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Abstract

Background: Current bulk transcriptomic classification systems for bladder cancer
do not consider the level of intratumor subtype heterogeneity.
Objective: To investigate the extent and possible clinical impact of intratumor sub-
type heterogeneity across early and more advanced stages of bladder cancer.
Design, setting, and participants: We performed single-nucleus RNA sequencing (RNA-
seq) of 48 bladder tumors and additional spatial transcriptomics for four of these
tumors. Total bulk RNA-seq and spatial proteomics datawere available from the same
tumors for comparison, along with detailed clinical follow-up of the patients.
Outcome measurements and statistical analysis: The primary outcome was
progression-free survival for non–muscle-invasive bladder cancer. Cox regression
analysis, log-rank tests, Wilcoxon rank-sum tests, Spearman correlation, and
Pearson correlation were used for statistical analysis.
Results and limitations: We found that the tumors exhibited varying levels of intra-
tumor subtype heterogeneity and that the level of subtype heterogeneity can be
estimated from both single-nucleus and bulk RNA-seq data, with high concordance
between the two. We found that a higher class 2a weight estimated from bulk RNA-
seq data is associated with worse outcome for patients with molecular high-risk
class 2a tumors. The sparsity of the data generated using the DroNc-seq sequencing
protocol is a limitation.
Conclusions: Our results indicate that discrete subtype assignments from bulk RNA-
seq data may lack biological granularity and that continuous class scores may
improve clinical risk stratification of patients with bladder cancer.
Patient summary: We found that several molecular subtypes can exist within a sin-
gle bladder tumor and that continuous subtype scores can be used to identify a
subgroup of patients with poor outcomes. Use of these subtype scores may improve
risk stratification for patients with bladder cancer, which can help in making deci-
sions on treatment.
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1. Introduction

Transcriptomic subtyping of bladder cancer (BC) using bulk
gene expression profiling has been in focus for two decades
[1]. However, while current bulk classification systems
assign a single subtype to each tumor [2,3], expression pro-
filing of multiple tumor regions and immunohistochemistry
analyses have shown that different subtypes can coexist
within a tumor [4,5].

Single-cell technologies provide an opportunity to study
tumor ecosystems and heterogeneity at single-cell resolution.
Single-cell RNA sequencing (scRNA-seq) requires cells iso-
lated from fresh tissue, whereas single-nucleus RNA sequenc-
ing (snRNA-seq)makes it possible to investigate frozen tumor
tissue, facilitating biobank studies of clinically well-
annotated patients. Studies of heterogeneity within the
epithelial compartment of BC are emerging [6–9]; however,
an investigation of the extent and possible clinical impact of
intratumor heterogeneity at single-cell resolution in larger
cohorts of both early and advanced BC stages is still lacking.

We performed snRNA-seq analysis of 59 052 nuclei from
48 bladder tumors to study tumor heterogeneity at single-
cell resolution. We demonstrate that the tumors exhibit
varying levels of intratumor subtype heterogeneity, which
may affect clinical outcomes.
2. Materials and methods

The Supplementary material provides full details of the analyses performed.

2.1. Tumor samples

A total of 48 bladder tumor samples (10 Ta, 13 T1, and 25 T2–4) were

obtained via transurethral resection of the bladder or radical cystectomy

(Supplementary Table 1). One sample was processed directly from sur-

gery (patient 4059) and 47 samples were embedded in O.C.T., frozen in

liquid nitrogen and stored at �80�C.

2.2. snRNA-seq using an optimized DroNc-seq protocol

We performed snRNA-seq of bladder tumors using an optimized DroNc-

seq protocol previously described [10]. Seurat v3.2.0 [11] was used to

process and analyze the data. All epithelial nuclei were classified accord-

ing to the UROMOL2021 classes [3] or the consensus classes for muscle-

invasive BC (MIBC) [2].

2.3. RNA-seq

Bulk RNA-seq data were available for 44 tumors. We used the R package

Weighted In-Silico Pathology (WISP) v2.3 [12] to deconvolute intratu-

mor heterogeneity from bulk transcriptomic profiles.

2.4. Spatial transcriptomics

Four samples were analyzed using 10x Visium Spatial (10x Genomics,

Pleasanton, CA, USA). Sections of tissue were cut for methanol fixation,

hematoxylin and eosin staining, and imaging, followed by Visium Spatial
gene expression library construction according to the manufacturer’s

instructions (CG000160 and CG000239). Seurat v4.2.0 and STutility

v1.1.1 [13] were used for subsequent data filtering, normalization, and

visualization.

2.5. Statistical analysis

Progression-free survival (PFS) was assessed for patients with non–

muscle-invasive BC (NMIBC) and was defined as the time to progression

to MIBC. Survival analysis was performed using the Kaplan-Meier

method and two-sided log-rank tests were used to compare survival

curves (R packages survival v3.2.13 and survminer v0.4.9). Univariate

and multivariable Cox regression analyses of PFS were performed using

clinical and molecular predictors. Association between the fraction of

lymphocytes in tumors collected before bacillus Calmette-Guérin

(BCG) treatment and progression to MIBC was assessed using the

Wilcoxon rank-sum test. All analyses were performed with R v3.6.1

(R Foundation for Statistical Computing, Vienna, Austria), except for

the SCENIC analysis, which was performed with Python v3.10.5 (Python

Software Foundation, Delaware, USA).
3. Results

3.1. snRNA-seq of human bladder tumors: data processing
and method comparison

In order to conduct retrospective analyses on clinically
well-annotated samples, we performed snRNA-seq of
tumors from 48 patients with BC (Supplementary Table 1)
using an optimized DroNc-seq protocol [10]. We obtained
data for 117 653 nuclei after initial barcode processing
(Fig. 1A), of which 59 052 nuclei passed downstream quality
control filtering (Fig. 1B).

To investigate the quality of data generated using DroNc-
seq, three samples were subsequently analyzed using 10x
Chromium. After quality control filtering, 4431 nuclei (aver-
age of 568 expressed genes per nucleus) remained when
using DroNc-seq, whereas 5758 nuclei (average of 1649
expressed genes per nucleus) remained when using 10x
Chromium (Fig. 1C). For genes with nonzero expression in
both the DroNc-seq and 10x Chromium data sets, we
observed 193 and 1054 counts per gene on average, respec-
tively. Thus, 10x Chromium generated more data per
nucleus in comparison to DroNc-seq, but at a higher cost.
We assigned all nuclei to one of five major cell populations
(epithelial, fibroblast, endothelial, lymphoid, or myeloid)
using data from a previous study of snRNA-seq of human
bladder tumors as the reference [9]. Uniform manifold
approximation and projection (UMAP) visualization of the
10x Chromium data revealed three major epithelial clusters
separated by patient origin, as well as smaller clusters con-
sisting of nonepithelial cells (Fig. 1D). By contrast, nonep-
ithelial cells clustered together with the patient-specific
epithelial cells for DroNc-seq data, probably because of
the lower number of genes detected per nucleus (Fig. 1E).
To confirm cell-type annotations for the more sparse

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 – Single-nucleus RNA sequencing of human bladder tumors: data processing andmethod comparison. (A) Distribution of the number of genes (left) and
counts (right) detected per nucleus for data sets with different Hamming distances used to correct barcodes. (B) Number of genes (left) and counts (right) per
nucleus for the full DroNc-seq data set after quality control filtering (n = 59 052). (C) Number of genes and counts per nucleus for three samples analyzed using
the 10x Chromium platform (n = 5758) and the DroNc-seq platform (n = 4431). (D) UMAP visualization of 5010 nuclei from three samples analyzed using 10x
Chromium, colored by patient origin (left) and cell type (right). (E) UMAP visualization of 3903 nuclei from three samples analyzed using DroNc-seq, colored
by patient origin (left) and cell type (right). (F) Relative proportions of cell types within three samples analyzed on two platforms: 10x Chromium (2004,
n = 2569; 2514, n = 895; 4735, n = 1546) and DroNc-seq (2004, n = 1525; 2514, n = 1794; 4735, n = 584). UMAP = uniformmanifold approximation and projection.
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DroNc-seq data, we compared the relative proportions of
cell-type annotations within each tumor obtained via the
two platforms. We found a similar proportion of nonepithe-
lial cells, confirming that the epithelial compartment con-
stitutes the bulk of these tumors when using either
platform (Fig. 1F). We did observe differences in the frac-
tions of nonepithelial cell types between the platforms,
which may be caused by tumor heterogeneity (not the same
cells analyzed) and by differences in the number of genes
detected per nucleus (Supplementary Fig. 1A). Although
comparison of the methods revealed better performance
with 10x Chromium, DroNc-seq allowed us to analyze a lar-
ger cohort of bladder tumors at single-cell resolution
because of the lower cost of the analysis.
3.2. Exploration of the tumor microenvironment

The DroNc-seq data set consisted of 48 bladder tumors
spanning the BC disease spectrum (10 Ta, 13 T1, and 25
T2–4 tumors). In total, 48 567 nuclei were annotated to a
major cell type, and the various cell populations showed
higher expression of corresponding marker genes (Fig. 2A).
Overall, the 48 tumors were predicted to consist of 91%
epithelial (cancer) cells, 5% fibroblasts, 3% immune cells,



Fig. 2 – Exploration of the tumor microenvironment of human bladder tumors. (A) Violin plots showing the mean expression of epithelial, fibroblast,
endothelial, lymphoid, and myeloid gene markers in the different cell types. Cell-type markers were identified from the reference data set using SingleR. (B)
UMAP visualization of 48 567 nuclei from 48 tumors analyzed using the DroNc-seq platform, colored by patient origin, tumor stage, tumor grade, and cell
type. (C) Relative proportions of cell types in each sample, separated by tumor stage. Samples are sorted by increasing number of nuclei in each tumor stage.
(D) Correlation between the percentage of immune cells from DroNc-seq data and the immune cell percentage from multiplex immunofluorescence (mIF)
data for 13 samples. Samples are colored by tumor stage. Spearman correlation was used to determine the correlation coefficient R and p value. (E)
Correlation between the percentage of immune cells from DroNc-seq data and the estimated immune score from bulk RNA-seq data for 44 samples. Samples
are colored by tumor stage. Spearman correlation was used to determine the correlation coefficient R and p value. UMAP = uniform manifold approximation
and projection.
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and 1% endothelial cells. Graph-based clustering of all
tumors was mainly driven by patient origin, indicating a
high level of intertumor heterogeneity (Fig. 2B). The fraction
of nonepithelial cells varied between tumors and increased
with tumor stage, as expected (Fig. 2C). Other data layers,
including multiplex immunofluorescence (mIF) and bulk
RNA-seq, have previously been generated from the same
tumor samples, facilitating comparison of the estimated
immune-cell percentage across these layers [14–16]. We
observed that the majority of tumors with a higher number
of immune cells estimated from DroNc-seq data also had a
higher percentage of immune cells estimated from mIF data
and a relatively higher bulk RNA-seq immune score (Fig. 2D,
E).
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The strength of the snRNA-seq method is the ability to
analyze frozen tumors from patients with known clinical
outcomes. Among the patients included in this study, 15
received at least five BCG instillations. Although the data
are based on just a few samples and a low number of lym-
phocytes identified, we found that a lower fraction of lym-
phocytes in pre-BCG tumors was significantly associated
with progression to MIBC (p = 0.018). No significant associ-
ations between specific cell populations and BCG or
chemotherapy response were observed.

3.3. Intratumor subtype heterogeneity assessed at single-cell
resolution

We focused our analysis on the epithelial (cancer cell) com-
partment for each tumor individually. Bulk RNA-seq data
were available for 44 of the tumors, and the tumors were
classified according to the consensus classes for MIBC [2]
or the UROMOL2021 classes for NMIBC [3], depending on
tumor stage. To assign a cancer cell phenotype to each
epithelial cell and explore intratumor subtype heterogene-
ity at the single-nucleus level, we used the bulk classifica-
tion systems to classify all epithelial nuclei from tumors
having >100 nuclei and at least 40% of the respective classi-
fier genes expressed (NMIBC: 29 484 nuclei for 17 tumors;
MIBC: 9523 nuclei from ten tumors). Tumors exhibited
varying levels of intratumor subtype heterogeneity, with
the dominating class at the single-nucleus level constituting
36–97% of all nuclei (mean 69%; Fig. 3A,B), indicating that a
discrete subtype assignment from bulk RNA-seq data may
lack biological granularity. The dominating class at single-
nucleus level was consistent with the transcriptomic class
from bulk RNA-seq in 79% (11/14) of NMIBC tumors (not
considering class 2b tumors) and 67% (6/9) of MIBC tumors.
Pseudo-bulk classifications (generated from snRNA-seq
data) are shown in Supplementary Table 1.

We further investigated the intratumor heterogeneity
using immunohistochemical (IHC) staining of the MIBC
tumor from patient 1468. According to the single-nucleus
analysis, this tumor was mainly of luminal origin but it also
consisted of a minor fraction of nuclei classified as basal/
squamous (Ba/Sq; Fig. 3B). Interestingly, IHC staining of
three tissue microarray cores revealed areas with malignant
cells positive for the basal marker cytokeratin 5/6 (CK5/6),
while the majority of malignant cells in all cores were
GATA3-positive, confirming the presence of both luminal
and basal features simultaneously (Fig. 3C).

Next, we performed graph-based clustering of the tumors
individually and found cases for which the transcriptomic
classes were a major driver of the clustering (Fig. 3D–G; Sup-
plementary Fig. 1B,C). A histological neuroendocrine (NE)
tumor (patient 4735) consisted of two major populations:
nuclei classified as NE-like and nuclei classified as luminal
papillary (LumP). This subtype-dependent division was con-
sistent with the expression of marker genes for NE tumors
(Fig. 3D). In agreement with this, a tumor classified as NE-
like from the bulk RNA-seq (patient 2704) showed a major
cluster of mixed nuclei classified as either NE-like or luminal
unstable (LumU) and a minor cluster of LumP classifications
(Fig. 3E). Tumors from both patient 3096 and patient 2004
consisted of a major cluster in accordance with the transcrip-
tomic class from bulk RNA-seq (Ba/Sq and class 3, respec-
tively), along with other minor subtype clusters, further
emphasizing the presence of intratumor subtype heterogene-
ity beyond discrete bulk classifications (Fig. 3F,G).

Next, we applied SCENIC [17], a method for reconstruct-
ing regulons and inferring regulon activity scores for each
nuclei, using all nuclei with >500 genes and tumors with
at least 50 nuclei (21 583 nuclei from 39 tumors). We
explored regulon activities associated with the single-
nucleus subtype classifications for NMIBC and MIBC tumors
to further support the classifications. In agreement with
findings from the UROMOL2021 study [3], class 3 nuclei
showed significantly higher activity of the TP63, KDM5B,
and RARG regulons (Supplementary Fig. 2A). For MIBC,
luminal tumors showed higher activity of, for example,
the GATA3 and FOXA1 regulons, and stroma-rich tumors
showed higher activity of the PGR and STAT3 regulons, as
previously observed (Supplementary Fig. 2B) [2]. Further-
more, subtype-specific regulon activities were also associ-
ated with single-nucleus subtype classifications when
analyzing selected tumors individually (Fig. 4A–D).
3.4. Intratumor subtype heterogeneity assessed via spatial
transcriptomics

To explore the spatial organization of intratumor subtype
heterogeneity, we performed spatially resolved whole tran-
scriptomics of two T1 tumors (patients 2919 and 3197) and
two T2–4 tumors (patients 4735 and 3143) using Visium
Spatial. We classified each spot using the appropriate bulk
classification system (Fig. 5A–D). The tumors from patients
2919 and 4735 showed high subtype homogeneity at the
single-nucleus level, which was confirmed at the spatial
transcriptomics level (Fig. 5A,C). Although identified as class
2a at the bulk level, the tumor from patient 3197 showed a
high proportion of low-risk class 3 at the single-nucleus
level, and low-risk classifications (classes 1 and 3) were also
dominant on spatial transcriptomics (Fig. 5B). Finally, the
spots for patient 3143, which was classified as LumU at
the bulk level, were mainly classified as luminal nonspeci-
fied (LumNS). This could be explained by tumor heterogene-
ity, as only a smaller tissue section was analyzed using
spatial transcriptomics (Fig. 5D). However, a minor fraction
of the LumNS classification was observed at the single-
nucleus level as well (Fig. 3B). Furthermore, we used the
anchor-based integration workflow in Seurat to deconvo-
lute the cellular composition of each spot using the same
snRNA-seq reference as previously [9]. In general, we
observed that areas with higher scores for nonepithelial cell
compartments were classified as class 2b for NMIBC tumors
or stroma-rich for MIBC tumors (Fig. 5A–D).
3.5. Delineation of intratumor subtype heterogeneity from
bulk transcriptomic profiles

On the basis of this knowledge of intratumor subtype
heterogeneity at the single-nucleus level, we used bulk
RNA-seq data to investigate the impact of the presence of
high-risk subtypes in tumor subclones that may not be
identified from bulk subtype assignments. To approximate
intratumor subtype heterogeneity from bulk transcriptomic



Fig. 3 – Intratumor subtype heterogeneity accessed at single-cell resolution. (A) Relative proportion of single-nucleus subtype classifications of epithelial cells
in NMIBC tumors separated by the subtype from bulk RNA sequencing. Classification according to the UROMOL2021 system. Samples are sorted by increasing
separation levels from the bulk classification. (B) Relative proportion of single-nucleus subtype classifications of epithelial cells in MIBC tumors separated by
the subtype from bulk RNA sequencing. Classification according to the consensus MIBC system. Samples are sorted by increasing separation levels from the
bulk classification. The tumor from patient 4735 was not classified, as no bulk RNA sequencing was available. (C) Immunohistochemical staining for CK5/6
and GATA3 of three areas (tissue microarray cores) from the tumor from patient 1468. (D–G) UMAP visualization of selected tumors colored by single-nucleus
classifications (top) and dot plots showing the mean expression of subtype-specific gene signatures in each subtype population (bottom). The numbers of
nuclei within each class were: (D) patient 4735; LumP, 71; LumU, 9; LumNS, 13; Ba/Sq, 1; and NE-like, 465; (E) patient 2704: LumP, 163; LumU, 234; LumNS, 21;
Ba/Sq, 14; stroma-rich, 11; and NE-like, 564; (F) patient 3096: LumP, 139; LumU, 44; LumNS, 67; Ba/Sq, 171; stroma-rich, 24; and NE-like, 32; and (G) patient
2004: class 1, 7; class 2a, 435; class 2b, 24; and class 3, 955. Ba/Sq = basal/squamous; LumNS = luminal nonspecified; LumP = luminal papillary; LumU = luminal
unstable; MIBC = muscle-invasive bladder cancer; NE = neuroendocrine; NMIBC = non–muscle-invasive bladder cancer; UMAP = uniform manifold
approximation and projection

E U R O P E A N U R O L O G Y O P E N S C I E N C E 5 1 ( 2 0 2 3 ) 7 8 – 8 8 83
profiles, we used the deconvolution tool WISP [12] on the
UROMOL2021 (n = 505) and The Cancer Genome Atlas
(TCGA) cohorts (n = 406). As observed at the single-
nucleus level, tumors exhibited varying levels of intratumor
subtype heterogeneity (Fig. 6A,B). WISP weights correlated
with the proportion of class assignments at the single-
nucleus level, especially for class 2a (Fig. 6C; Supplementary
Fig. 3A). Finally, we explored the clinical impact of the
weight of class 2a, as class 2a is the molecular high-risk sub-
type of NMIBC tumors. We found that a high class 2a weight
(estimated using WISP) was significantly associated with
worse PFS when considering tumors with a bulk class 2a



Fig. 4 – Regulon activity scores for single nuclei. (A–D) UMAP visualization of selected tumors, colored by single-nucleus subtype classifications (left) and
activity scores for selected subtype-specific regulons (middle, right). Dot plots of the mean regulon activity in each subtype population are shown to the right
of each regulon-colored UMAP. The numbers of nuclei within each class were: (A) patient 2004: class 1, 2; class 2a, 202; class 2b, 16; and class 3, 515; (B)
patient 3096: LumP, 45; LumU, 15; LumNS, 14; Ba/Sq, 72; stroma-rich, 14; and NE-like, 4; (C) patient 2704: LumP, 66; LumU, 88; LumNS, 6; Ba/Sq, 6; and NE-like,
205; and (D) patient 4735: LumP, 35; LumU, 1; LumNS, 2; and NE-like, 220. Ba/Sq = basal/squamous; LumNS = luminal nonspecified; LumP = luminal papillary;
LumU = luminal unstable; NE = neuroendocrine; UMAP = uniform manifold approximation and projection.
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(p = 0.0005) and class 2b assignment (p = 0.042; Fig. 6D;
Supplementary Fig. 3B). Notably, for patients with bulk
class 2a tumors, a high class 2a weight was still associated
with worse PFS when adjusted for the European Association
of Urology clinical risk categories (hazard ratio 2.97, 95%
confidence interval [CI] 1.22–7.23; p = 0.017) and European
Organization for Research and Treatment of Cancer risk
score (hazard ratio 2.58, 95% CI 1.06–6.29; p = 0.036; Sup-
plementary Table 2). For low-risk class 1 and 3 tumors, a
high class 2a weight was not associated with worse PFS,
but a significant correlation to recurrence-free survival
was observed (p = 0.0005; Supplementary Fig. 3B,C).
4. Discussion

We performed snRNA-seq analysis of tumors from 48
patients with BC. We demonstrated that tumors from both



Fig. 5 – Intratumor subtype heterogeneity assessed via spatial transcriptomics. (A–D) Images of hematoxylin and eosin staining of tissue areas (left) from the
four tumors analyzed using 10x Visium Spatial. Spots are colored by subtype classifications (middle) and cellular composition scores (right). Ba/Sq = basal/
squamous; LumNS = luminal nonspecified; LumP = luminal papillary; LumU = luminal unstable; NE = neuroendocrine.
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early and more advanced disease stages exhibit large intra-
tumor subtype heterogeneity and that subtype heterogene-
ity could be estimated from both single-nucleus and bulk
RNA-seq data, with high concordance between the two.
Notably, we showed that a high class 2a weight estimated
from bulk RNA-seq was associated with worse outcome in
patients with molecular high-risk class 2a tumors, indicat-
ing that discrete subtype assignments from bulk RNA-seq
may lack biological granularity. In line with our observa-
tions, a previous scRNA-seq study of three murine and
two human bladder tumors provided initial evidence of
intratumor subtype heterogeneity [6]. Although validation
is needed, this supports the potential use of continuous
classification scores instead of discrete class assignments
for improved risk stratification of patients. Importantly,
intratumor subtype heterogeneity may need to be consid-
ered in subtype-guided clinical trials. In fact, the BISCAY
trial, a biomarker-driven multiarm adaptive trial, showed
no differences in response rate between biomarker-
directed combination arms and durvalumab monotherapy.

Previous studies have used scRNA-seq data to refine the
current bulk molecular subtypes for breast and colorectal
cancer [18,19], highlighting how single-cell data can
improve the biological granularity of subtyping. Owing to



Fig. 6 – Delineation of intratumor subtype heterogeneity from bulk transcriptomic profiles. (A) WISP weights for the four UROMOL2021 classes for 505 tumors
from the UROMOL2021 cohort separated by bulk subtype assignment. (B) WISP weights for the six consensus classes of muscle-invasive bladder cancer (MIBC)
for 406 tumors from The Cancer Genome Atlas (TCGA) cohort separated by bulk subtype assignment. (C) Correlation between bulk WISP weights and DroNc-
seq class proportions for each of the UROMOL2021 classes. Samples are colored by bulk subtype assignment. Pearson correlation was used to determine the
correlation coefficient R and p value. (D) Kaplan-Meier plot of progression-free survival (PFS) for 136 patients with class 2a tumors, stratified by class 2a
weight from WISP analysis (log-rank test). An optimal cutpoint for the class 2a WISP weight according to time to progression was determined using the R
package survminer (cutpoint 0.5562). Ba/Sq = basal/squamous; LumNS = luminal nonspecified; LumP = luminal papillary; LumU = luminal unstable;
NE = neuroendocrine; HR = hazard ratio; CI = confidence interval; RNA-seq = RNA sequencing.
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the sparsity of the DroNc-seq data presented here, we did
not develop new classification systems compatible with
snRNA-seq data and did not refine the bulk classification
systems for BC. Instead, we applied the existing bulk classi-
fication systems to the snRNA-seq data. Inconsistency
between the dominating class at single-nucleus level and
the class from bulk RNA-seq may therefore be explained
by several levels of heterogeneity (different parts of the
tumor go to the various analyses) and methodological dif-
ferences, including the technical challenges of applying bulk
classification systems to single-nucleus data. However, we
found good concordance overall between bulk and single-
nucleus classifications.

The ability to analyze frozen tumors with known clinical
outcomes gives snRNA-seq a major advantage over scRNA-
seq. Although we did not thoroughly explore the minor frac-
tions of nonepithelial tumor compartments, we found that a
lower fraction of lymphocytes in pre-BCG tumors from 15
patients treated with minimum of five BCG instillations
was significantly associated with progression to MIBC. This
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aligns with previous findings based on mIF staining, where
high cytotoxic T-cell infiltration was associated with a lower
risk of progression [15]. We observed that the highly infil-
trated subtypes (ie, class 2b for NMIBC and stroma-rich for
MIBC) were not captured when looking at single nuclei from
cancer cells only, as high infiltration characterizes these sub-
types. Therefore, given the clinical impact of infiltration, the
level of infiltration should still be considered if bulk classifi-
cation systems are refined using epithelial cell phenotypes
observed from single-cell data.

Finally, our comparison of methods showed better perfor-
mance of 10x Chromium, with a notably higher level of data
per nuclei in comparison to DroNc-seq. This could be because
of the higher capture rate, better error suppression in bar-
codes, or the use of elastic beads provided by 10x Genomics.
However, while 10x Chromium is less time-consuming and a
more standardized system, the DroNc-seq system has lower
running costs and was therefore selected for this exploratory
study to increase the cohort size.
5. Conclusions

Our results highlight that intratumor subtype heterogeneity
is an important biological feature of human bladder tumors
that may have an impact on clinical outcome. Continuous
subtype scores may have the potential to refine biological
characterization of tumors and clinical stratification of
patients.
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