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ABSTRACT: Methylene blue (MB) is an FDA (Food and Drug
Administration)-approved contrast agent with donor−acceptor (D−
A) structure integrated with carbonyl-containing nitrogen-hetero-
cycles. MB can be converted into MBH (protonated MB) by
protonation, which not only induces the fluorescence emission red-
shifted from the first near-infrared window (NIR-I, 650−950 nm) to
the second near-infrared window (NIR-II, 1000−1700 nm) but also
achieves ACQ-to-AIE conversion. MB has been successfully
demonstrated in hyperacidemia imaging with an extremely low pH
value (<1).
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Various luminescent materials such as organic and
inorganic substances have gradually been studied.1,2

Because they had an adjustable molecular structure and
chemical composition, were easy to functionalize and
synthesize, and had the potential to meet the expectations of
biomedical related research, organic light-emitting materials
had attracted more attention. The luminescent materials with
emission ability in a wide wavelength range, such as ultraviolet
light to near-infrared light, were also gradually discovered.3−5

Unfortunately, when light-emitting molecules were used in
their high concentration or aggregate state, aggregation-
induced quenching (ACQ) often occurred, which limited
their application.6 Therefore, how to solve the ACQ problem
has become one of the hottest studies in recent years. Most
traditional luminophores emitted strong light when they
existed in a single-molecule state, but when they existed in
an aggregate state, the light emission was almost negligible.
The traditional luminophores had a strong intermolecular π−π
interaction, leading to the aggregation-caused quenching
(ACQ) effect.7−9 Since 2001, luminescent materials with
aggregation-induced emission properties (AIEgens) had
received widespread attention.10,11 However, the molecular
design concept of the new AIEgens was still lacking, in contrast
to the excellent optical properties and abundant ACQ
molecules. So, the conversion of ACQ to AIE provided
another way to design AIEgens, where twisted AIEgen,
propeller molecules, or bulky substituents were incorporated
into planar ACQ molecules to prevent compact interface
accumulation.12−15 However, these strategies were not
applicable to all ACQ−AIE conversion systems; therefore, it

was necessary to develop a new method to realize the ACQ−
AIE conversion system.
Fluorescence imaging provided a powerful visualization tool

to image dynamic and complex processes in living cells and
animals.16−18 The fluorophores with NIR-II emissions (1000−
1700 nm) explicitly showed some advantages, such as higher
spatiotemporal resolution in deep tissue and better signal-to-
background ratio (SBR) compared with NIR-I fluorescence
imaging (650−950 nm).19−21 Some NIR-II probe systems
were always in “on” mode, which could lead to low detection
sensitivity and specificity, due to nonspecific background
signals from healthy tissue and off-target.22−24 However,
theactivatable NIR-II fluorescence probe had superior
potential characters to improved detection quality.25,26 Recent
experiments with an activatable NIR-II probe (FEAD1) that
responded to the tumor microenvironment greatly improved
the accuracy of tumor diagnosis, and its maximum SBR
reached the level of 7.27 Therefore, the development of an
intelligent activatable NIR-II fluorescence probe was very
important to improve detection sensitivity and specificity.
The pH value was a key parameter of great significance,

which controlled many chemical or physiological pro-
cesses.28,29 Especially in biological systems, pH homeostasis
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was the prerequisite for the viability of living cells.30 The pH
changed from alkaline to highly acidic in various prokaryotes as
well as different subcellular organelles of eukaryotic cells.31,32

Although most organisms and eukaryotic cells could not
survive in the environment with extreme acidity (pH < 1),
there are still some organisms including “acidophilus” and
animal organs such as the stomach adapt to such harsh
conditions.33,34 Therefore, maintaining extreme pH homeo-
stasis was also very important. Once the pH was abnormal, it
might cause cell dysfunction and serious diseases such as
hyperchlorhydria,35 which was one of the common symptoms
of gastrointestinal diseases caused by excessive gastric acid
secretion.36,37 When the pH of gastric juice was less than 1
(normal gastric juice was acidic which the pH was 1.5 to 3.5),
the patient would get hyperchlorhydria and suffered from a
burning sensation in the stomach, soreness, nausea, and
spitting acid.38 Hyperacidity would damage the stomach and
duodenal mucosa, causing diseases such as gastric ulcer or
duodenal ulcer.39,40 Thus, it is highly desirable to develop a
gastrointestinal imaging approach with responsibility to the
extreme acidic gastric juice environment (pH < 1).
As an FDA (Food and Drug Administration)-approved drug,

methylene blue has been used as a NIR contrast agent for the
evaluation of the renal function of the animal or the activatable
NIR probe by adding a carbamate caging group on the 10-N
position.41−43 In this work, we found that methylene blue
could quickly be transformed into NIR-II emissive AIEgens
through the protonation of methylene blue in extreme acidic
solution. Moreover, the NIR-II emissive AIEgens could be
generated in situ in a hyperchlorhydria stomach, which could
be used for studying hyperchlorhydria related disease.
Methylene blue (MB) was a typical donor−acceptor (D−A)

containing carbonyl-containing heterocycle structures, and we
hoped to strengthen the D−A interaction of MB through
protonation of a nitrogen-heterocyclic acceptor to result in red-
shifted emissions. MB could generate MBH (protonated MB)
under acceptor protonation (Figure S1). The absorption peak
and emission peak of MBH were red-shifted in comparison
with those of MB (Figure 1A,D). Especially, the fluorescence
emission peak of MBH was 930 nm, which red-shifted 232 nm
(the peak of MB was 698 nm). The MBH shows excellent
photostability under 808 nm laser irradiation (Figure S2). Due
to the protonated acceptor strengthening the D−A interaction,
the fluorescence emission peak can be red-shifted from the
NIR-I spectrum range to the NIR-II spectrum range when the
protonation occurs in the acceptor of theMB molecule.
Furthermore, the photoluminescence behaviors of MB and

MBH in dichloromethane and dichloromethane/n-hexane
mixtures were investigated. MB showed strong emission in
dilute dichloromethane solution and decreased emission with
increasing n-hexane fraction ( f Hex) from 10% to 90%. MB
demonstrated a typical aggregation-caused quenching (ACQ)
phenomenon, and it was found that MB molecules aggregated
into particles in different ratios of n-hexane and dichloro-
methane mixture systems, which caused the decline in MB
fluorescence intensity (Figure 1B and C). MBH showed weak
fluorescence in dichloromethane solution. The fluorescence of
MBH enhanced when the f Hex increased from 10% to 70% but
deceased when the f Hex further increased from 80% to 90%.
The red line is the DLS measurement results of the MBH
molecules aggregated in different n-hexane and DCM mixture
system ratios. The DLS measurement results showed that a
nanoscale aggregate was formed when the ratio of n-hexane

and DCM mixture systems increased to more than 40%,
reaching a hydrodynamic diameter of ∼400 nm when the ratio
of n-hexane and DCM mixture systems increased to 80%,
which was consistent with the trend of the fluorescence
measurements (black line in Figure 1F). MBH molecules
aggregated into particles in different ratios of n-hexane and
dichloromethane mixture systems, which led to an increase in
MBH fluorescence intensity (Figure 1E and F) and further
confirmed the AIE property of MBH. These results displayed
achieving ACQ-to-AIE transformation by the protonation of
the acceptor in the MB molecule. More importantly, the NIR-
II fluorescence emission characteristics and AIE activity after
protonation of the molecular receptor of MB generally existed
in its analogues, which provide a new strategy for realizing
ACQ−AIE conversion (Figure S3).
As shown in Figure 2, the 1H NMR spectra of MBH

indicated the existence of protonation of MB because the
proton resonance shift related to the acceptor appeared
downfield compared to that of MB. Furthermore, to study

Figure 1. Optical properties of methylene blue (MB) and
protonated methylene blue (MBH). (A) UV−vis absorption spectra
of MB in aqueous solution. (B) Fluorescence (FL) spectra of MB in
hexane/dichloromethane mixtures with different fractions of hexane
( f Hex). (C) The curve of the FL intensity and hydrodynamic diameter
(HD) of MB versus hexane fractions ( fHex) of hexane/dichloro-
methane mixtures. (D) UV−vis absorption spectra of MBH in
aqueous solution. (E) Fluorescence (FL) spectra of MBH in hexane/
dichloromethane mixtures with different fractions of hexane ( fHex).
(F) The curve of the FL intensity and hydrodynamic diameter of
MBH versus hexane fractions ( fHex) of hexane/dichloromethane
mixtures.

Figure 2. 1H NMR spectra of methylene blue (MB) and protonated
methylene blue (MBH).
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the optical properties of MB to proton (H+) responses, the
standard H+ titration experiment was carried out. Figure 3A

and B shows the UV−vis absorption spectral change of MBH
at different H+ concentrations. As the H+ concentration
increased from 10−7 to 6 M, the absorbance peak at 664 nm
gradually decreased. But from the increase of H+ concentration
from 10−1 M (pH 1) to 6 M, a new absorbance peak at 748 nm
appeared and slowly rose. Figure 3C demonstrated the NIR-II
fluorescence spectral change of MBH at different H+

concentrations. As the H+ concentration increased from 10−7

to 10−2 M (pH 2), the NIR-II fluorescence signal was not
detected. However, the H+ concentration increased from 10−1

M (pH 1) to 6 M, a new fluorescence emission in the NIR-II
spectrum appeared, and the fluorescence intensity at 930 nm
underwent a concomitant monotonic increase. A quantitative
analysis of the fluorescence intensity at 930 nm vs H+

concentration (Figure 3D) revealed the NIR-II fluorescence
signal from off to on as the H+ concentration range was
elevated from 10−7 M (pH 7) to 6 M. The H+ concentration of
10−1 M (pH 1) was a change point at which the NIR-II
fluorescence signal of MBH was from off to on. However, the
fluorescence changes of MB relative to H+ were opposite to
those of MBH (Figure S4). Reversible reversibility was another
important characteristic for the fluorogenic probe. The pH
value of the solution was regulated between 2 and 1 by using
hydrochloric acid and aqueous sodium hydroxide. Figure S5
shows that the NIR-II fluorescence signal could be rapidly
switched on (pH 1) and off (pH 2) in a reversible manner.
The result demonstrated the potential of MB as extreme-
acidic-environment activatable NIR-II probes.
Theoretical calculation results showed that electrons were

delocalized on the whole molecule backbone (Figure S6). The
introduction of acceptor group protons reduced the energy gap
(Eg) between the HOMO and LUMO of MBH (1.7935 eV),
which was lower than that of MB (2.4797 eV). This was also
very consistent with the red-shifted absorption and fluo-
rescence emission spectra in experimental results.

The pH of gastric juice was less than 1, which can cause
hyperchlorhydria disease (normal gastric juice was acidic,
which the pH was 1.5 to 3.5). There were currently visible and
NIR-I fluorescent probes that could be used to detect
hypersecretion of gastric acid in vitro but not in vivo.
Compared with the visible and NIR-I imaging, NIR-II
fluorescence imaging provided significant improvement of
imaging contrast with high spatial resolution. We performed a
preliminary experiment to assess a stimuli-responsive MBH
probe with activatable NIR-II fluorescence for detecting gastric
acid hypersecretion in vivo. Moreover, MB was nontoxic and
approved by the FDA. As shown in Figure 4 and Figures S7

and S8, when the mouse gastric acid secretion was normal, MB
was administered by the gavage method and there was no NIR-
II fluorescence signal in the stomach (Figure 4A−C).
Subsequently, hydrochloric acid was injected into the stomach
of a mouse, which served as an animal model for hyper-
secretion of gastric acid. The NIR-II fluorescence signal slowly
appeared in the stomach (Figure 4D−F). When the mice were
given baking soda to neutralize the excess gastric acid, the
NIR-II fluorescence signal disappeared (Figure 4H). However,
the NIR-I fluorescence signal of the stomach showed almost
no change at all and maintained a high background
fluorescence signal during the entire operation, because NIR-
I images as fluorescence signals had a shorter wavelength and it
was largely masked by autofluorescence (Figure 4G). We also
monitored the change of the body weight of the mouse after
feeding with MB to evaluate their health status; the results
showed there was little change for the body weight, indicating
the biosafety of MB (Figure S9). Therefore, those results
demonstrated that a MBH probe with activatable NIR-II
fluorescence provided not only better gastric imaging in vivo

Figure 3. pH responsibility evaluation of methylene blue (MB).
(A) UV−vis absorption spectra of MB in different acid solutions. (B)
Plot of the absorbance intensity of MB versus acidity. (C)
Fluorescence (FL) spectra of MB in different acid solutions. (D)
Plot of the FL intensity of MB versus acidity.

Figure 4. NIR-I imaging versus NIR-II imaging in the mouse
stomach. (A) Schematic diagram of mouse stomach imaging in the
normal based on the MB probe. (B) NIR-I imaging of mouse stomach
in the normal. (C) NIR-II imaging of mouse stomach in the normal.
(D) Schematic diagram of mouse stomach imaging in the hyper-
chlorhydria based on the MBH probe and mouse stomach imaging
after neutralization with sodium bicarbonate. (E) NIR-I imaging of
mouse stomach in the hyperchlorhydria. (F) NIR-II imaging of mouse
stomach in the hyperchlorhydria. (G) After neutralization with
sodium bicarbonate, NIR-I imaging of mouse stomach in the
hyperchlorhydria. (H) After neutralization with sodium bicarbonate,
NIR-II imaging of mouse stomach in the hyperchlorhydria. (I) Mouse
photos. (J) NIR-I fluorescence signal of the mouse stomach images as
shown in (B), (E), and (G). (K) NIR-II fluorescence signal of the
mouse stomach images as shown in (C), (H), and (E).
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but also hyperchlorhydria disease detection accuracy and
monitoring of its treatment process.
In summary, we have developed an extreme-acidic-environ-

ment detection approach based on the NIR-II fluorogenic
process through the protonation of a receptor in MB molecules
and successfully applied MB to detect the extremely acidic
gastric acid. The protonation of the acceptor in the MB
molecule made the fluorescence emission peak red-shift from
the NIR-I window to the NIR-II window. More importantly,
this was the first example of the realization of the ACQ-to-AIE
transformation just through a protonation of an acceptor in a
molecule, which provided a unique method for exploring AIE
properties in existing materials.
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