
����������
�������

Citation: Mavroudis, I.; Kazis, D.;

Chowdhury, R.; Petridis, F.; Costa, V.;

Balmus, I.-M.; Ciobica, A.; Luca,

A.-C.; Radu, I.; Dobrin, R.P.; et al.

Post-Concussion Syndrome and

Chronic Traumatic Encephalopathy:

Narrative Review on the

Neuropathology, Neuroimaging and

Fluid Biomarkers. Diagnostics 2022,

12, 740. https://doi.org/10.3390/

diagnostics12030740

Academic Editor: Massimiliano

Calabrese

Received: 7 February 2022

Accepted: 15 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Post-Concussion Syndrome and Chronic Traumatic
Encephalopathy: Narrative Review on the Neuropathology,
Neuroimaging and Fluid Biomarkers
Ioannis Mavroudis 1,2,3 , Dimitrios Kazis 4, Rumana Chowdhury 1, Foivos Petridis 4, Vasiliki Costa 2,
Ioana-Miruna Balmus 5, Alin Ciobica 6,*, Alina-Costina Luca 7,* , Iulian Radu 7, Romeo Petru Dobrin 7,*
and Stavros Baloyannis 2,3

1 Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK;
i.mavroudis@nhs.net (I.M.); rumana.chowdhury@nhs.net (R.C.)

2 Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki,
54634 Thessaloniki, Greece; v.cossta@auth.gr (V.C.); sibh844@otenet.gr (S.B.)

3 Research Institute for Alzheimer’s Disease and Neurodegenerative Diseases, Heraklion Langada,
57200 Thessaloniki, Greece

4 Third Department of Neurology, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
dimitrios.kazis@gmail.com (D.K.); f_petridis83@yahoo.gr (F.P.)

5 Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan
Cuza” University of Ias, i, 700057 Ias, i, Romania; balmus.ioanamiruna@yahoo.com

6 Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Ias, i, Romania
7 Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Ias, i, Romania;

raduiuli@gmail.com
* Correspondence: alin.ciobica@uaic.ro (A.C.); acluca@yahoo.com (A.-C.L.);

romeodobrin2002@gmail.com (R.P.D.)

Abstract: Traumatic brain injury is a significant public health issue and represents the main contrib-
utor to death and disability globally among all trauma-related injuries. Martial arts practitioners,
military veterans, athletes, victims of physical abuse, and epileptic patients could be affected by
the consequences of repetitive mild head injuries (RMHI) that do not resume only to short-termed
traumatic brain injuries (TBI) effects but also to more complex and time-extended outcomes, such as
post-concussive syndrome (PCS) and chronic traumatic encephalopathy (CTE). These effects in later
life are not yet well understood; however, recent studies suggested that even mild head injuries can
lead to an elevated risk of later-life cognitive impairment and neurodegenerative disease. While most
of the PCS hallmarks consist in immediate consequences and only in some conditions in long-termed
processes undergoing neurodegeneration and impaired brain functions, the neuropathological hall-
mark of CTE is the deposition of p-tau immunoreactive pre-tangles and thread-like neurites at the
depths of cerebral sulci and neurofibrillary tangles in the superficial layers I and II which are also
one of the main hallmarks of neurodegeneration. Despite different CTE diagnostic criteria in clinical
and research approaches, their specificity and sensitivity remain unclear and CTE could only be
diagnosed post-mortem. In CTE, case risk factors include RMHI exposure due to profession (athletes,
military personnel), history of trauma (abuse), or pathologies (epilepsy). Numerous studies aimed
to identify imaging and fluid biomarkers that could assist diagnosis and probably lead to early
intervention, despite their heterogeneous outcomes. Still, the true challenge remains the prediction of
neurodegeneration risk following TBI, thus in PCS and CTE. Further studies in high-risk populations
are required to establish specific, preferably non-invasive diagnostic biomarkers for CTE, considering
the aim of preventive medicine.

Keywords: post-concussion syndrome; chronic traumatic encephalopathy; neuropathology;
neuroimaging; fluid biomarkers
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1. Introduction

Traumatic brain injury (TBI) is a significant global public health issue and represents
the main contributor to death and disability among all trauma-related injuries [1]. Sixty-nine
million patients are estimated to suffer a traumatic brain injury each year worldwide [2]. In
the United States of America, 1.5 million traumatic brain injuries occur every year, 75% of
which are mild [3].

Non-recurring concussions and mild brain injuries due to TBI usually do not impose
chronic consequences on the brain tissues of the patients [4]. The effects of such traumatism
are usually short-termed, and the symptoms alleviate over some weeks or months. In
this way, the post-concussive syndrome (PCS) following a mild traumatic brain injury
could exhibit mild symptoms that last no more than four weeks [5]. However, in some
cases, persistent PCS symptomatology could predict subsequent brain damage or risk for
further comorbid conditions [6,7]. Thus, repetitive brain injuries are linked to increased
risk of later-life cognitive impairment and neurodegenerative disorders, including Chronic
Traumatic Encephalopathy [8].

Repetitive mild head injuries (RMHI) can be observed in athletes, military veterans,
martial arts practitioners, victims of physical abuse, and epileptic patients. The effects
of traumatic brain injury (TBI) or RMHI in later life are not well understood. However,
recent studies suggested that even mild head injuries could increase the risk of later-
life cognitive impairment and neurodegenerative disease [9]. Even less severe traumatic
brain injuries have been linked with an increased risk of dementia and reduced age of
onset for Alzheimer’s disease (AD) [9]. Furthermore, it was demonstrated that repeated
TBIs could increase the risk for neurodegenerative processes, such as the development
of Chronic Traumatic Encephalopathy (CTE) [10–21]. In this way, it was shown that the
neuropathological hallmark of CTE is the deposition of p-tau immunoreactive pre-tangles
and thread-like neurites at the depths of cerebral sulci, and neurofibrillary tangles in the
superficial layers I and II [22], which are also some of the most important features of initial
neurodegeneration processes [23,24]. However, CTE could only be diagnosed post-mortem,
and although different diagnostic criteria can be used for clinical and research purposes,
their specificity and sensitivity are unclear [25–27].

A possible link between TBI/RMHI and CTE or early dementia has widespread
implications for predisposed individuals in which TBI/RMHI are prone to occur more
often or repeatedly. Neurodegeneration was not the only risk associated with the RMHI
occurrence, as some recent studies showed that depression, anxiety, post-traumatic stress
disorder, sleep disorders, as well as cardiovascular disorders, metabolic syndromes, chronic
pain, musculoskeletal fragility, and other heterotypic disorders were also associated with
the subsequent long-term consequences of traumatic brain injuries [28–32].

In this context, the current work aims to describe the possible correlations between
the mentioned forms of traumatic brain injury consequences and the risk for the early
onset of neurodegenerative processes. In the context of preventive medicine, the emphasis
falls on the early detection of any clues that could indicate the initiation of a pathological
process, the diagnostic biomarkers in traumatic brain injuries. We aim to discuss this matter
as considering their relevance in predicting the possible occurrence of neurodegenera-
tive processes in CTE and the risk associated with repetitive traumatic brain injuries for
exposed individuals.

2. Methodology

Information was gathered and selected by conducting primary scientific research
databases (e.g., ScienceDirect, PubMed/Medline, Embase, and Google Scholar) screening
for studies regarding the traumatic brain injury effects, post-concussion syndrome, and
chronic traumatic encephalopathy (between 1975 and 2021). We selected only the articles
available in the English language and screened them by title, keywords, abstract, and full
content. Keywords such as “brain injury”, “repetitive brain injury”, “traumatic brain in-
jury”, “post concussive syndrome”, “chronic traumatic encephalopathy”, “neuroimaging”,
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“fluid biomarkers”, “mechanisms”, “neuropathology”, and combinations of those were
used to screen the databases for relevant studies. The selection process was conducted by
multiple separate researchers, and the common consent of the authors settled all differences
in opinion.

3. Clinical Diagnosis and Definition
3.1. Concussion, TBI, and RMHI

Traumatic brain injuries can cause loss of consciousness, post-traumatic amnesia, dis-
orientation and confusion, and new-onset neurological symptoms such as post-traumatic
epilepsy, anosmia, or hemiparesis. These symptoms present immediately after the occur-
rence of the TBI, or immediately after the recovery of consciousness and may persist past
the acute post-injury period [33]. The clinical entity defined by the persistent neurological
symptoms following a TBI is post-concussion syndrome (PCS).

The pathophysiology of concussion is not clearly understood. It is believed that
stretching and disruption of neuronal and axonal cell membranes occur after a head injury,
leading to neurometabolic cascade activation preceding neuronal and axonal injury and
death and potentially to neuroinflammation and microglia activation [34,35]. Considering
these aspects, many classifications systems were proposed. However, only a few are
still widely used, possibly due to the fact that most of the classification and diagnostic
criteria for concussion consequences and TBI are instead based on clinical observations
and symptomatology. Cantu et al. 2006 thoroughly described most of these classification
systems and provided evidence on their grounds and use direction [36].

There are different classification systems for TBIs, based on severity, pathoanatomic
type, outcome, and prognosis [8]. Generally, TBIs were classified as mild, moderate, or
severe by using the Glasgow Coma Scale (GCS). A TBI with a GCS score of 13–15 is defined
as mild TBI, between 9–12 as moderate and 3–8 as severe [37]. An important parameter
of the severity of TBI is post- or peri-traumatic amnesia. Post-traumatic amnesia (PTA) of
1–24 h indicates a moderately severe TBI; however, more recent classifications of moderate
TBI require post-traumatic amnesia extending beyond 24 h [38,39].

A widely acceptable TBI classification system is the Mayo System which divided TBIs
as possible, probable-moderate, and definite moderate-severe [39]. A TBI is classified as
probable mild if there is loss of consciousness below 30 min, post-traumatic amnesia for
less than 24 h, and there is a depressed, basilar, or linear skull fracture, but with intact dura
matter. A TBI is classified as possible if the patient develops blurred vision, confusion,
headache, or nausea, and as definite moderate-severe if there is loss of consciousness lasting
30 min or more, post-traumatic amnesia of 24 h or more, or worst full Glasgow Coma Scale
score below 13, or if there is death due to this TBI. The Mayo Classification System also
requires that all other causes of impaired consciousness should be excluded. If there is
additional evidence of brain hematoma, haemorrhage, contusions, or ruptured dura mater,
the TBI is classified as moderate-severe [40].

3.2. Post-Concussion Syndrome

Post-concussion syndrome (PCS) is a sequela of minor brain injury. Although about
29–90% of patients may experience PCS after a head injury [16–21], its etiology is unclear.
Despite that no universally accepted definition of PCS exists, it is generally accepted as the
development of at least three of the following symptoms: headache, fatigue, irritability,
dizziness, and balance issues, affected sleep, poor memory and concentration, and increased
sensitivity to light and noise. The symptoms occur shortly after a head impact and could
persist for weeks or months. When the symptoms persist for more than six months or one
year, the condition is defined as persistent PCS (Table 1). PCS is usually characterized by
the absence of objective findings and inconsistencies in presentation [24].
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Table 1. Classification systems of head injury syndromes and diagnostic criteria.

Disorder Classification
System Stages Diagnostic Criteria

Concussion [36]

Nelson Grading
system

• Grade 0
not stunned or dazed;
headache, difficult
concentration;

• Grade 1
stunned or dazed; no LOC or
PTA; sensorium
recovery < 1 min;

• Grade 2

headache; sensorium
recovery > 1 min; no LOC;
tinnitus, amnesia, irritability,
hyperexcitability, confusion,
dizziness;

• Grade 3 LOC < 1 min; no coma; grade
2 symptoms during recovery;

• Grade 4
LOC > 1 min; no coma;
demonstrates grade 2
symptoms during recovery

Ommaya grading
system

• Grade 1 Confusion; no PTA;
• Grade 2 PTA without coma;
• Grade 3 Coma < 6 h
• Grade 4 Coma = 6–24 h
• Grade 5 Comas > 24 h
• Grade 6 Coma, death within 24 h

Jordan grading
system

• Grade 1 Confusion; no PTA, LOC;

• Grade 2 Confusion; PTA < 24 h;
no LOC;

• Grade 3
LOC (altered level of
consciousness < 2–3 min);
PTA < 24 h;

• Grade 4 LOC (altered level of
consciousness > 2–3 min);

Torg grading
system

• Grade 1 Tinnitus; short-term
confusion; dazed; no PTA;

• Grade 2 PTA; vertigo; no LOC;

• Grade 3 PTA retrograde; vertigo;
no LOC;

• Grade 4 Immediate transient LOC;

• Grade 5 Paralytic coma;
cardiorespiratory arrest;

• Grade 6 Death

Colorado Medical
Society guidelines

• Mild Confusion; no PTA, LOC;
• Moderate Confusion; PTA; no LOC;
• Severe LOC.

Cantu grading
system

• Mild No LOC; PTA < 30 min;
• Moderate LOC < 5 min; PTA > 30 min;
• Severe LOC > 5 min or PTA > 24 h.

Roberts grading
system

• Bell ringer No LOC,
PTA; recovery < 10 min;

• Mild No LOC; PTA < 30 min;
recovery > 10 min;

• Moderate LOC < 5 min; PTA > 30 min;
• Severe LOC > 5 min; PTA > 24 h.
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Table 1. Cont.

Disorder Classification
System Stages Diagnostic Criteria

Kelly and
Rosenberg

grading system

• Mild
Transient confusion; no LOC;
symptoms resolve
in < 15 min;

• Moderate Transient confusion; no LOC;
symptoms last > 15 min;

• Severe Brief or prolonged LOC.

Traumatic brain
injury (TBI)

Glasgow Coma
Scale (GCS) [37]

• Mild CGS score = 13–15
• Moderate CGS score = 9–12
• Severe CGS score = 3–8

PTA Mississippi
intervals [38,39]

• Moderate PTA 1–24 h
• Severe PTA > 24 h

Mayo system [40]

• Possible

Blurred vision, confusion
(mental state changes), dazed,
dizziness, focal neurologic
symptoms, headache, nausea

• Probable—mild

Loss of
consciousness < 30 min,
PTA < 24 h, skull fracture
(dura intact)

• Definite—
moderate/severe

Loss of
consciousness > 30 min,
PTA > 24 h, CGS score (first
24 h) < 13, skull fracture
(with hematoma,
hemorrhage, concussion, or
brain stem injury), death

Glasgow
Outcome Scale

[33]

• Dead

• Vegetative state

Lack of function in the
cerebral cortex, although
structurally intact

• Severe disability

Conscious, total dependency
on caregiver (severe physical
and mental disability)

• Moderate
disability

Independent, but disabled
(physical and mental
disability)

• Good recovery Minor physical and mental
disability

Russell and
Smith’s

classification
system [41]

• Severe PTA = 1–7 days

• Very severe PTA = +7 days

Nakase–
Richardson

classification
system [38]

• Moderate PTA = 0–14 days
• Moderately
severe PTA = 15–28 days

• Severe PTA = 29–70 days

Post-concussion
syndrome (PCS)

Ontario
Neurotrauma
Foundation

[42,43]

Symptoms according to
ICD10 or DSM-V

• Minor Symptoms
duration = 1–6 months

• Persistent Symptoms
duration > 6 months
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Table 1. Cont.

Disorder Classification
System Stages Diagnostic Criteria

Traumatic
encephalopathy

syndrome
(TES)/Chronic

Traumatic
Encephalopathy

(CTE)

Jordan
classification
system [44]

• Improbable CTE Pathophysiological process
unrelated to brain trauma;

• Possible CTE
CTE clinical description also
seen in other
neuropathologies;

• Probable CTE

Cognitive and/or behavioral
impairment;
morpho-functional changes
in central nervous system;

• Definite CTE CTE clinical presentation and
pathological confirmation.

Montenigro
clasiffication
system [27]

• Behavioural/
mood variant

Behavioural and mood
features;

• Cognitive
variant Cognitive impairment;

• Mixed variant Both behavioural and
cognitive impairments;

• Dementia
variant

Progressive cognitive decline
dependent or independent of
Alzheimer’s disease
diagnostic.

Omalu neu-
ropathological

classification [45]

• Phenotype I

+NFTs and neuritic threads
(cerebral cortex and
brainstem)
−diffuse amyloid plaques

• Phenotype II
+NFTs and neuritic threads
(cerebral cortex and
brainstem)

• Phenotype III −diffuse amyloid plaques
(cerebral cortex)

• Phenotype IV

+NFTs and neuritic threads
(brainstem)
−diffuse amyloid plaques
−NFTs and neuritic threads
−diffuse amyloid plaques

The ICD-10 diagnostic criteria for PCS include a history of traumatic brain injury
and the presence of three or more of the following: headache, dizziness, fatigue, irritabil-
ity, insomnia, concentration or memory disturbance, and intolerance to stress, alcohol,
and emotion [42,43].

However, because The American Psychiatric Association’s and Statistical Manual of
Mental Disorders, Fifth Edition (DSM-5), defines PCS as a major or mild neurocognitive
disorder due to traumatic brain injury and requires evidence of traumatic brain injury with
any of the following: loss of consciousness, post-traumatic amnesia, disorientation and
confusion, neurological signs such as new onset of seizures, anosmia, or hemiparesis, recent
reports suspected that post-concussive consequences could affect the trauma-exposed
brain for a longer period of time which lead to the suggestion that long-termed effects
of PCS could go beyond neurological traits. Thus, it was shown that the neurocognitive
symptoms occur directly after the traumatic brain injury or immediately after regaining
consciousness and persist for longer than the acute post-injury period [46]. While searching
for evidence regarding the neurocognitive impairment processes occurring post-concussive,
it was suggested that complex mechanisms neurodegeneration and neuroinflammation are
both involved in this matter.
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3.3. Chronic Traumatic Encephalopathy

Chronic Traumatic Encephalopathy (CTE) was initially introduced as “punch drunk” or
dementia pugilistica in the early 1900s. It was first described in boxing, where many retired
boxers developed dementia at a higher incidence than the general population [10,13,47,48].

The definition of CTE is mainly based on neuropathological changes, and the term
traumatic encephalopathy syndrome (TES) refers to the clinical syndrome associated with
exposure to repetitive head impacts.

Traumatic encephalopathy syndrome and CTE do not include the acute or post-acute
manifestations of a concussion or post-concussion syndrome.

TES/CTE is classified into probable, possible, and improbable, based on clinical pre-
sentation and the pathologic changes [44]. Jordan et al. (2013) proposed that definite TES
should include neurologic signs and symptoms in keeping with CTE, including behavioural
or cognitive disturbance and motor symptoms [44]. Pathologic confirmation of tau deposi-
tion in brain autopsy could also be considered definitory [25]. Probable TES is described
as two or more of the following: cognitive and/or behavioural impairment, cerebellar
dysfunction, pyramidal tract disease, or extrapyramidal disease. Thus, Jordan et al. (2013),
as well as Reams et al. (2016), suggested that the diagnosis could be supported by abnormal
neuroimaging findings on positron emission tomography, single-emission tomography,
structural magnetic resonance imaging, or diffusion-tensor imaging [26,44].

There are multiple clinical diagnostic criteria for TES/CTE for clinically probable
and possible TES [25–27]. The former requires a history of head trauma exposure, the
persistence of symptoms for longer than two years, lack of another diagnosis to otherwise
explain the signs and symptoms, and the presence of at least two symptoms, such as
speech, mood, or behavioural disturbance, and three signs including ataxia, memory loss,
and dysarthria [27].

Montenigro et al. (2015) proposed diagnostic criteria which require repetitive head
trauma, the persistence of symptoms for longer than one year, and the absence of another
neurologic disorder that could otherwise account for the symptoms [27]. Furthermore,
one core clinical feature, including cognitive, behavioural, or mood disturbance, and
two supportive features, including headache, motor signs, behavioural changes with
impulsivity, anxiety, apathy, paranoia, suicidality, progressive decline, or delayed onset, are
required for the diagnosis of TES [22,27].

The diagnostic criteria proposed by Reams et al. (2016) persistence of symptoms for
longer than two years, the absence of another neurologic disorder, which could more likely
account for all the clinical features, history of exposure to head trauma associated with
a history of concussion, or subconcussive head injury, history of repetitive head trauma,
confirmed progressive course, late symptom onset, and self-reported or observer reported
cognitive dysfunction, and cognitive decline confirmed by neuropsychological testing [26].
Reams et al. (2016) also proposed supportive features for the diagnosis, including emotional
dysregulation, behavioural changes, and motor disturbance [26].

Based on the clinical presentation, TES/CTE can be further classified into behavioural
or mood variant, cognitive variant, mixed variant, or dementia variant, and based on the
progression, into progressive type, stable type, unknown or inconsistent type [26].

3.3.1. Staging of CTE

At stage I, the brain is usually macroscopically unremarkable; however, the micro-
scopic examination may show focal deposition of p-tau neurofibrillary tangles and neurites
at the perivascular spaces (Figure 1). Occasional glia and p-tau immunoreactive glial pro-
cesses were also observed [22]. The pathology is mainly confined to the depth of the sulci
of the temporal, parietal, frontal, and insular cortices. Occasional p-tau astrocytic tangles
can be seen in clusters at the depths of sulci, and neurofibrillary tangles can also be noticed
in the locus coeruleus. About 50% of brains with stage I CTE may show infrequent TDP-43
positive neurites. At this stage, reactive microglia with axonal swelling and distorted
profiles are seen in the subcortical U-fibres [22].
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At stage II, macroscopic examination shows a mild enlargement of the frontal horns of
the lateral ventricles and third ventricle, cavum septum pellucidum, and discoloration of
the locus coeruleus and substantia nigra. Microscopic examination reveals multiple foci of
perivascular p-tau neurofibrillary neurites and tangles and neurites at the frontal, temporal,
parietal, insular, and septal cortices, consisting of tangles or pre-tangles, neurites, and glia
in addition to p-tau neurofibrillary tangles. The locus coeruleus and the substantia nigra
can also exhibit neurofibrillary tangles. Additionally, mild TDP-43 pathology and clusters
of reactive microglia are found in clusters in the subcortical U-fibres. [22].

Stage III brains show macroscopic and structural changes consisting of decreased brain
weight, mild atrophy at the frontal and temporal lobes, and expansion of the lateral and
third ventricles. Septal abnormalities with cavum septum pellucidum, septal fenestrations,
and perforations are also seen in 50% of cases. Additional macroscopic changes may
consist of pallor of the substantia nigra and the locus coeruleus, atrophy of thalamus,
hypothalamus, and mammillary bodies, and thinning of the corpus callosum. Microscopic
examination reveals perivascular patches of neurofibrillary tangles, neurites, and astrocytic
tangles at the depths of the sulci. At this stage, linear arrays of neurofibrillary tangles
and neurites can also be seen in the superficial laminae of the cortex. Neurofibrillary
tangles are found in the frontal, and temporal poles, the temporal and parietal cortices,
in the olfactory bulbs, the hippocampus, the entorhinal cortex, and the amygdala, the
hypothalamic area and mammillary bodies, the nucleus basalis of Meynert, substantia
nigra, the locus coeruleus and dorsal and median raphe nuclei. About 30% of cases also
exhibit occasional neurofibrillary tangles [22].

Brain weight is significantly decreased at stage IV. There is noticeable atrophy of the
frontal and temporal lobes, the anterior thalamus. Generalized cerebral atrophy and diffuse
white matter atrophy, and atrophy of the corpus callosum are also observed. The hypotha-
lamic area is usually atrophic, and the mammillary bodies can also be thin. Cavum septum
pellucidum or total absence of the posterior septum with the pallor of the locus coeruleus and
substantia nigra are also commonly found. Microscopically there is a prevalent myelin loss,
neuronal loss in the cerebral cortex, the hippocampus, and the substantia nigra, and astrocy-
tosis of the white matter. Extensive neuronal loss and astrocytosis with microvacuolation of
layer II may be seen in the frontal and temporal lobes. P-tau positive tangles are distributed all
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through the cerebral cortex, thalamus and hypothalamus, mammillary bodies, basal ganglia,
brainstem, cerebellar dentate nucleus, and spinal cord. Tau pathology may also involve the
cerebellum, including Purkinje cells, the dentate nucleus, and the granular layer. Examination
of the white matter of the anterior cerebellar vermis may reveal irregular neurites. Deposits
and inclusions immunopositive for TDP-43 are also commonly seen [22,49].

3.3.2. Neurophysiological Pathological Description

Macroscopic pathology. In the early stages of CTE, the brain is usually unremarkable;
however, macroscopic examination can rarely reveal cavum septum pellucidum and mild
enlargement of the frontal and temporal horns of the lateral ventricles, along with slightly
prominent perivascular spaces in the white matter of the temporal lobe. At the advanced
stages of the disease, the brain weight is reduced, and there is prominent grey and white
matter atrophy, typically more severe in the frontal and anterior temporal lobes. Cavum
septum pellucidum, and/or septal fenestrations, additional enlargement of the lateral and
third ventricles, thinning of the isthmus of the septum corpus callosum, thalamic and
hypothalamic atrophy and atrophy of the mammillary bodies, and depigmentation of the
substantial nigra and locus coeruleus are usually seen. The cerebellum is usually unre-
markable; however, the initial reports of CTE described in boxers described macroscopic
changes of the cerebellum [22].

Microscopic pathology. Chronic traumatic encephalopathy is a tauopathy that could
be diagnosed with precision using post-mortem neuropathological examination. The
pathognomonic hallmark of CTE is the deposition of phosphorylated tau (p-tau) protein in
the forms of neurites or neurofibrillary tangles in the neocortex, typically placed alongside
small blood vessels at the depths of the sulci. The neurofibrillary tangles follow the small
cortical vessels forming linear accumulations that extend from the surface of the brain
to the deepest layers of the grey matter. They can also be seen in the forms of clusters
of neurofibrillary tangles, pre-tangles, and thread-like neurites around small arterioles.
Focal subpial p-tau astrocytes and occasional p-tau glia around vessels can be seen in the
advanced stages [22].

However, the mechanisms behind CTE are not fully known. It is believed that the
axonal injury following a head impact can lead to phosphorylation of tau protein and sub-
sequently to tau deposition [50,51]. It is believed that the acceleration-deceleration type of
injury causes abnormal phosphorylation of tau-protein, which then will become misfolded,
aggregated, and cleaved [51]. It is also thought that the hyperphosphorylated tau protein is
related to a prion-like propagation in TBI; it is also plausible that hyperphosphorylated tau
deposition promotes the accumulation of other aggregate-prone proteins such as amyloid
and TAR DNA-binding protein 43 (TDP-43) [17,18]. Interestingly, the inoculation of brain
homogenates from mice with TBI into the hippocampus and cerebral cortex of wild-type
mice seem to enhance the propagation of tau and the development of memory impairment.
The same effects were noticed when brain homogenates obtained contralateral to the side
of TBI were used, supporting the prion-like propagation mechanism of tau protein [52].
Severe axonal loss and axonal swellings and varicosities are found in the advanced stages
of CTE. Axonal injury is thought to be related to the initiation of p-tau pathology [18,50].
Damage to axons due to repetitive brain injury may cause changes in membrane permeabil-
ity and ionic shifts resulting in a large influx of calcium and subsequent release of caspases
and calpains, which would trigger tau phosphorylation [53]. A cascade of events then
involving activation of microglia and release of toxic cytokines, chemokines, immune medi-
ators, and excitotoxins like glutamate, aspartate, and quinolinic acid leads to additional
hyperphosphorylation of tau protein and dysfunction of microtubules and deposition of
neurofibrillary tangles [51,53,54].

The neuropathological criteria for the diagnosis of chronic traumatic encephalopathy
require deposition of perivascular foci of p-tau immunoreactive pre-tangles and dot-like
and thread-like neurites in the neocortex, irregular distribution of p-tau immunoreactive
neurofibrillary tangles, astrocytic tangles, and dot-like and thread-like neurites at the
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depths of cerebral sulci, often alongside penetrating blood vessels, and neurofibrillary
tangles in the crests of the cerebral cortex located preferentially in the superficial layers II
and III. Supportive features include the presence of clusters of subpial astrocytic tangles
in the cerebral cortex, most prominent at the sulcal depths, and subependymal astrocytic
tangles in the periventricular regions of the lateral ventricles periaqueductal grey matter
and lateral brainstem [22].

4. Clinical Biomarkers
4.1. Neuroimaging
4.1.1. Magnetic Resonance Imaging (MRI)

Severe traumatic brain injury can result in diffuse white matter injury, focal contu-
sions, or hemorrhages that can be seen on conventional MRI or CT (Table 2). Several
studies on the white matter integrity using diffusion tensor imaging (DTI) support the
assertion that repetitive asymptomatic head trauma concussion and mild traumatic brain
injuries result in damage to cortical and subcortical microstructures despite observable
findings on conventional MRI being absent [55,56]. The genu and the body of the corpus
callosum most consistently show evidence of microstructural changes associated with
head trauma [57,58]. It is thought that accumulated exposure to repetitive head trauma
would lead to brain tissue loss and measurable differences in brain volume compared to
healthy individuals. The impact of RMHI has primarily been studied in boxing athletes
and professional American football players; however, most studies had small samples.
The main differences that have been described in symptomatic former professional head
impact-prone sports players are reduced volumes of the amygdala, hippocampus, cingu-
late gyrus, fronto-insular and anterior-temporal volumes [59–61]. Steeper hippocampal
volume loss and lower thalamic volumes have also been associated with earlier age of
starting American football participation [60]. Another study on 476 professional boxers
and martial art athletes versus 63 controls found decreased thalamic and callosal volumes
in the athletes’ group [61].

Table 2. Neuroimaging biomarkers for traumatic brain injury following repeated head impacts in
PCS and CTE.

Method Disorder Observable
Features Clinical Studies

Magnetic
Resonance Imaging
(MRI)

PCS,
CTE

White matter injury, focal
concussions,
haemorrhages

• 86 symptomatic former NFL players—the decreased
amygdala, hippocampus, and cingulate gyrus volumes [57,60]
• 33 male Canadian football players—changes in the
microstructural integrity of the white matter (anterior and
posterior regions of the corpus callosum) [58]
• 476 active and retired professional fighters and
63 controls—the presence of cavum septum pellucidum and
cavum vergae, lower brain volumes in the supratentorium [61]
• 15 former male professional soccer players and 15 male,
age-matched former professional non-contact sport athletes-right
inferolateral-parietal, temporal, and occipital cortex thinning [62]
• 20 current or previous military or civilian law enforcement
breachers and 14 controls—increased cortical thickness
(occipital lobes) [63]
• 10 Division III college football players and five non-athlete
controls-changes in fractional anisotropy and mean diffusivity
(white matter) [64]
• 499 fighters (boxers, mixed martial artists, and martial artists)
and 62 controls-increased prevalence of cavum septum
pellucidum and cerebral microhemorrhages among fighters [65]
• 72 symptomatic former professional football players and
14 former professional noncontact sports athletes-presence of
cavum septum pellucidum [66]
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Table 2. Cont.

Method Disorder Observable
Features Clinical Studies

Diffusion tensor
imaging (DTI)

TBI,
RMHI

Asymptomatic head
trauma concussion, mild
traumatic brain injuries
(cortical and subcortical
microstructures)

• 18 retired professional football players and 17 healthy
controls’chronic axonal degeneration (superior longitudinal
fasciculus, corticospinal tract, and anterior
thalamic radiations) [67]

Diffusion tensor
imaging

TBI,
RMHI,
CTE

Random Brownian motion
of water molecules within
a voxel of tissue, cellular
swelling, grey matter
status (cerebral cortex
nuclei)

• 31 amateur boxers and 31 control individuals—reduced
fractional anisotropy, increased diffusivity along central white
matter tracts [68]
• 12 soccer players and 11 swimmers—increased radial
diffusivity and axial diffusivity in soccer players [69]
• 10 Division III college football players and five non-athlete
controls—up to 6 months persistent white matter changes [64]
• 18 retired professional football players and 17 healthy
controls—changes in axial diffusivity [67]

Neurite orientation
dispersion and
density imaging
(NODDI)

PCS

Acute alterations in
microstructure (neurite
density and orientation,
axons and dendrites)

• 31 concussed athletes and 27 matched controls - reductions in
fractional anisotropy and increased axial and radial diffusivity,
increased neurite dispersion [70]

Functional MRI TBI
brain activity (changes
associated with blood
flow)

• 15 varsity level college students who sustained a
sports-related concussion and 15 age and sex-matched
controls—increased activation of prefrontal area (BA46, BA10)
and left inferior parietal (supramarginal) gyrus (BA40) [71]
• Seven college athletes and 11 healthy controls—increased
cerebrovascular reactivity in all evaluated regions and
independently in anterior cingulate and the right thalamus and
increased focal connectivity in left and right hippocampus,
precuneus and ventromedial prefrontal cortex [72]
• 40 chronic TBI individuals and 17 healthy
individuals—reduced connectivity in TBI individuals in the
default mode network, dorsal attention network, and
frontoparietal control network and in between interactions [73]
• 10 mild TBI patients and 10 healthy controls—decreased
functional connectivity networks in thalamus, dorsal anterior
cingulate and medial frontal gyri [74]
• 27 TBI patients and 15 healthy controls—asymmetry in
cerebrovascular reactivity and cerebral blood flow maps in TBI
(multifocal pattern of deficits) [75]

Magnetic
Spectroscopy (MRS)

TBI,
RMHI

Human brain metabolism
in vivo

• 77 symptomatic former NFL players and 23 asymptomatic
individuals without a head trauma history—significantly lower
N-acetyl aspartate level in the parietal white matter [76]
• Five former professional male athletes and five healthy
men—increased levels of glutamine/glutamate, choline,
fucosylated molecules, and phenylalanine [77]

Susceptibility
weighted
imaging (SWI)

TBI Hemorrhage, microbleeds
in the brain

• 106 children with TBI and 43 healthy controls—increased
number and volume of lesions in TBI group, predominantly in
the frontal, extra frontal, deep grey, and cerebellum regions [78]
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Table 2. Cont.

Method Disorder Observable
Features Clinical Studies

Positron Emission
Tomography (PET)
FDG-PET
Tau-PET
Aβ-PET

TBI,
CTE

Severity and distribution
of brain changes (altered
synaptic activity)

• 19 boxers and 17 controls—altered activity in the posterior
cingulate cortex, parieto-occipital, frontal lobes (Broca’s area)
bilaterally, and the cerebellum [79]
• Five retired professional boxers and four age-matched
controls—neuronal deficits in angular gyrus and temporal
cortical regions [80]
• 33 veterans with mild TBI—lower cerebellar metabolism [81]
• 11 Traumatic Encephalopathy Syndrome patients—elevated
tau-PET binding, lower gray matter volumes in
frontotemporal areas [82]
• 202 football players—p-tau clusters in medial temporal lobe,
cerebral cortex, diencephalon, and brain stem [83]
• 114 CTE-diagnosed deceased athletes and military
veterans—diffuse or neuritic Aβ deposition present in 52 % of
CTE subjects [84]

One study on retired professional soccer players revealed reduced cortical thickness
in the occipital and inferior parietal temporal lobes [62].

A study on military personnel found the increased thickness of the cerebral cortex
in occipital, frontal, temporal, parietal, praecuneus, and cingulate cortices compared to
controls [63]. The authors concluded that these findings could reflect glial scaring or
changes in cortical myelination at the grey-white matter junction.

White matter changes, usually close to grey-white matter junction, and predominantly
into the frontal lobes, along with decreased susceptibility-weighted imaging signal which
can represent trauma-related microbleeds have also been described; however, these findings
seem to be non-specific [64].

Cavum septum pellucidum is one of the most described findings and was first rec-
ognized by Forster in 1933 in a patient who suffered a brain injury and later died. It
was then described in professional fighters and professional football players [61,65,66].
Cavum septum pellucidum and longer Septum Pellucidum were more frequently described
in American football players with cognitive impairment than controls [67]. It is unclear
whether these changes onto the Septum Pellucidum represent the consequence of repetitive
traumatic brain injuries.

4.1.2. Diffusion MRI

Herweh et al. (2016) performed a DTI study on 31 amateur boxers and 31 control
individuals, and they reported significantly reduced fractional anisotropy (FA) in the
boxers group [68]. Another survey of 10 football players with no apparent history of
clinically defined concussions but a history of more than 430 head impacts per year and
5 controls found greater changes in FA and the average rate of diffusion in all directions
in the football players group [64]. The authors concluded that repetitive head injuries,
even the sub-concussive ones, can result in white matter changes that persist after six
months of contact-free rest [64]. Additional markers that can differentiate between axonal
and myelin injury in DTI are the radial diffusivity (RD) and the axial diffusivity (AD).
Multani et al. (2016) investigated the AD differences between retired Canadian football
players and age-matched controls and they reported a significant increase in AD, in the
footballers’ groups [67]. Koerte et al., 2012 investigated the white matter integrity in
soccer players without clinically defined concussions, compared to swimmers and reported
increased RD in football players across different white matter structures and higher AD in
the corpus callosum [69].

The neurite orientation dispersion and density imaging (NODDI) is a DTI technique
that can show changes of axons and dendrites and can also provide information on neurite
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density and orientation [85]. Using NODDI in athletes following a sport-related concussion,
Churchill et al., 2019 found that decreases in fractional anisotropy and increases in axial and
radial diffusivity were associated with reduced intraneuritic water volume [70]. They also
reported a positive correlation between the severity of symptoms and changes in fractional
diffusivity axial and radial diffusivity [69].

4.1.3. Functional MRI

Abnormalities in functional MRI (fMRI) in patients with mild TBIs have been reported
in multiple studies [71–74]. Repetitive head injury is related to acute and long-term changes,
while irregularities in the default mode network and other white matter changes have been
described [71–73]. Han et al. (2016) found significant changes in connectivity in the default,
dorsal attention, and frontoparietal control networks [73], and Nordin et al., 2016 revealed a
significant correlation between mental fatigue and functional connectivity in patients with a
history of mild TBIs [74]. Significant reductions in cerebrovascular reactivity have also been
reported in mean global, grey and white matter areas in patients with chronic TBI [75].

4.1.4. Magnetic Spectroscopy (MRS)

MRS measures human brain metabolism in vivo. Alosco et al. (2019) on an MRS
study in 77 symptomatic retired NFL players, reported a positive correlation between
behavioural/mood symptoms and neurochemicals related to neuroinflammation [76]. They
described a positive correlation between accumulative head impacts and lower parietal
white matter creatine levels. In another study, Lin et al. (2015) found significantly higher
values in glutamine/glutamate, choline, fucosylated molecules, and phenylalanine in five
former professional athletes compared to control individuals [77].

4.1.5. Susceptibility Weighted Imaging (SWI)

SWI is sensitive to venous blood and can detect hemorrhage or microbleeds in trau-
matic brain injuries. Studies in patients with a history of mild TBIs have shown a correlation
between SWI findings and cognitive outcome [78].

4.1.6. Positron Emission Tomography (PET)—Metabolic and Molecular Neuroimaging

FDG-PET. 2-deoxy-2-(18F) fluorodeoxyglucose can provide in vivo evidence of the
severity and distribution of brain changes presumably representing altered synaptic activity.
Former boxers with a history of repetitive brain injury revealed hypometabolism in multiple
brain regions, including posterior cingulate, bilateral frontal lobes, parieto-occipital cortex,
and cerebellum. The findings were very inconsistent between studies [79,80]. At least one
study on military veterans showed lower cerebellar metabolism correlated with a higher
number of prior blast exposures [81]. One study in American football players revealed
significantly lower frontotemporal metabolism than controls [82].

Aβ-PET and Tau-PET. Although Aβ deposition is a common co-pathology in advanced
CTE cases [83], it occurs at an accelerated rate and predominantly affects the depths
of cortical sulci [84]. Many tracers, including FDDNP, flortaucipir, and FTP, have been
developed to detect tau deposition in CTE; however, the sensitivity and specificity of most
of them remain low; thus, their use is limited [85–89].

4.2. Fluid Biomarkers

Although the pathophysiology and the underlying mechanisms of PCS and the other
discussed concussion, TBI, and RMHI are not yet clearly understood. Neuroimaging could
offer viable diagnostic solutions; fluid biomarkers could still be a good alternative, consid-
ering that molecular biomarkers also have predictive value and could show many patho-
logical molecular features which occur before other visible/detectable symptoms. In this
way, fluid biomarkers could be of crucial interest in the context of predicting the neurode-
generation processes to which predisposing risk repetitive brain injuries are contributed.
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Thus, recent studies on the relevant body fluids dynamics during and following
head injuries showed that several molecules occurring in blood, cerebrospinal fluid (CSF),
saliva, and even urine recorded specific changes of suggestive diagnostic value. In this
way, altered plasma tau concentrations are reported to be related to the persistent post-
concussion syndrome in military personnel with a history of TBIs [90], with the authors of
the study concluding that there might be an association between tau or axonal injury and
PCS. Additional recent studies on professional athletes with PCS and matched controls
showed increased NFL concentration, astroglia activation, and Aβ peptide dysmetabolism
in the brain [91–93], however further studies are required. A recent meta-analysis showed
significantly increased serum light neurofilament chain (NFL) levels in all patients with a
history of concussion compared to controls. That sports-related concussion was specifically
associated with higher levels of NFL, marking the potential of NfL levels as a biomarker in
mild TBI and head impacts [94].

A study on 96 symptomatic retired National Football League players and 25 age-
matched controls showed that plasma-Tau was positively associated with an estimate of
cumulative exposure to repetitive head injuries [95]; however, no significant difference was
found between the groups of the study.

Another study on 78 former NFL players and 16 control individuals reported findings
of tau-positive exosomes in plasma in the players’ group [96], a result that was associated
with lower scores on tests of memory and decreased psychomotor speed. Increased exoso-
mal tau has been recently described in military personnel with a history of mild TBI and
persistent post-concussive symptoms [97,98]. Furthermore, as exosomal tau is also relevant
in neuroinflammation, several studies showed that some neuroinflammatory biomarkers in
both PCS and CTE in blood and CSF registered specific significant changes [95,96,98–102],
suggesting that the neuroinflammatory component of post-concussive processes remained
active a longer period following the traumatic event. In this way, IL6, IL8, and TNF-α [103],
which were all significantly increased following TBI, are also involved in progressive
neurodegeneration [104–106], suggesting that neuroinflammation biomarkers should be
considered as potentially relevant while evaluating the neurodegenerative risk in con-
cussed patients. However, extensive studies on the specific features of neuroinflammation
correlation to neurodegeneration in the TBI context are needed to elucidate the biomarker
evaluation aim and approach in this matter.

On the other hand, in profession-related CTE patients, the pattern of molecular changes
could be seen mainly in CSF due to neuroinflammatory processes, such as microglial
activation. In this sense, Alosco et al. (2016) showed that CSF levels of post-concussive
traditionally altered biomarkers, such as total tau, p-tau, and Aβ peptide 1-42 were not
significantly different in a group of 68 former NFL players, as compared to 21 controls, while
the microglial activation biomarker sTREM2 was significantly higher. Moreover, it was
shown that increased sTREM2 levels are correlated with increased total tau concentrations,
suggesting the potential link between neuronal injury and microglial activation in CTE [99]
(Table 3). However, other studies showed consistent changes in other blood and CSF brain
injury-related biomarkers in CTE patients [95,96]. In addition, Cheng et al. (2019) [107]
reported that several Alzheimer’s disease-relevant salivary biomarkers used to evaluate
cellular membrane damage showed similar modification patterns in CTE patients.
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Table 3. Fluid biomarkers for traumatic brain injury following repeated head impacts.

Biomarker Disorder Observable
Features Clinical Studies

Serum
neurofilament light
polypeptide (NFL)

TBI axonal injury • 19 American football athletes and
19 swim athletes—increased levels of
NFL in football athletes, not
normalizing even after nine months
following TBI [108]

Serum S-100
calcium-binding
protein B and
neuron-specific
enolase (NSE)

PCS astroglial injury
general neuronal
injury

• 47 preseason and 28 PCS
professional ice hockey
players—increased S100B in PCS, no
changes in NSE levels; levels of S-100B
and NSE also increasing following
physical effort [109]
• 44 amateur boxers and 23 healthy
controls—increased serum NSE in
amateur boxers, no changes in S100B
levels [110]

Serum
neurofilament H
and SNTF

TBI stretch injury of
neuronal axons

• Nine TBI and three
controls—increased SNTF and NFH in
sera of TBI patients receiving surgical
brain pressure release [111]
• 28 concussed and
45 non-concussed professional ice
hockey players—diagnostic accuracy
increased levels of SNTF in concussed
athletes [112]

Serum GFAP TBI astrocytic response
to neuronal damage

• 215 acute TBI patients—increased
serum GFAP levels following acute
TBI [113]

Serum IL6, IL8 and
TNF-α

TBI neuroinflammation • 24 TBI patients—increased serum
IL6, IL8, and TNF- α in possible
correlation with poor outcome and
subsequent additional insults (brain
damage) [103]

Exosomal tau
TBI neuronal loss and

neurodegeneration

• 98 veterans with mild TBI with
PTA or LOC, 52 with mild TBI without
PTA or LOC and 45 without
TBI—increased plasma and exosomal
tau, p-tau significantly correlated to
post-concussive symptoms [98]

PCS • 20 current or previous military or
civilian law enforcement breachers ad
14 controls—neuronal-derived
extracellular vesicles (serum) tau
levels increased and correlated
Neurobehavioral Symptom Inventory
score, in experienced breachers [100]
• 42 PCS military personnel and 22
without PCS—increased
concentrations of exosomal tau, Aβ42,
and IL-10 [95]

CTE • 78 former National Football
League players and 16 controls—the
increased presence of tau-positive
extracellular vesicles in former NFL
players, as compared to controls [96]
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Table 3. Cont.

Biomarker Disorder Observable
Features Clinical Studies

Plasma total tau
PCS axonal injury • 70 participants with self-reported

TBI compared with the
28 controls—increased plasmatic total
tau levels [90]
• 47 preseason and 28 PCS
professional ice hockey
players—increased PCS levels, as
compared to preseason
evaluation [109]

RHI • 96 former NFL players and
25 same-age controls - total-tau
plasma concentration ≥ 3.56 pg/mL
was specific to repetitive head impact
individuals [97]

Plasma UCH-L1,
GFAP, Tau

TBI neuronal damage • 27 TBI and six controls—increased
UCH-L1 in oen TBI patient with
abnormal CT scan [114]
• 264 contact sport and
138 non-contact sport
controls—increased plasma UCH-L1
levels in concussed athletes [115]

Plasmatic
calpain-cleaved
SNTF

TBI acute brain damage,
neurodegeneration

• 38 participants—increased plasma
calpain-cleaved SNTF in TBI and some
orthopedic cases, as compared to
uninjured controls [116]

Plasma MCP-4 and
MCP-1β

TBI neuroinflammation • 43 TBI athletes and 102 control
athletes—increased blood levels of
MCP-4 and MIP-1β [117]

Plasma IL1 and IL6 TBI neuroinflammation • 37 severe TBI patients—increased
CSF IL1 and IL6 levels in correlation to
TBI severity (Glasgow
Outcome Scale) [101]

Plasma IL10 TBI neuroinflammation • 82 severe head trauma patients,
39 multiple injuries patients, and
37 healthy donors—increased
systemic levels of IL10 following
multiple injuries, without possibility
to discriminate between head and
non-head trauma [102]

CSF GFAP, YKL-40,
and amyloid β40,
β42

PCS astroglia injury • 28 professional athletes with PCS
and 19 controls—increased glial
fibrillary acidic protein (GFAP) and
YKL-40, lower Aβ40 and Aβ42
levels [91]

CSF NF light
protein, amyloid β

PCS axonal injury • 16 ice hockey players with PCS
and 15 control individuals—increased
NF light protein and decreased
amyloid β CSF levels [92]

CSF total tau level TBI axonal injury • 68 former NFL players and
21 controls—higher CSF t-tau levels
correlated with cumulative head
impact index in NFL players [99]
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Table 3. Cont.

Biomarker Disorder Observable
Features Clinical Studies

CSF sTREM2 TBI microglial
activation

• 68 former NFL players and
21 controls—increased sTREM2 levels
in repeatedly concussed individuals,
significantly associated with increased
CSF T-tau levels [99]

CSF IL1 and IL6 TBI neuroinflammation • 37 severe TBI patients—increased
CSF IL1 and IL6 levels in correlation to
TBI severity (Glasgow
Outcome Scale) [101]

Salivary
extracelluar vesicles

TBI/CTE cell membrane
damage

• 31 concussion trauma patients and
23 controls—many Alzheimer’s
disease relevant salivary biomarkers
isolated from extracellular vesicles
were found to be expressed in
concussed patients [104]

Considering these aspects, the future perspectives in neurodegeneration processes
initiation during or following predisposing events, such as concussion, TBI, RMHI, and sub-
sequent short or long-termed consequences, include further analysis of molecular processes
shifting in PCS and CTE. Also, the fact that neurodegeneration and neuroinflammation
specific biomarkers are relevant in PCS and CTE (Figure 2) context could suggest that the
risk for neurodegeneration initiation in these conditions could be regarded as important,
and further efforts are needed to specifically evaluate and be considered in neurology
preventive approaches.

Diagnostics 2022, 12, x FOR PEER REVIEW  17  of  23 
 

 

amyloid β40, 

β42 

tein  (GFAP)  and  YKL‐40,  lower  Aβ40  and 

Aβ42 levels [91] 

CSF NF light 

protein, amy‐

loid β 

PCS  axonal injury   16  ice  hockey  players  with  PCS  and  15 

control  individuals—increased NF  light  pro‐

tein and decreased amyloid β CSF levels [92] 

CSF total tau 

level 

TBI  axonal injury   68  former  NFL  players  and  21  con‐

trols—higher CSF  t‐tau  levels correlated with 

cumulative head impact index in NFL players 

[99] 

CSF sTREM2    TBI  microglial acti‐

vation 

 68  former  NFL  players  and  21  con‐

trols—increased sTREM2  levels  in  repeatedly 

concussed  individuals,  significantly  associat‐

ed with increased CSF T‐tau levels [99] 

CSF IL1 and IL6  TBI  neuroinflamma‐

tion   

 37 severe TBI patients—increased CSF  IL1 

and  IL6  levels  in  correlation  to  TBI  severity 

(Glasgow Outcome Scale) [101] 

Salivary extra‐

celluar vesicles 

TBI/CTE  cell membrane 

damage   

 31  concussion  trauma  patients  and  23 

controls—many Alzheimer’s disease  relevant 

salivary  biomarkers  isolated  from  extracellu‐

lar  vesicles  were  found  to  be  expressed  in 

concussed patients [104] 

 

Figure 2. Summative schematization of fluid biomarkers in concussion‐related disorders. 

5. Concluding Remarks and Future Perspectives 

Traumatic brain  injury (TBI) represents one of  the main contributors  to death and 

disability worldwide. While TBI  following singular concussion  incidents does not nec‐

essarily  imply  long‐term  consequences  (such  as  chronic  traumatic  encephalopathy, 

TES/CTE), the repeated mild head injuries as occurring in sports and professions at risk 

could cumulatively lead to an increased risk for chronic brain injury‐associated nervous 

system impairments and for subsequent impairments, such as neurodegeneration.   

Both  post‐concussive  syndrome  (short‐termed  consequence  of  TBI)  and  CTE  (a 

long‐termed  consequence  of  repeated TBI)  have widespread  implications  for  athletes, 

Figure 2. Summative schematization of fluid biomarkers in concussion-related disorders.



Diagnostics 2022, 12, 740 18 of 23

5. Concluding Remarks and Future Perspectives

Traumatic brain injury (TBI) represents one of the main contributors to death and
disability worldwide. While TBI following singular concussion incidents does not necessar-
ily imply long-term consequences (such as chronic traumatic encephalopathy, TES/CTE),
the repeated mild head injuries as occurring in sports and professions at risk could cu-
mulatively lead to an increased risk for chronic brain injury-associated nervous system
impairments and for subsequent impairments, such as neurodegeneration.

Both post-concussive syndrome (short-termed consequence of TBI) and CTE (a long-
termed consequence of repeated TBI) have widespread implications for athletes, military
service members, victims of abuse, and patients with epilepsy who have multiple brain
injuries. Numerous studies have been performed to identify imaging and fluid biomarkers
that could assist in the diagnosis and would probably lead to early intervention; however,
the outcomes of most of them are heterogeneous. Despite that, there are several shortcom-
ings regarding the diagnostic possibilities and predicted outcomes considering that CTE
could greatly increase the risk for neurodegeneration occurrence, as compared to PCS. In
this way, further studies in high-risk populations are required to establish certain, preferably
non-invasive biomarkers for CTE that could be used during the patient’s life for prevention,
early diagnostic, risk assessment, outcome prediction, or management performance.
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