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ABSTRACT

Robust automated segmentation of white matter hyperintensities (WMHs) in different datasets (domains)
is highly challenging due to differences in acquisition (scanner, sequence), population (WMH amount and
location) and limited availability of manual segmentations to train supervised algorithms. In this work we
explore various domain adaptation techniques such as transfer learning and domain adversarial learning
methods, including domain adversarial neural networks and domain unlearning, to improve the gener-
alisability of our recently proposed triplanar ensemble network, which is our baseline model. We used
datasets with variations in intensity profile, lesion characteristics and acquired using different scanners.
For the source domain, we considered a dataset consisting of data acquired from 3 different scanners,
while the target domain consisted of 2 datasets. We evaluated the domain adaptation techniques on the
target domain datasets, and additionally evaluated the performance on the source domain test dataset for
the adversarial techniques. For transfer learning, we also studied various training options such as minimal
number of unfrozen layers and subjects required for fine-tuning in the target domain. On comparing the
performance of different techniques on the target dataset, domain adversarial training of neural network
gave the best performance, making the technique promising for robust WMH segmentation.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Various methods using hand-crafted features have been used for
WMH segmentation (Caligiuri et al., 2015), and in recent years,

White matter hyperintensities of presumed vascular origin
(WMHs, also known as white matter lesions) are bright localised
regions on T2-weighted and FLAIR images. They are commonly
found in elderly subjects, however, they have also been related
to various neurodegenerative (e.g. dementia, including Alzheimer’s
disease) and cerebrovascular diseases (e.g. stroke) (Wardlaw et al.,
2013). Automated WMH segmentation is essential for further un-
derstanding the clinical impact of WMHSs in a large population.
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deep learning (DL) models are being increasingly used and have
been shown to outperform traditional methods (Rachmadi et al.,
2018; Kuijf et al,, 2019). Many of the existing methods (using ei-
ther hand-crafted features or DL models) were trained with a large
amount of manual labels (Wang et al., 2012; Admiraal-Behloul
et al.,, 2005; Ghafoorian et al., 2016) and/or evaluated on specific
population group (Wang et al., 2012; Gibson et al., 2010; De Boer
et al., 2009; Steenwijk et al., 2013; Jeon et al., 2011; Hong et al.,
2020; Park et al., 2018), acquired with the same scanner/protocol
or validated on isotropic or axial acquisition images (Ghafoorian
et al., 2017a; Kuijf et al.,, 2019). However, in the real-world sce-
nario, most of the clinical datasets are small in size, acquired using
various protocols and scanners, and from people with diverse de-
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mographic and pathological characteristics. In addition, specially in
these datasets, limited amount or non-availability of manual seg-
mentations constrains the training and segmentation performance
of the model, especially due to the problem of overfitting. It is
therefore very challenging to achieve robust performance metrics
for segmentation of WMHSs across datasets in the presence of such
variations in image characteristics, lesion load, and availability of
training data.

Several methods have been proposed for making models more
adaptable to various ‘domains’ (e.g. different scanners or acquisi-
tion protocols). These include reducing the variance in the image-
level characteristics (Bordin et al.,, 2020) (induced by the scan-
ner and acquisition protocol), estimating site effects to correct the
measurements derived from the images (Fortin et al., 2018), by
improving model generalisability (Ganin et al., 2016; Tzeng et al.,
2015) (so that it is not affected by differences in intensity distri-
butions or spatial resolution), or a combination of the above. Com-
monly used techniques to improve model generalisability include
data augmentation (Shorten and Khoshgoftaar, 2019), and the use
of ensemble networks (with different initialisations (Li et al., 2018)
or planes (Prasoon et al., 2013)), which have been shown to be re-
sistant to over-fitting (Krizhevsky et al., 2012; Simonyan and Zis-
serman, 2014; Kamnitsas et al., 2017; Winzeck et al., 2019), which
can occur with more complex models (Opitz and Maclin, 1999).
However, these techniques cope mostly with minor variance in
dataset characteristics within a domain and hence might not be
sufficient for generalising across datasets obtained from different
sources/domains.

Domain adaptation (DA) methods address the issue of discrep-
ancies in the data distributions obtained from various domains
that affect the robust performance of the model (Ben-David et al.,
2010). DA methods, in general, aim to transfer the knowledge from
a source domain to a target domain by leveraging the invariant fea-
tures across different domains (Wilson and Cook, 2019; Pan and
Yang, 2009). Various DA techniques used so far include minimis-
ing a distance metric of domain variance (Long et al., 2013; Pan
et al., 2010; Wang and Schneider, 2014), using transferable features
for creating intermediate feature representation between domains
(Yosinski et al., 2014) and transfer learning (Pan and Yang, 2009;
Yosinski et al., 2014). Within DA frameworks, the restriction posed
by limited availability of manually labelled data for training has
been addressed by proposing various semi-supervised (Cheng and
Pan, 2014; Yao et al., 2015; Saito et al., 2019), self-labelling (Saito
et al, 2017; Zou et al., 2019) and pseudo-labelling (Inoue et al.,
2018) methods. Techniques such as self- and pseudo-labelling use
small amount of labelled data along with large amount of un-
labelled data to improve model performance (Lee et al., 2013).
Hence, given the wide variations in lesion characteristics, con-
trast variations (e.g. GM voxels vs WMHSs) and location priors (e.g.
normal ventricle lining vs WMHSs), these techniques could bias
WMH segmentation results, especially in small non-representative
datasets.

In transfer learning (TL) (Pan and Yang, 2009), one of the
commonly used supervised DA techniques, the initial convolu-
tional layers (domain invariant low-level features) are generally
kept constant or frozen, while the final layers (task/domain spe-
cific high-level features) are fine-tuned on the target datasets.
Fine-tuning of the pre-trained models has been shown to im-
prove the performance on the target datasets (Tajbakhsh et al.,
2016), especially when the intensity characteristics of images be-
tween domains are more similar (Yosinski et al., 2014; Wilson and
Cook, 2019). TL has been applied for medical image segmenta-
tion tasks (Tajbakhsh et al., 2016), including lesion segmentation
(Ghafoorian et al., 2017b). However, TL is limited by the fact that
the training on different domains occurs separately and hence can-
not combine features from both domains while training. Also, in
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addition to determining the layers to fine-tune, another crucial
consideration often encountered while fine-tuning is the number
of target training subjects required. This is because the perfor-
mance of TL has been shown to rely (although to a less extent than
training the model from scratch) on the amount of labelled target
training data (Tajbakhsh et al., 2016).

Another successful DA approach, unsupervised domain adversar-
ial training (Ganin et al., 2016; Tzeng et al., 2015; Lee et al., 2019;
Fernando et al.,, 2013; Kouw and Loog, 2019; Wang and Deng,
2018) relies on domain invariant features to achieve good domain
adaptation. Several adversarial training methods have been pro-
posed, including the recent ones based on discriminator framework
(Tzeng et al., 2017), partial transfer learning (Cao et al., 2018) (as-
suming that the target domain dataset is a subset of the source
domain) and using associations between the source and target do-
mains (e.g. increasing correlation/covariance, subspace alignment)
(Haeusser et al., 2017; Fernando et al., 2013; Long et al., 2017a;
Sun and Saenko, 2016). One of the earlier and commonly used ad-
versarial training approaches, domain adversarial training of neural
network (DANN) (Ganin and Lempitsky, 2015; Ganin et al., 2016)
has been applied to several baseline architectures (Ganin et al.,
2016; Schoenauer-Sebag et al., 2019) and is explored on multiple
datasets (Gallego et al., 2020). The DANN technique has also been
used in various comparative analyses (Tzeng et al., 2015; 2017;
Zellinger et al.,, 2017) and has been proven to be one of the suc-
cessful models for task-specific domain adaptation (Zellinger et al.,
2017; Long et al., 2017b). The DANN model consists of a feature
extractor network with a domain predictor and a label predictor.
The adversarial training of the domain predictor is achieved using
a gradient-reversal layer, placed between the feature extractor and
the domain predictor, optimising the features and shared weights.
This layer maximises the domain prediction loss, thus minimising
the shift between the domains, while simultaneously making the
model discriminative towards the main task of segmentation la-
bel prediction. While DANN was originally proposed in an unsu-
pervised manner with respect to target domain (i.e. segmentation
labels required only for source domain), it has also been shown to
be beneficial under semi-supervised setting (i.e. using a fraction of
target domain segmentation labels) (Ganin et al., 2016).

An alternative domain unlearning (DU) approach was proposed
for domain and task adaptation using an iterative framework
(Tzeng et al., 2015) (and recently adapted for unlearning scanner-
related information between domains in (Dinsdale et al., 2020)).
The method involved learning the domain prediction for a fixed
feature representation and then minimising the domain shift be-
tween features resulting in a maximal domain confusion that is
equally uninformative across domains.

In this work, we explore various domain adaptation techniques
such as TL and adversarial adaptation methods including DANN
and DU for obtaining a good WMH segmentation across various
datasets, and to perform well irrespective of differences in data
characteristics. We used a triplanar ensemble network (TrUE-Net),
proposed in our recent work (Sundaresan et al., 2021) as a baseline
model. Our objective is to adapt our baseline model to a different
domain consisting of small dataset(s). In addition, when applying
TL, we addressed two main issues while fine-tuning a model on a
target dataset with limited training subjects: determining (1) the
optimal layer of the model to start fine-tuning and (2) the mini-
mal number of training subjects for reliable segmentation. We per-
formed our experiments on 3 different datasets (including a pub-
licly available dataset) with different acquisition and lesion char-
acteristics, grouped into source and target domains. We experi-
mented with several test strategies involving different DA tech-
niques on the source-trained model and training the model directly
on the target domain, to comprehensively study both innate and
adapted performances of the model for WMH segmentation.
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2. Materials and methods
2.1. Datasets used

Neurodegenerative cohort (NDGEN): The dataset, used in
Zamboni et al. (2013), includes MRI data from 9 subjects with
probable Alzheimer’s Disease, 5 with amnestic mild cognitive im-
pairment and 7 cognitively healthy control subjects (age range 63
- 86 years; mean age 77.1 £+ 5.8 years; median age 77 years; F:M =
10:11). Total brain volume range: 1189282 - 1614799 mm?3, median:
1424669 mm3. Manual segmentation was available for all datasets
(WMH load range: 1878 - 89259 mm?3, median: 20772 mm?3).
The images were acquired using a 3T Siemens Trio Scanner, with
FLAIR (TR/TE = 9000/89 ms, flip angle 150°, FOV 220 mm, voxel
size 1.1 x 0.9 x 3 mm, matrix size 256 x 256 x 35 voxels)
and T1-weighted acquisitions (3D MP-RAGE sequence, TR/TE =
2040/4.7 ms, flip angle 8°, FOV 192 mm, voxel size 1 mm isotropic,
matrix size 174 x 192 x 192 voxels).

Vascular cohort - Oxford Vascular Study (OXVASC): The
dataset consists of 18 participants in the OXVASC study
(Rothwell et al., 2004), who had recently experienced a mi-
nor non-disabling stroke or transient ischemic attack (age range
50 - 91 years; mean age 73.27 + 12.32 years; median age
75.5 years; F:M = 7:11). Total brain volume range: 1290926 -
1918604 mm?3, median: 1568233 mm?3. Manual segmentation was
available for all datasets (WMH load range: 3530 - 83391 mm?,
median: 16906 mm3). The images were acquired using a 3T
Siemens Trio Scanner, with FLAIR (TR/TE = 9000/88 ms, flip angle
150°, voxel size 1 x 3 x 1 mm, matrix size 174 x 52 x 192 voxels)
and T1-weighted acquisitions (3D MP-RAGE sequence, TR/TE =
2000/1.94 ms, flip angle 8°, voxel size 1 mm isotropic, matrix size
208 x 256 x 256 voxels).

MICCAI WMH Segmentation Challenge training Dataset
(MWSC): The dataset consists of 60 subjects from three differ-
ent sources (20 subjects each) provided as training sets for the
challenge (Kuijf et al., 2019) (http://wmbh.isi.uu.nl/): UMC Utrecht,
NUHS Singapore and VU Amsterdam. The brain volume ranges:
1257820 - 1844920 mm? (median 1473389 mm?3) for UMC Utrecht,
1147248 - 1532268 mm?> (median: 1351325 mm3) for NUHS Sin-
gapore and 1219614 - 1787321 mm3 (median: 1441201 mm?3) for
VU Amsterdam. Manual segmentations were available for all three
datasets, with an additional exclusion label provided for other
pathologies. We included these masks as parts of non-lesion tissue
during both training and testing. The WMH volume ranges (exclud-
ing other pathologies) are 845 - 74991 mm? (median: 26240 mm?3)
for UMC Utrecht, 786 - 61332 mm3 (median: 17795 mm?3) for
NUHS Singapore and 1522 - 43528 mm? (median: 6015 mm?) for
VU Amsterdam. FLAIR and T1-weighted images were available for
this dataset (for more details regarding MRI acquisition parame-
ters, refer to http://wmh.isi.uu.nl/). Even though preprocessed im-
ages were available, we used the original images and applied the
preprocessing pipeline specified in Section 2.2 to maintain consis-
tency and to avoid any biases due to the preprocessing method
across domains in our experiments.

2.2. Data preprocessing

For all datasets, we reoriented FLAIR and T1-weighted images
to the standard MNI space, performed skull-stripping with FSL BET
(Smith, 2002) and bias field correction using FSL FAST (Zhang et al.,
2001). We registered the T1-weighted image to the FLAIR using
rigid-body registration using FSL FLIRT (Jenkinson and Smith, 2001)
and cropped the field of view (FOV) close to the brain and applied
Gaussian normalisation to the intensity values. For axial, sagittal
and coronal slices, we resized the extracted slices to dimensions
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of 128 x 192, 192 x 120 and 128 x 80 voxels respectively, using
bilinear interpolation.

2.3. Baseline method: triplanar U-Net Ensemble Network (TrUE-Net)
architecture

As a baseline model, we used the triplanar ensemble ar-
chitecture® proposed in Sundaresan et al. (2021). As shown in
our prior work (table 5 in Sundaresan et al. (2021)), TrUE-Net
provided results on par with the top performing methods of
MWSC challenge (Kuijf et al., 2019) and with the method pro-
posed in Ghafoorian et al. (2017a). Briefly, as shown in Fig. 1,
the TrUE-Net architecture consists of three 2D U-Nets, one for
each plane, taking FLAIR and T1 slices as input channels. We
trimmed the depth of the classic U-Net (Ronneberger et al., 2015)
in each plane to a depth of 3-layers (Fig. 2a), given the small
size of lesions. In the ensemble model, we trained the U-Nets
in each plane independently using 2D slices extracted in each
plane. We used a combination of weighted cross-entropy (refer to
Sundaresan et al. (2021) for more details) and Dice loss functions
in order to overcome the effect of class imbalance between WMHs
and healthy tissue. During testing, the predictions were obtained
as 2D softmax output score maps for slices in each plane and were
later assembled into 3D volumes and resized to the original di-
mensions. We then averaged the 3D volumes to get the final prob-
ability volume for the triplanar architecture.

2.4. Comparison of domain adaptation techniques

We studied the performance of various DA techniques using
the following test strategies on the target test dataset (refer to
Section 2.6) against the model that is trained directly on the target
training dataset.

2.4.1. Strategy 1: train on the source domain and apply directly to
the target domain

In order to determine the inherent generalisability of TrUE-
Net, we trained the model on the source domain training datasets
(training parameters in Section 2.5) and tested the model directly
on the target domain test datasets.

2.4.2. Strategy 2: transfer the model trained on the source domain to
the target domain with fine-tuning

We trained TrUE-Net (training details in Section 2.5) on the
source domain datasets to get the source pre-trained model. We
then fine-tuned the model by training it on the target dataset
starting from the decoder end. For fine-tuning we used a smaller
learning rate schedule (initially 1 x 10~4, reduced by a factor 1 x
10-! every 2 epochs, until it reaches 1 x 1076). Fig. 2a shows the
layer numbers for the U-Net model. Given L layers in total, ‘fine-
tuning i layers’ means that L — i layers before i were frozen and the
layers from i towards the decoder end were fine-tuned. The initial
hyperparameter tuning (explained in Section 2.5) was performed
using 18 subjects and fine-tuning layers starting from the end of
encoder (3 layers from the end). Hence, we compared the results
at this setting with other DA strategies. Additionally, for each fine-
tuning, we increased the number of target training subjects, from
2 to 18 in steps of 2, and measured the performance of each fine-
tuned model. Finally, we determined the best starting point for
fine-tuning the model, and the optimal number of training data
to obtain the best performance on the target dataset. Since TL in-
volves both the domains, in addition to the existing DA strategies,
we also compare the TL strategy with the case where the baseline

3 TrUE-Net code available in https://git.fmrib.ox.ac.uk/vaanathi/truenet
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Fig. 1. Baseline architecture: Triplanar U-Net ensemble network (TrUE-Net) Sundaresan et al. (2021).
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Fig. 3. Sample axial slices shown from source (top row) and target (middle row)
domains. The splits for training, validation and test datasets in source and target
domains are provided in the table (bottom panel).

model is trained on the source and target training datasets com-
bined together (refer to section 5 in the supplementary material).

2.4.3. Strategy 3: unsupervised domain adversarial training (DANN)
on the source and target domains

We implemented DANN (Ganin et al., 2016) as shown in Fig. 2b
by adding a domain predictor to the baseline TrUE-Net model. We
added the domain predictor to the coarsest level after maximum
levels of pooling (with 512 channels) at the end of the encoder,
since it has high-level features with domain-specific information.
We added a 2 x 2 max-pooling layer and 1 x 1 projection lay-
ers to 128 and 64 channels before the domain predictor. The do-
main predictor consists of three fully connected (FC) layers (with
1024, 512 and 32 nodes) alternating with two dropout layers (Pyyp
= 0.2), followed by a softmax layer. We added a gradient rever-
sal layer between the feature extractor and the domain predictor,
leading to adversarial training with respect to domain prediction.
In this model, the domain predictor makes the model domain in-
variant by considering data from both domains, while the lesion
label predictor optimises the model for accurate WMH segmen-
tation. Hence, the domain predictor requires only domain labels
for both source and target datasets, while the lesion label predic-
tor requires manual segmentations from source datasets only, mak-
ing the model unsupervised with respect to the target domain. We
tested the DANN model on the test datasets from the source and
target domains (table in Fig. 3), and measured model performance
in each domain individually.

2.4.4. Strategy 4: semi-supervised domain adversarial training
(semi-DANN) on source and target domains

We trained the DANN model (Fig. 2b) in a semi-supervised
manner, wherein manual segmentations from a fraction of target
training data were used in addition to source training datasets for
training the lesion label predictor. The remaining target training
data is used only for domain prediction. One of the main advan-
tages of the unsupervised DANN model is that it does not re-
quire manually labelled data from the target dataset. Even then,
our main aim for exploring the semi-DANN, despite the additional
manual labelling effort, was to observe if there was any significant
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improvement over unsupervised DANN. Hence, we used a minimal
proportion (25%, chosen empirically, which amounts to 4 subjects)
of the labelled target training data, in addition to the source train-
ing dataset, for training the lesion label predictor. We tested the
model on the source and target domain test datasets individually.

2.4.5. Strategy 5: iterative domain unlearning (DU) to remove
scanner-bias between source and target domains

The DU model* (Dinsdale et al., 2020) is based on the iterative
unlearning framework (Tzeng et al., 2015) for adversarial adapta-
tion. The model, rather than using a gradient reversal layer, op-
timises two opposing loss functions in three sequential steps: (1)
updating the feature representation and the lesion label predictor,
(2) maximising the performance of a domain predictor given the
fixed feature representation, and (3) updating the feature repre-
sentation in order to maximally confuse the domain classifier. As
in the unsupervised DANN (strategy 3), only domain labels are re-
quired for the target dataset, while the lesion label predictor uses
manual segmentations of the source dataset only. As shown in
Fig. 2¢, we consider the final two 3 x 3 convolutional layers and
the final softmax layer as our label predictor. The domain predic-
tor, placed after the final decoder layer of the U-Net, consists of
repetitive 2 x 2 max-pooling layers until the last layer dimensions
match the first FC layer, followed by three FC layers (with 468, 96
and 32 nodes) alternating with two dropout layers (Pyy,p, = 0.2),
followed by a softmax layer. Note that while we added the domain
predictor at the end of the encoder in DANN, we added the domain
predictor at the end of decoder (the same point as label predictor)
in DU (Fig. 2). This is because, in DANN, the domain unlearning
happens simultaneously with shared weights between the predic-
tors and hence we focus on the layer with coarsest features (show-
ing overall WMH distribution) that is more domain specific. On the
other hand, in DU, the training happens sequentially for each pre-
dictor (while freezing the other predictor) and hence we add the
domain predictor directly at the point where the generalisability is
most desirable for WMH segmentation.

2.4.6. Train on the target domain from scratch and apply to the
target domain

We trained the TrUE-Net model on the target training dataset
and tested the model on the target test dataset. This case is ex-
pected to perform better than source-trained and other DA strate-
gies on the target test dataset (for the given training options and
data) since it is not required to cope with domain variance. Hence,
this represents the case of upper limit for the performance met-
rics and is included for reference purpose only, since it does not
improve model generalisability across domains.

2.5. Implementation details

We implemented the networks in Python 3.6 using Pytorch
1.2.0. The baseline network (TrUE-Net), for source-trained, target-
trained and TL strategies (pretraining and fine-tuning using 3-
layers, 18 subjects), was trained on an NVIDIA Tesla V100, tak-
ing 5 mins (for 3 planes) per epoch for ~ 15,000 samples with
the training/validation split of 90/10%. We used the Adam Op-
timiser with € = 10~4. We empirically chose a batch size of 8,
and an initial learning rate of 1 x 10~3 and reducing it by a fac-
tor 1 x 10! every 2 epochs, until it reaches 1 x 10>, after which
we maintain a fixed learning rate value (for more details, refer to
Sundaresan et al. (2021)). Data augmentation was applied in an on-
line manner using translation (x/y-offset € [-10, 10]), rotation (6 <

4 DU code available at: https://github.com/nkdinsdale/Unlearning_for_MRI_
harmonisation
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[-10, 10]), random noise injection (Gaussian, u = 0, o2 e [0.01,
0.09]) and Gaussian filtering (o € [0.1, 0.3]), increasing the dataset
by a factor of 10 and 6 for axial and sagittal/coronal planes re-
spectively. The hyperparameter values for the data augmentation
transformations were randomly sampled from the closed intervals
specified above using a uniform distribution. Additionally, for the
domain predictor in DANN/semi-DANN and DU, we trained with
the Momentum optimiser (momentum value of 0.9) and Adam op-
timiser respectively. We used a batch size of 8, with 50 epochs
for pretraining and a criterion based on a patience value (num-
ber of epochs to wait for progress on validation set) of 25 epochs
to determine model convergence for early stopping (converged at
around 90 epochs for all cases). We used the learning rates of 103
and 10* for DANN/semi-DANN and DU respectively. These train-
ing hyper parameters were chosen empirically. In DU, we used
a B value of 50 (a factor used for weighting the domain confu-
sion (Dinsdale et al., 2020)). For determining the S value, we ex-
perimented with different values starting from 20 to 60 in steps
of 10 and chose the value of 50, since it provided a domain ac-
curacy value closer to 50% (indicating maximal confusion of do-
mains) on the validation dataset. The DANN/semi-DANN and DU
networks were trained on an NVIDIA Tesla V100, taking ~ 10 and
7 mins per epoch respectively with the training/validation split of
90/10%.

2.6. Source and target domain datasets

The datasets used in this work were acquired using differ-
ent scanners and sequences and therefore have different intensity
characteristics and resolutions. For performing our domain adap-
tation (DA) experiments, we classified the available datasets into
two domains. Rather than considering each dataset as an indi-
vidual domain, we considered only two domains (source and tar-
get) for our experiments. This is because the datasets have vary-
ing degrees of similarity among them and also, given the lim-
ited number of subjects for each dataset (for training and test-
ing), treating them as individual domains would be difficult and
give unreliable results. For deciding the source and target datasets,
we determined the homogeneity of image-level characteristics
among the above 5 datasets, using a domain discriminator net-
work. To this aim, we trained a domain discriminator model on
the above datasets and determined the domain misclassifications
among these datasets using a confusion matrix (for more details
on this experiment and results, refer to Section 1 of supplementary
material). Based on the results, we considered the MWSC dataset
(3 cohorts) as our source domain datasets, and the combination
of OXVASC and NDGEN as our target domain datasets. Examples
of the source and target domain datasets, along with the train-
ing/validation/test data split for above test strategies is shown in
Fig. 3.

2.7. Performance evaluation metrics

We used the following performance metrics:

Dice Similarity Index (SI) = 2 x (true positive WMH voxels) |

(true WMH voxels + positive WMH voxels).

o Voxel-wise true positive rate (TPR), the ratio of the number of
true positive WMH voxels to the number of true WMH voxels.

« Voxel-wise false positive rate (FPR), the number of false positive

WMH voxels divided by the number of non-WMH voxels.

Cluster-wise TPR, the number of true positive WMH clusters

(determined using 26-connected neighbourhood) divided by

the total number of true WMH clusters.

Absolute log-transformed volume difference (IAVD), which is

_ predicted segmentation volume
defined by lAVD = lOg manual segmentation volume |
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o Cluster-wise F1-measure = 2 x (cluster-wise TPR x cluster-wise
precision)/ (cluster-wise TPR + cluster-wise precision), where
cluster-wise precision is the number of true positive WMH
clusters divided by the total number of detected WMH clusters.

For each metric we determined the significant differences be-
tween the individual pairs of test strategies, correcting for multiple
comparisons using Permutation Analysis of Linear Models (PALM)
(Winkler et al., 2014).

3. Results

Figure 4 shows results for all strategies of the domain adapta-
tion experiments for a sample high lesion load test subject from
the OXVASC dataset (results on a low lesion load test subject
are shown in figure S3 in the supplementary material). Figure 5
shows the boxplots of the performance metrics, while suppl. ta-
ble S1 reports medians and interquartile ranges of performance
metrics for different test strategies. For PALM results comparing
the evaluation metrics between each pair of test strategies, re-
fer to suppl. table S2. For the DANN, semi-DANN and DU mod-
els, Fig. 7 shows the visualisation of the feature representa-
tions using t-SNE plots (Van der Maaten and Hinton, 2008) at
the layer before the label predictor with and without domain
adaptation.

3.1. Strategy 1: train on the source domain and apply directly to the
target domain

As shown in Fig. 4a, while the source-trained model detected
most of the periventricular WMHs (PWMHs), it undersegmented
their boundaries, and also missed some deep WMHs (DWMHs).
From the boxplots in Fig. 5 (and suppl. table S1), strategy 1
showed the worst performance among all the cases. The seg-
mentation was more precise in the low lesion load subjects (fig-
ure S3 in suppl. material) rather than high lesion load ones.
This strategy showed significantly lower SI, cluster-wise TPR and
F1 values compared to semi-DANN (significant even after cor-
recting for multiple comparison across metrics). Also, cluster-
wise TPR and Fl-measures were significantly lower when com-
pared to DANN and DU (strategies 3 and 5) respectively (suppl.
table S2).

3.2. Strategy 2: transfer the model trained on the source domain to
the target domain with fine-tuning

The TL strategy results are reported for the setting (using 18
subjects, starting from layer-3) that was used for tuning training
hyperparameters (e.g. learning rate, optimiser parameters, batch
size etc.). With this setting, TL provided better performance than
strategy 1 for all the evaluation metrics. However, it gave lower
cluster-wise F1 measure values and higher IAVD values when
compared to other DA models. The difference in cluster-wise F1-
measure was significant when compared to semi-DANN, as re-
ported in suppl. table S2.

Later while determining the best setting for TL, the segmen-
tation results improved with increased amounts of training data
(Fig. 4). For instance, segmentation results with fine-tuning using
2 training subjects showed the worst results for both lesion loads,
and improved with 12 and 18 training subjects. This is also ev-
ident from the heatmaps of the performance metrics shown for
different numbers of training subjects and numbers of fine-tuned
layers in Fig. 6. All the performance metrics showed best val-
ues for the training size of 18 subjects. The performance met-
rics were generally slightly lower when fewer layers in the de-
coder arm were fine-tuned, and also when there was less train-
ing data. However, the performance really started to increase
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High lesion load subject

Manual Case 1: Source trained
segmentation

(@)

model on target data

Case 2: Transfer learning results on target data

Fine-tuned
from layers 1

=2

Training
subjects

(),

Training
subjects = 12

Training
subjects = 18

Fine-tuned
from layers 3

Fine-tuned from Fine-tuned from
layers 4 layers 5

Case 3: Unsupervised Case 4: Semi-supervised Case 5: DU trained Case 6: Target trained
DANN on target data DANN on target data model on target data model on target data

Fig. 4. Sample results of domain adaptation experiment test strategies: (a) Source-trained model, (b) TL models, (c) unsupervised DANN, (d) semi-supervised DANN (semi-
DANN), (e) DU and (f) target-trained model on a high lesion load subject from the OXVASC dataset (target domain), along with the manual segmentation. The over/under-
segmented regions of periventricular WMHs are indicated by hollow arrows, the correctly predicted regions by filled arrows and missed deep WMHs are shown in circles.

when fine-tuning was done in the intermediate coarser layers
(layers 3 and 4), and was noticeably higher when encoder layer
4 was fine-tuned, with even a small amount of training data.
This is due to the rich domain-specific information at the inter-
mediate layers. Therefore the visual results were better for the
middle two columns of Fig. 4b when compared to their corre-
sponding results when fine-tuned from layer 1 (the first column).
The best performance metrics were obtained when the pretrained
model is fine-tuned starting from layer 4 with 18 training sub-
jects (Fig. 6). In this case, TL provided better performance than
strategy 1 and provided the highest median SI value among all
strategies. The median performance metrics obtained at this set-
ting are: SI value: 0.89, IAVD: 0.17, cluster-wise F1 measure: 0.62,
cluster-wise TPR: 0.83, voxel-wise TPR: 0.84 and voxel-wise FPR:
1.6 x 10-4.

3.3. Strategy 3: unsupervised domain adversarial training on source
and target domains

In the case of unsupervised DANN, the segmentation was bet-
ter than both strategies 1 and 2, as shown in Fig. 4c on the
target test dataset. The DANN model detected more lesion vox-
els along the ventricles and lesion edges when compared to the

source trained model, and less false positives when compared to
the TL strategy (especially in the low lesion load subjects). Even
without using target labels for training, the model provided bet-
ter delineation of PWMHs on the target test dataset, indicating
the ability of the model to learn domain-invariant features. Un-
supervised DANN gave the lowest voxel-wise FPR (significantly
lower than DU), highest cluster-wise TPR and also the best voxel-
wise TPR, on par with semi-DANN and target-trained models. On
the source test dataset, the DANN model achieved median SI =
0.91, IAVD = 0.12, cluster-wise Fl-measure = 0.82, cluster-wise
TPR = 0.90, voxel-wise TPR = 0.89 and voxel-wise FPR = 0.9 x
10~4. Also, DANN shows higher overlap between source and tar-
get feature representations at the layer before the label predic-
tor, compared to the DU strategy, as shown in the t-SNE plot in
Fig. 7b.

3.4. Strategy 4: semi-supervised domain adversarial training
(semi-DANN) on the source and target domains

In the case of semi-DANN, the addition of a fraction of
the labelled target data to label prediction provided improve-
ment in the segmentation performance over source-trained, TL
and unsupervised DANN (Fig. 5 and suppl. table S1). Semi-
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Fig. 5. Boxplots of performance metrics obtained for the 5 test strategies of the domain adaptation experiment, shown against the target-trained case, on the target test
dataset (OXVASC + NDGEN) - (a) SI values, (b) 1AVD, (c) cluster-wise F1-measure, (d) cluster-wise TPR, (e) voxel-wise TPR and (f) voxel-wise FPR values. For TL (strategy 2),
we used the setting of 3 layers, 18 subjects for fine-tuning. The significant differences between the test strategies are indicated by brackets (after correcting for multiple

comparisons across strategies).

DANN provided higher median cluster-wise Fl-measure when
compared to DANN, however with higher voxel-wise FPR as well.
The improvement was subtle on visual assessment, and observ-
able mainly along the boundaries of the PWMHs, as shown
in Fig. 4d. The performance metrics achieved with semi-DANN
method were not significantly different from those of target-
trained model. On the source test dataset, the semi-DANN
model achieved median SI 0.86, I1AVD = 0.09, cluster-wise
Fl-measure = 0.81, cluster-wise TPR = 0.87, voxel-wise TPR =
0.87 and voxel-wise FPR = 1.8 x 10~%. We observed that the
semi-DANN also brings the distribution of extracted features
from the source and target domains together with greater over-
lap, when compared to the unsupervised DANN, as shown in
Fig. 7c.

3.5. Strategy 5: iterative domain unlearning (DU) to remove
scanner-bias between source and target domains

The DU model provided better performance than the source-
trained model, but showed lower performance metrics compared
to unsupervised DANN. However, none of the metrics were sig-
nificantly different from strategy 3, except for higher voxel-wise
FPR. On visual assessment, this strategy slightly oversegmented the
PWMHs (Fig. 4e), mainly along the ventricles, which is also evi-
dent from the higher voxel-wise FPR values when compared to the
unsupervised DANN. On the source domain test dataset, the DU
model achieved SI = 0.83, 1AVD = 0.10, cluster-wise F1-measure =
0.79, cluster-wise TPR = 0.84, voxel-wise TPR = 0.86 and voxel-
wise FPR = 1.9 x 10~4. From the visualisation of feature represen-
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Fig. 6. Heatmaps of mean values of performance metrics for TL (strategy 2) on the target test dataset, corresponding to the number of training subjects and the number of
fine-tuned layers. The maps are shown for (top row, left to right) SI values, 1AVD, cluster-wise F1-measure, (bottom row, left to right) cluster-wise TPR, voxel-wise TPR and
voxel-wise FPR values. The green end represents the best performance for all strategies, 1 shows that higher values indicate better performance and | shows vice versa.
Note that given a number of fine-tuned layers, the layers prior to them in the encoder end were frozen, and the remaining layers towards the decoder end were fine-tuned.
The number of parameters associated with individual layers has been reported (only for a single plane). For example, if the final 5 layers are fine-tuned, the sum of the top
4 values in the left column denotes the total number of parameters fine-tuned per planar U-Net. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

tations in Fig. 7d, we can see that, for the DU model, while source
and target features align as in the other DA strategies, they still
show domain gaps with slightly less mixing of features from dif-
ferent domains.

3.6. Train on the target domain from scratch and apply to the target
domain

The results from the model trained on the target training
dataset showed the best segmentation performance on the target
test dataset, as shown in Fig. 4f. But even in this case, the re-
sults showed a few false positive voxels in the high lesion load
case, while the delineation of PWMHs was better than all the other
strategies. The target-trained model achieved the best cluster-wise
Fl-measure, cluster- and voxel-wise TPR values with the lowest
IAVD value as reported in suppl. table S1 and shown in Fig. 5, and
significantly higher cluster-wise F1-measure and significantly bet-
ter performance metrics (except the voxel-wise FPR) when com-
pared to the source-trained model. Interestingly, the source-trained
model fine-tuned on the target dataset with the best setting (18
subjects, starting from layer 4) provided better median SI value
(although with wider interquartile range in SI values (0.63-0.97))
than the model trained from scratch on the target training dataset
using same number of subjects. However, the other voxel- and
cluster-wise metrics were better in target-trained case. Comparing
with the adversarial training strategies, unsupervised DANN pro-
vided lower voxel-wise FPR values with on par cluster-wise TPR
values.

4. Discussion and conclusions

In this work, we explored various domain adaptation tech-
niques such as transfer learning, domain adversarial training and
iterative domain unlearning for WMH segmentation using a tripla-
nar ensemble model as the baseline method. Our baseline method

provided better results than most of the ML methods using hand-
crafted features and provided results on par with the recently pro-
posed DL methods (including the top-ranking methods of MWSC
2017) (Sundaresan et al., 2021). Also, on performing leave-one-
out evaluation of TrUE-Net and the top-ranking method of MWSC
2017 (Li et al., 2018) on the datasets used as target domain in
this study, TrUE-Net provided better performance metric values,
especially on the OXVASC dataset (despite the lower resolution in
the axial plane). In the case of TL, we also explored what would
be the minimum number of subjects required for fine-tuning and
which would be the best layers to fine-tune. We observed that do-
main adversarial training shows potential for better adaptation of
the WMH segmentation task compared to other techniques on the
given source and target datasets.

The source-trained model applied directly to the target test
dataset achieved the worst performance out of all strategies due
to the differences in image resolution, pathology, intensity char-
acteristics and lesion distribution, as shown in Fig. 3 (also refer to
Section 1 in supplementary material). The model trained on source
and target domain datasets combined (section 5 in suppl. mate-
rial) also performed better than the source-trained model, given
that the model trained on the combined datasets learns the lesion
characteristics of both domains.

The TL strategy provided better performance metrics compared
to the source-trained model. Adding even a few subjects (2 - 4
subjects) from the target domain slightly improved the perfor-
mance metrics when compared to the model trained on source-
dataset only (refer to suppl. section 6 for more details), even
though they were not on par with using >14 subjects for train-
ing or other adversarial training techniques. This is because the
other strategies use more training data (either labelled or unla-
belled) from the target domain which helps the model to learn the
lesion characteristics of the target domain better. Although adding
more representative training subjects could slightly improve the
performance, we observed that in our case, a minimum of 14-
16 subjects for fine-tuning might provide good results. However,
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Fig. 7. The effect of domain adaptation on the extracted feature distributions for source (blue) and target domains (red). T-distributed Stochastic Neighbour Embedding
(T-SNE) plots of the feature map values at the layer before the label predictor for (a) model trained on source dataset only, (b) unsupervised DANN, (c) semi-DANN and (d)
DU. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the number of subjects required to improve WMH segmentation
on the target domain also depends on the variation in features
between domains. When we varied the number of layers to fine-
tune, the performance improved when more intermediate features
from both encoders and decoders (layers 3 and 4) were fine-tuned
(heatmaps in Fig. 6). Generally, initial convolutional layers often
contain low-level features (e.g. edges) that tend to be naturally
domain invariant, and hence fine-tuning this layer does not im-
prove the target performance much, as shown in (Ghafoorian et al.,
2017b). On the other hand, the intermediate layers (Zeiler and Fer-
gus, 2014; Girshick et al., 2014) and the layers with coarsest fea-
tures at the encoder end (Ghafoorian et al., 2017b) contain higher-
level information such as lesion pattern that are domain specific.
Hence, fine-tuning the coarsest layers (e.g. layer 4) provided bet-
ter performance on the target test dataset. Also, it has been shown
that fine-tuning initial encoder layers adds more training parame-
ters and requires a larger number of training samples (50-100 sub-
jects) to avoid over-fitting (unavoidable even with 25 subjects in
Ghafoorian et al. (2017b)). Given the encoder-decoder architecture
of U-Net, while fine-tuning more decoder layers led to the steady
improvement in the performance, fine-tuning the initial layers of
encoder reduced the performance, possibly due to the shortage of
representative training data required for training the initial layers,
as observed in Ghafoorian et al. (2017b).

The performance of TL is better than training the baseline
model on the combination of source and target dataset (refer to
section 5 in supplementary material) on the target test dataset
(even though the latter case shows better performance than strat-
egy 1).

The unsupervised DANN performed better than TL and the
source-trained model. The DANN model extracted domain invariant
features (e.g. contrast between lesion and background, distribution
of PWMHSs) and provided better visual results with less noise and
more precise segmentation of boundary voxels. The simultaneous
label prediction and domain unlearning with shared weights pro-
vides regularisation in the DANN model, thus avoiding over-fitting
to the training data.

The semi-DANN provided improvement over the DANN on the
target test dataset. However, the DANN model detects less false
positives when compared to the semi-DANN and provided com-
parable voxel-wise TPR values. Hence, while adding labelled tar-
get data might improve the performance of WMH segmentation in
the target domain, it is necessary to weigh carefully the trade-off
between improvement in the segmentation performance and the
amount of manual effort involved, while choosing between unsu-
pervised DANN and semi-DANN.

The DU model performed better than the source-trained model
and provided performance metrics on par with the TL strategy
with higher cluster-wise F1 measure. While training the DU model,
we observed that the factor for weighting the domain confusion,
B, plays a crucial role in achieving the domain invariance of the
model. For the lower values of 8, we found that the domain ac-

10

curacy values were higher than 60% (where domain accuracy val-
ues closer to 50% are desirable indicating the maximal confusion
of domains). We obtained the best results for the S value of 50
on the target dataset achieving a domain accuracy of 58%. Among
the unsupervised models, DANN provided better performance than
the DU model, with significant differences in voxel-wise FPR val-
ues. Also, DANN provided the better domain confusion with the
domain accuracy of 47% at the layer before domain predictor (and
a domain accuracy comparable to the DU model at the layer be-
fore the lesion label predictor as shown in the supplementary sec-
tion 7). On visual assessment, the DU strategy oversegmented the
PWMHs, while missing some DWMHs on the target test dataset,
resulting in a lower cluster-wise TPR value.

The target domain features are aligned closer to the source fea-
tures with a good overlap after domain adaptation (as shown in
the t-SNE plots). The semi-DANN showed the maximum overlap of
source and target feature representations at the layer before label
predictor. The better overlap of domains with semi-DANN (com-
pared to the unsupervised strategy) is expected due to the intro-
duction of the labelled target data for training the label predic-
tor in the semi-DANN. Among the unsupervised techniques, DANN
showed better overlap of the features when compared to the DU
model. It is worth noting the performance of the adversarial train-
ing techniques (such as DANN and DU) depends mainly on the
variations in lesion distribution and the acquisition characteristics
between the source and target datasets (since they do not require
lesion labels from the target dataset), rather than uncertainties in
the manual segmentations on the target dataset (as in the TL case).

The size of source and target domain dataset is an important
factor that affects the performance of domain adaptation tech-
niques. The model transferred from source to target domain in
strategy 2, uses both source and target domain datasets for pre-
training and fine-tuning respectively and hence learns the char-
acteristics from both datasets. On the other hand, the difference
in the source and target domain datasets’ sizes and the inhomo-
geneity in inter-/intra-domain characteristics especially affect un-
supervised methods like DANN. To better investigate this aspect,
we chose the two best performing adversarial adaptation tech-
niques from our test strategies, DANN and semi-DANN, and trained
them after swapping the datasets used for source and target do-
mains. We observed that while DANN model is susceptible to slight
changes in the performance (however, none of them significant ex-
cept voxel-wise FPR using Wilcoxon signed rank test), semi-DANN
provided a consistent performance after domain swapping, with-
out any significant difference in performance. For more details on
the experiments and results, refer to suppl. Section 4.

We grouped the NDGEN and OXVASC datasets in the target do-
main according to their similarity (using a discriminator network),
however these datasets still have differences in their characteris-
tics (scanner, sequence, population). We therefore tested if the DA
techniques performed differently in the two datasets and found no
significant difference (refer to section 8 in suppl. material). This
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demonstrates the ability of DA techniques to learn the domain in-
variance between the target datasets.

Concluding, we explored various DA techniques such as trans-
fer learning and domain adversarial training techniques including
DANN and DU. For the TL case, fine-tuning the intermediate lay-
ers towards the end of the encoder provided better results than
fine-tuning the initial layers. The DANN models performed better
than TL and the DU model on the target dataset. Particularly, the
semi-DANN provided the best performance metrics with improve-
ments over DU and TL cases. However, even without the addition
of labelled target training data, the unsupervised DANN provided
better cluster-wise and voxel-wise performance metrics compared
to TL and DU, and results on par with the semi-DANN.
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