation initiation requires the interaction between eIF3
and eIF4F (15), our present results thus suggest that inter-
action between phosphorylated eIF4E/S209-containing
eIF4F and eIF3 may be essential also for anisomycin-
induced uORFchop-driven translation.
mTOR is known to affect translation initiation through

phosphorylating two major targets: the eIF4E binding
proteins (4E-BPs) and eIF4G. However, our results
showed that treatment with rapamycin failed to
completely inhibit the anisomycin-induced activation of
mTOR as well as uORFchop-driven reporter expression
(Figure 4A). Such outcome may be attributed to the alter-
ation of two signaling pathways. First, the protein level of
mTOR was elevated by anisomycin treatment, even in the
presence of rapamycin (Figure 4A), signifying up-
regulation of mTOR translation or down-regulation of
mTOR degradation or both by anisomycin. Both
possibilities have important clinical implications as the
potential treatment of cancers by rapamycin may be
compromised under stress conditions. How anisomycin
stimulates mTOR is thus an important issue to be
addressed in future studies. Second, perhaps more para-
doxically, rapamycin treatment increased both Mnk1 and
eIF4E phosphorylation (Figure 4A). These results are
consistent with the published data on the increased
phosphorylation of eIF4E by rapamycin or by silencing
of either mTOR or Raptor, which is likely mediated by a
PI3K-dependent and Mnk-dependent mechanism (38).
Despite the increased phosphorylation of eIF4E/S209,
rapamycin treatment alone did not result in induction of
uORFchop-driven reporter expression (Figure 4A). This
may be due to the lack of 4E-BP1 phosphorylation as a
result of mTOR inhibition, consequently rendering the
phospho-eIF4E inactive. Taken together, these findings
strengthened the important role of mTOR-associated sig-
naling in the uORFchop-driven translational regulation.
Our present work demonstrated that the Mnk-eIF4E

pathway played an essential role in anisomycin-induced
translation of CHOP. The eIF4E is a major substrate of
Mnk, as indicated by the studies on the Mnk1-Mnk2
double knockout mice, in which no phosphorylated
eIF4E was detected in any tissue studied, even after LPS
or insulin injection (39). Furthermore, Mnk-mediated
phosphorylation of eIF4E/S209 is required for its in vivo
oncogenic activity (40). While the Mnk-eIF4E signaling
pathway is dispensable for normal development in
mammals, a number of studies clearly indicate that
Mnks and phosphorylated eIF4E/S209 are needed for
cellular stress response. Inhibition of eIF4E/S209
phosphorylation by Mnk inhibitor in keratinocytes dra-
matically decreases the anisomycin-induced protein
release of the pro-inflammatory cytokines tumor necrosis
factor-a (TNF-a), IL-1b and IL-6 as well as the IL-1b-
induced protein release of TNF-a (41). Such inhibition
similarly leads to repressed TNF, TTP and IL6 production

in RAW264.7 macrophage cells in response to LPS (42).
Shiga toxin 1-induced cytokine expression is also mediated
by activation of Mnk1 and phosphorylation of eIF4E/
S209 (43). These examples suggest that Mnk activated
under cellular stress leads to the phosphorylation of
eIF4E/S209 and activation of cytokines and other pro-
inflammatory factors production, and further implicate
this kinase in adaptive immune response and innate
immunity. With regard to the molecular mechanism
underlying Mnk’s cellular role, ours and the published
results have together suggested that phosphorylated
eIF4E/S209 may be required for translation of a class of
mRNAs under certain stress or growing conditions. Anti-
cancer drugs based on inhibitors of PI3K, Akt and
mTOR all target at inhibiting the phosphorylation of
4E-BPs (37,38,40). By combining the inhibition of
phosphorylation of 4E-BPs and the enhanced expression
of CHOP by anisomycin, cancer cells may be readily
killed as a result of enhanced apoptosis. Conceivably,
one of these inhibitors, when used in combination with
anisomycin, may be much more effective anti-cancer
drug than a single inhibitor alone.

SUPPLEMENTARY DATA
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