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Following respiratory viral infections or local immunizations, lung resident-memory T

cells (TRM) of the CD8 lineage provide protection against the same pathogen or

related pathogens with cross-reactive T cell epitopes. Yet, it is now clear that, if

homeostatic controls are lost following viral pneumonia, CD8 TRM cells can mediate

pulmonary pathology. We recently showed that the aging process can result in loss of

homeostatic controls on CD8 TRM cells in the respiratory tract. This may be germane

to treatment modalities in both influenza and coronavirus disease 2019 (COVID-19)

patients, particularly, the portion that present with symptoms linked to long-lasting lung

dysfunction. Here, we review the developmental cues and functionalities of CD8 TRM
cells in viral pneumonia models with a particular focus on their capacity to mediate

heterogeneous responses of immunity and pathology depending on immune status.
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INTRODUCTION

“Infectious diseases are no respecters of wealth, power, or personal merit. Pandemic infectious
disease is one situation where we cannot accept Margaret Thatcher’s view [there is no such
thing as society]. With a fast spreading respiratory virus, for example, everyone is ultimately in
the same boat” (Peter C. Doherty concluding remarks in Pandemics, 2013). Respiratory viruses
that infect the lower airways such as influenza virus and severe acute respiratory syndrome
coronavirus 2 (SARS-CoV2) can cause severe acute lung injury (ALI) and are serious public health
challenges. A year after the initial outbreak, SARS-CoV2 infection has resulted in more than 95
million cases and 2 million deaths globally (https://coronavirus.jhu.edu). Conventional T cells,
particularly CD8 cytotoxic T cells, play important roles in the control of respiratory viral infection
(1, 2). Additionally, CD8T cells can form a long-lived immunological memory that protects from
reinfection of the same or related viruses (3). Among the different subsets of memory CD8T cells,
tissue-resident memory T cells (TRM) that reside within the respiratory tract provide superior
immunity against viral re-infections (4). Therefore, vaccines that can elicit robust CD8 TRM cells are
highly promising for the prevention/amelioration of future pandemics. Conversely, recent studies
have suggested that exaggerated CD8 TRM cell presence and/or uncontrolled CD8 TRM cell function
could lead to chronic pathogenic sequelae in the lungs (5, 6). Here, we will review recent literature
on pulmonary CD8 TRM cell development and maintenance and discuss their roles in immune
protection as opposed to how they may provoke pulmonary pathologies when not tightly regulated.
We primarily use influenza virus infection studies as the model for this review.
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Pulmonary Memories Fade Away
Pulmonary CD8 TRM cells poised for rapid responsiveness,
contribute substantially to immune protection of the host against
previously encountered viral pathogens (4). As in other organs,
pulmonary TRM cell function appears to be dependent on in
situ proliferation and the production of IFN-γ which activates
the vasculature enabling recruitment of innate and adaptive
responses (4, 7–10). Compared to T effector (TEM), T central
(TCM), and T peripheral (TPM) memory cells that collectively
circulate through blood, lymph, peripheral and secondary
lymphoid organs, TRM cells are transcriptionally and functionally
distinct (11–16). The lung is one of few sites where CD8 TRM

cells are relatively short-lived and not permanently lodged in
tissues compared to the limited number of organs investigated
(17–19). Their loss over time has been attributed to migration
from the parenchyma to the airways where they encounter a
hostile environment eventually leading to their apoptosis (19).
Additionally, pulmonary TRM cells can re-enter the circulation
and migrate to the draining lymph nodes where they re-establish
residency, contributing to their loss from lung tissue (18). Of
note, lung TRM cell loss can be mitigated by local prime-boost
strategies and/or repeated antigen exposure (20). Given the
potential for their short life-span and their importance in clearing
subsequent respiratory viral infections, it is critical to understand
the environmental and immune-status cues that regulate TRM cell
differentiation, maintenance, and function in the lung in order to
exploit their benefits through immunotherapies such as vaccines.

Pulmonary TRM Cells—the Human
Experience
Counterparts to TRM cells discovered in mice exist in all
organs investigated in humans (11, 21). The lung faces constant
microbial exposure, yet histology snapshots suggest the distal
airways are remarkably sterile environments in the absence of
acute infection. Accordingly, in situ estimates suggest human
lung explants contain as many as 10 billion memory T cells
(22). There is a diverse antigen-specific CD4 and CD8T cell
presence in most lungs including up to 10% of T cells that
respond to influenza virus challenge with proliferation (22).
Like CD8T cells, CD4T cells in the human lung appear
transcriptionally primed for response (23, 24). While the resident
CD4:CD8 memory T cell ratios vary by compartment (airway
vs. parenchyma), 20–50% of pulmonary CD8T cells expected to
be critical for anti-viral memory responses, display a recently
activated phenotype indicated by HLA-DR antigen on their
surface (22, 25, 26), suggesting active vigilance.

Tracking of donor lung T cells following pulmonary
transplantation, indicates TRM cells are found sparsely in the
blood at any given time, similar to what is observed in mouse
studies (6, 26, 27). Further, donor and recipient airway TRM

cell transcriptional profiles overlap indicating a shared signature
imparted by the lung microenvironment despite disparate HLA
matches (26). As in mouse studies, a substantial fraction of
human lung CD8 TRM cells express multiple inhibitory receptors,
suggesting a strong stimulus may be needed for their re-
activation (24). Relative to peripheral blood memory T cells,

human CD69+ pulmonary CD8 TRM cells almost universally
express CD29, CD49a, CXCR6, and PSGL-1 with heterogenous
expression of CD103 and CD101. Despite this heterogeneity,
strong stimulation through the T Cell Receptor (TCR) results
in proliferation of the majority of human TRM cells with their
progeny exhibiting enhanced polyfunctional capacity relative to
their parents (28). This suggests TRM cells act as sentinels in
human lung mucosa and are important for maintaining sterility
of alveolar spaces.

What Makes a Pulmonary TRM a Pulmonary
TRM?
Recent barcode lineage-tracing and single-cell transcriptome
analyses found that a subset of T cell clones possesses a
heightened capacity to form TRM cells, as enriched expression
of TRM-fate-associated genes is already apparent in circulating
effector T cell clones (13). Consistently, following initial
trafficking to the lung, TRM-like phenotypes are observed as early
as 2 weeks following influenza infection and these phenotypes,
but not numbers, are stable in the airways, lung parenchyma,
and trachea for up to 3 months (17, 29). Pulmonary TRM cells
have been defined inconsistently throughout the literature, as
warranting caution when comparing studies.

While pulmonary CD8 TRM cell definition(s), differentiation,
maintenance, and functions have largely been established from
monoclonal T cell receptor (TCR) transgenic models, polyclonal
experiments give a more heterogeneous and physiological
relevant picture of TRM cells coexisting within the same tissue,
but have not been widely reviewed. Markers (e.g., CD69,
CD103, CD49a, CXCR6, and PD-1) typically used to identify
pulmonary CD8 TRM cells in mice are heterogeneously co-
expressed within TRM populations (5, 6, 27, 29–32). For example,
E-cadherin in the lung is expressed in the cell-cell junctions
between bronchiole epithelium (33). Although E-cadherin-
binding CD103 is intrinsically important for cytotoxic capacity
(34) and is expressed on nearly 100% of TRM in the skin, CD103
is heterogeneously expressed in lung TRM cells, inhibits TRM cell
motility, and is not required for heterosubtypic protection against
influenza. Conversely, although the collagen IV-binding integrin
CD49a is a less common marker used for the identification than
CD103, it is required for the heterosubtypic immunity against
influenza infection (28, 29).

Furthermore, CD103 is expressed at a substantially lower
frequency on the TRM cells that form the bulk of the protective
response vs. influenza nucleoprotein (Db-NP366−374) in C57BL/6
mice compared to another immune-dominant epitope from
viral polymerase peptide (Db-PA224−233) (5). Nonetheless,
parabiosis studies indicate both of these phenotypically different
populations exhibit similar degrees of tissue residency 2 months
following infection (6). Though the significance is unclear, this
immunodominant population (responding to Db-NP366−374)
in a secondary response that mostly lacks CD103 expression,
abundantly expresses classic exhaustion markers (PD-1, TIM-
3, LAG-3, and TIGIT) relative to Db-PA224−233 and Kb-
OVASIINFEKL –specific TRM and memory CD8T cells in the
circulation (5, 6). These insights from various studies highlight
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FIGURE 1 | Early and late cellular networks involved in Trm cell differentiation

and maintenance. After viral respiratory pneumonia, early pulmonary CD8 TRM
cell differentiation is driven by re-encounter with antigen presented via

interstitial classic monocytes (mnc) and opposed by alveolar macrophages

that maintain lung homeostasis. B cell-dependent tissue-resident CD4 helper

T cells (TRH) support TRM cell maintenance through IL-21 dependent survival.

TRM intrinsic PD-1 signaling prevents pathology in the absence of infectious

virus. Created with BioRender.

the marked epitope-specific CD8 TRM cell heterogeneity
within the pool of polyclonal TRM cells directed against the
same pathogen. Indeed, data from organ donors indicates
a diverse TCR repertoire against influenza virus, suggesting
that heterogeneity is quintessential in the local pulmonary
response (28).

Cellular and Molecular Networks Involved
in the Control of Pulmonary CD8 TRM Cell
Density
It is becoming clearer that local immune interactions influence
CD8 TRM cell numbers without affecting the circulating
memory pool. Alveolar macrophages (AMs) are a self-renewing
population of airway-resident cells seeded early in embryonic
development (35). AMs maintain lung homeostasis and respond
to inflammatory cues. Absence or dysfunction of AMs in
severe influenza infection leads to exacerbated pulmonary
pathology and enhanced mortality (36, 37). In studies where
we were investigating the effects of PPAR-γ in the macrophage
compartment on influenza severity, intrinsic absence increased
the density of pulmonary TRM cells and long-term stromal
disrepair indicated by persistent inflammation and collagen
deposition (38, 39). We subsequently found that depletion of
AMs prior to influenza infection, but not during the CD8T
cell contraction phase, enhanced TRM cell density without
affecting the circulatory memory compartment (Figure 1) (38).
This suggests AMs have an early influence on the lung
microenvironment that governs in situ TRM cell differentiation.
It is not currently clear what subtype of CD169+ AMs are
responsible for limiting the TRM cell compartment nor by what
means. Conversely, bone-marrow derived monocytes trafficking

to the site of infection enhance the early antigen-presentation
required for TRM cell differentiation in the lung (40). Yet,
inflammatory macrophages in the gut mediate heterogeneous
TRM cell differentiation by contributing to the pro-inflammatory
milieu (41).

In contrast to the limiting of the TRM cell compartment
by innate resident macrophages, we and others have recently
shown that a population of CD4 tissue-resident helper T (TRH)
cells aid the persistence of pulmonary CD8 TRM cells following
influenza infection (42, 43). This novel population of TRH cells
simultaneously exhibits T follicular helper (TFH)-like properties
that enhance the local B cell response and tissue-residentmemory
T cell features. CD4 TRH cells are the major cellular sources
of IL-21 in the tissue, and blockade of IL-21 signaling at the
memory stage diminished CD8 TRM cell survival specifically in
the Db-NP366−374 population.

While the influenza response in the lung is not an active
chronic infection, viral RNA remnants may cause persistent
pathology (44). In persistent viral infection in the brain,
provision of IL-21 by T follicular-like tissue-resident CD4T cells
likely promotes ATP production in local CD8T cells through
enhancing electron transport chain efficiency (45). Our data
suggests this could be a means by which local CD8T cells
differentiate and persist in response to IL-21. Nonetheless, a
local interaction between CD8 and CD4T cells is required
for optimal TRM cell responses following both acute and
persistent viral infections (Figure 1). Importantly, this cellular
network was responsible for local secondary protection against
heterologous infection mediated by the influenza-specific CD8
TRM cells. Interestingly, TRH cell development requires the
presence of B cells (43); thus there exists a local interplay
among adaptive immune cells for the maintenance of pulmonary
lymphocyte memory following viral pneumonia. Understanding
how the local cellular networks modulate immune protection
may aid the development of mucosal vaccines. Additionally,
understanding the molecular cues governing their persistence
will likely be important to elicit proper TRM cell responses
through immunotherapies.

Unlike the majority of inflamed organs investigated, where it
merely enhances TRM cell differentiation, local antigen signals
are required for the establishment of pulmonary CD8 TRM cell
(17, 46). As briefly mentioned above, TRM cells with TCRs of
different specificities against influenza epitopes, exhibit different
phenotypes and have distinct requirements for their maintenance
(5). At the transcriptional level, polyclonal CD8 TRM cells also
vary in their programs between TRM cells of different specificities
(5, 6). The TCR is likely playing an active role in these differences.
Just as the quality of TCR signals can determine CD8T cell fate in
the circulation, lower affinity TCR signals enhance the potential
to differentiate into pulmonary TRM cells (47–49).

Furthermore, the duration and amount of antigenic signals
seem important for establishing the diversity of the TRM cell
pool against a given respiratory pathogen. For instance, the
differential persistence of influenza NP vs. PA antigen at the
memory phase clearly dictates the distinct phenotypes of the
TRM cells against the two antigens (5). Influenza virion contains
many more NP molecules than PA molecules and NP proteins
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and/or NP366−374 peptide-MHC-I complex are present for a
longer period and potentially in a much higher amount than PA
proteins or PA peptide-MHC-I complex at the memory phase
(50). In agreement, influenza NP-specific (Db-NP366−374), but
not PA-specific (Db-PA224−233), TRM cells receive chronic TCR
signaling at the memory phase, leading to the development of an
“exhausted-like” phenotype (characterized by the high expression
of co-inhibitory molecules including PD-1 and Tim-3) in Db-
NP366−374 TRM cells (5). Interestingly, like the persistence of
true exhausted CD8T cells during chronic viral infection, the
persistence of “exhausted-like” Db-NP366−374 TRM cells is also
dependent on the continuous presence of pMHC-I and co-
stimulatory signaling as the induced depletion of MHC-I or
the late blockade of CD28 diminished Db-NP366−374 TRM cell
magnitude (5). How these antigenic signals in the lung work in
concert with the main cytokine (TGF-β) responsible for TRM cell
differentiation across a breadth of tissues is unclear.

TGF-β is an integrin-activated cytokine with widely varying
effects on white blood cells from the hematopoietic stem
cell (HSC) stage through to terminal differentiation (51).
TGF-β mediates the fine line between immune-tolerance and
appropriate activation of both the innate and adaptive immune
systems (52–58). As with most of its cell-type dependent
functions, effects of TGF-β on CD8T cells can be stimulatory
or inhibitory, depending on the state of differentiation (57, 59).
TGF-β can raise the threshold of TCR-induced activation on
naïve CD8T cells, whereas it can induce either TCM-like or
TRM-like differentiation in recently activated CD8T cells (57,
60–62). TGF-β mediates TRM cell differentiation by imparting
a partially shared transcriptional footprint across a breadth
of organs, however, it is the tissues themselves that govern
the uniqueness of the footprint such as what metabolites TRM

cells use to persist (61, 63, 64). Similar to most peripheral
sites, TGF-β is essential for differentiation of pulmonary TRM

cells of numerous antigen specificities (5, 41, 65). Interestingly,
low affinity TCR-pMHC interactions leave CD8T cells more
susceptible to TGF-βR signaling which could explain their
proclivity toward TRM cell differentiation (47, 49). For respiratory
viral infections, the effects of TGF-β signaling on TRM cell
generation is Smad4-independent, which may suggest non-
canonical TGF-β R signaling pathways are vital for pulmonary
TRM cell differentiation (65, 66). Thus, it is likely the context and
tissue dependent circumstances of T cell activation may govern
how TGF-β contributes to TRM cell heterogeneity.

Pulmonary TRM Cells Balance Immune
Protection and Local Pathology
As mentioned previously, a subset of influenza-specific TRM cells
display an exhausted-like phenotype including high expression
of PD-1. When PD-L1-PD-1 signaling in influenza infected
mice is blocked at the memory stage, the magnitude of the
Db-NP366−374, but not D

b-PA224−233, TRM cell responses was
augmented (5). Furthermore, late PD-L1 blockade increases
effector cytokine, particularly TNF, production by Db-NP366−374

TRM cells, indicating targeting the checkpoint molecule PD-1
“rejuvenates” the exhausted-like TRM cells following influenza

infection. Consequently, TRM cell-mediated protective immunity
was enhanced upon secondary heterologous viral challenge
(5). Unexpectedly, pulmonary inflammation and fibrosis were
drastically exacerbated following PD-L1 blockade in a CD8T
cell-dependent manner. It is possible that enhanced production
of effector molecules from an increased number of CD8 TRM,
mediates diffuse alveolar damage in the absence of molecular
regulation such as PD-1 signaling (67–69) (Figure 1). Failure to
acutely repair this CD8-dependent airway damage, could result
in exacerbated collagen deposition or impaired degradation
suggesting macrophage and/or fibroblast involvement (5, 6).
These results suggest that there is a fine balance on TRM cell-
mediated protective immunity and lung pathology following
viral pneumonia. These data also indicate that the gradual TRM

cell loss in the respiratory tract is perhaps a host-protective
mechanism to avoid potential collateral damage to a vital organ.
There are also examples of CD8 TRM cells causing pathology in
the skin and intestine when homeostatic controls are lost and
diseases like vitiligo, psoriasis, or celiac may emerge following
destruction of melanocytes, epidermal or mucosal barrier tissues,
respectively (70–73). Collectively, these data indicate that one’s
immune-status is an important regulator of the potential harm to
local tissue brought on by unruly TRM cell activation.

Altered Immune Homeostasis in Advanced
Age
Many hurdles exist with regards to provoking efficacious adaptive
immune responses in those of advanced age (>70 years)—the
demographic that may benefit most from vaccines for emerging
pathogens. To understand how immune responses in aged
and young hosts proceed differently, we need to understand
how the innate and adaptive systems differ globally during the
natural aging process. Low-grade systemic inflammation under
homeostatic conditions is a hallmark signature of aging, but to
what degree it impairs protective immune responses is unclear.
This so-called “inflamm-aging” may in-part, be mediated by
enhanced myelopoiesis during aging, another hallmark of aging
(74). Interestingly plasma cell accumulation in the bone marrow
has been shown to drive the myeloid bias with age. Plasma cells
remodel bone marrow stroma that govern hematopoiesis, via
provision of tumor necrosis factor (TNF), a principle “inflamm-
aging” cytokine (75). The skewing of hematopoietic output leads
to an age-related decline of naive lymphocytes in the circulation
(74–76). Aside from decreased B cell numbers, there is a wide
range of age-related functional changes in peripheral B cells that
could affect antibody responses to vaccines in the elderly (77–79).
Bone marrow is not the only primary lymphoid tissue that suffers
age-related output predicaments that might influence vaccine
efficacy in the elderly.

Thymic involution starts in the earliest years of life and drops
output of naive T cells ∼10-fold past the age of 40 (80). This
impacts the circulatory T cell compartment as there are fewer
recent thymic emigrants seeding secondary lymphoid tissue. For
unknown reasons, this affects the diversity of the naïve CD8
compartment more than the CD4T cell compartment (81). Thus,
with age, CD8 memory T cells are enriched and TCR repertoires
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are likely narrowed across tissues (80–85). Notably, if memory
CD8T cells are formed early in life, they likely provide life-long
diverse secondary responses (86, 87).

However, the ability to generate new memory is dependent
on naive CD8T cells, which in our later years (mouse and
human), skew to a more differentiated state with the majority
exhibiting immuno-senescence, characterized by high signaling
thresholds for activation and proliferation (88–91). Moreover,
once lymphocytes exit their developmental sites and emigrate
to secondary lymph tissue, they encounter age-related stromal
deterioration influencing their organization within lymph nodes
(92). The above confounders likely affect naïve lymphocyte
generation, maintenance, activation and in sum, negatively
impact formation of protective immunity toward pathogens and
vaccines (85, 93).

The Aged Environment Provokes
Malfunctional CD8 TRM Cell Accumulation
One of the first clinical observations in the current pandemic
was that mortality and severe morbidity in COVID-19
disproportionately affects those of advanced age (94). This
is also true of most severe influenza seasons (95). Severe
influenza-like illness are associated with delayed, but prolonged
innate and adaptive responses during the effector phase
(96). We have recently examined pulmonary CD8 TRM cell
responses in young (2 months) and aged (20–22 months)
C57BL/6 mice following influenza infection. Aging is associated
with the decreased potential of circulating memory T cell
generation (97). In sharp contrast, lungs from aged mice
have 40-fold more CD8 TRM cells compared to those of
young lungs (6). Transfer of CD8T cells from young mice
into the aged hosts results in increased accumulation of
memory T cells derived from young mice in the aged
lungs following influenza infection. This indicates that the
aged environment provokes exaggerated accumulation of
TRM cells (6). We found higher levels of Tgfb1 transcript
in the aged lungs and the accumulation of TRM cells
in aged hosts was largely TGF-β dependent (Figure 2).
Relatedly, Chikungunya virus infection in aged mice leads to
heightened and dysregulated TGF-β production that exacerbates
pathology (98).

Of note, alveolar macrophage numbers and function
dwindle with age (99). Given the suppressive roles of alveolar
macrophages in TRM cell generation (38), it could be possible
that diminished alveolar macrophage function may aid the
exaggerated development of TRM cells during aging. Notably,
many factors change in the aged lung that have not been
investigated in the context of TRM accumulation. DAVID
analysis of the aged lung transcriptome indicates decreased cell
cycle with increased extracellular matrix and cell adhesion gene
programs (100). Human Lung Cell Atlas (HLCA) data indicates
these changes are accompanied by increases in fibroblasts and
neuroendocrine populations and a drop in Type II pneumocytes
(100, 101). Additionally, the stroma may be more apt to prompt
inflammation in lungs of aged individuals (102). Nevertheless,
the data indicate that the aged environment enhances TRM

cell accumulation after a single de novo response, suggesting
that the aged lung is fertile ground for TRM cell differentiation.
In contrast, there is a reduced generation of lung TRM cells
following influenza infection in infant mice, largely due to T
cell-intrinsic defects (103).

Our data suggest that memory T cells can robustly accumulate
in mucosal tissue during aging following a single round of viral
challenge. Yet, aged individuals still have impaired protective
responses following vaccines or respiratory viral infections
which has been attributed to memory CD8T cell function
(104). To resolve the discrepancy, we performed single cell
(sc) RNA-seq on young or aged TRM cells against the major
influenza protective epitope Db-NP366−374. Our results found
that TRM cells isolated from aged lungs lack a subpopulation
characterized by high expression of molecules involved in TCR
signaling and effector function (6). Consequently, we found
that aged mice exhibit impaired TRM cell-mediated protective
immunity against heterologous viral rechallenge compared to
those of young mice. Thus, aging facilitates the accumulation
of dysfunctional TRM cells in the respiratory tract, which
explains the phenomena that aged individuals have increased
susceptibility of influenza-associated severe diseases despite the
robust presence of influenza-specific TRM cells in the respiratory
tract. Given the current spread of SARS-CoV2 infection among
the elderly population, it would be important to determine
whether SARS-CoV2-specific TRM cells exhibit similar functional
impairment during aging as the TRM cell-mediated protection
would be a key determinant of respiratory immunity during
secondary exposure to the virus.

If these newly formed TRM cells are not providing protection,
what is their role in the tissue during aging? To address the
question, we depleted either circulating, or circulating plus
resident CD8T cells and examined the long-term effects on
organ-level transcription and histopathology (6). Depletion of
the resident CD8T cells that were not providing protection
against subsequent influenza infection, led to resolution of
pulmonary inflammation in aged hosts while concomitantly
decreasing the inflammatory environment at the transcriptional
level, particularly, chemokines involved in recruiting monocytes
and neutrophils (Figure 2) (6). Further, long-term age-
related infection-induced exacerbation of collagen deposition
was mitigated in the absence of parenchymal CD8T cells
(Figure 2). Establishment of pulmonary TRM in IAV infection
models depends on local presentation of antigen, likely via
monocyte-derived macrophages and/or dendritic cells, which
we find sustained in the aged lung parenchyma (40, 46, 105).
Infiltrating monocyte-derived macrophages have been shown
to exacerbate collagen-deposition following influenza infection
(106). Collectively, this could indicate the aged environment
provokes accumulation of pulmonary TRM cells that support
ongoing inflammation of the organ contributing to its poor
repair following respiratory viral pneumonia.

As discussed above, SARS-CoV2 infection disproportionately
affects aged individuals. Of particular relevance is the observation
of severe COVID-19 patients presenting both with CD8T
cell lymphopenia in the blood, but large number of TRM-like
CD8T cells in the airways (107). Notably, emerging evidence
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FIGURE 2 | TRM cell-mediated long-term sequelae post viral pneumonia during aging. (A) TRM function switches from immune protection to pathology as we age. (B)

Following viral pneumonia, CD8 TRM cells accumulate in aged lungs where their differentiation is TGF-b–dependent. Instead of providing increased immune protection,

they provoke pathology, likely through direct or indirect recruitment of myeloid cells that contribute to unresolved inflammation and prevention of collagen degradation.

Micrograph is Masson’s trichrome stained lung from aged mouse 60 days post-H1N1 infection. Blue is digitally enhanced collagen deposition which is dependent on

CD8 TRM cells (6). Created with BioRender.

has suggested that a large proportion of COVID-19 patients
exhibit pulmonary and extrapulmonary symptoms 6 months
after recovery from the acute morbidity (108). Particularly, it
is predicted that a large number of severe COVID-19 patients
will develop persistent lung damage and fibrosis as observed
in patients infected with SARS-CoV and MERS (109–113).
Notably, TGF-β activating integrin is upregulated in fibrotic
lung lesions in COVID-19 patients 2 months post-infection,
which could support fibrosis and TRM cell maintenance (114). It
would be critically significant to examine whether malfunctional
CD8 TRM cells contribute to the long-term fibrotic sequelae of
SARS-CoV2 infection.

While viral-specific pathogenic CD8T cells have not been
found in human tissue to-date, plausible candidates may now
be on the radar. Age-associated granzyme K-expressing CD8T
cells are enriched in the T effector memory compartment in
human blood (81). Age-associated CD8T cell counterparts in
mice were identified by expression of the effector molecule
granzyme K, the checkpoint molecule PD-1, integrin CD49d,
and the transcription factor TOX and are enriched in blood and
across tissues (spleen, peritoneum, lungs, liver, and white adipose
tissue) with age. The aged environment conferred this phenotype
to young CD8T cells in adoptive transfer models. While the
TCR repertoires of age-associated CD8T cells were clonally
narrowed within each host across tissues, between hosts, their
TCR sequences were diverse, suggesting either microbial-specific
or stochastic differentiation. It is important to note that these
age-associated CD8T cells are transcriptionally distinct from
senescent virtual memory CD8T cells also enrichedwith age (88).
It’s unclear how granzyme K+ age-associated CD8T cells behave
in an immune response. While their phenotype (PD-1Hi TOX+)
is typically associated with CD8T cell exhaustion, recombinant

granzyme K augmented cytokine and chemokine production
from senescent fibroblasts in vitro (81). Activation of local age-
associated CD8T cells may thus provoke inflammation and
potentially influence tissue remodeling and senescence associated
secretion phenotypes.

Age-Related Pulmonary Fibrosis
Examples of age-related increases in lung tissue disrepair abound
and are found commonly in idiopathic pulmonary fibrosis
(IPF) (115, 116). IPF is an interstitial pneumonic disease that
results in alveoli involved in gas exchange being progressively
replaced by scar tissue with a 20% 5 year survivability (117).
No treatment can reverse the process once started. As its
namesake would suggest, IPF has no known single cause and it
is unclear how the tissue becomes damaged and fails to repair.
It is notable that IPF shares some features of viral pneumonia
sequelae including COVID-19, most prominent of which is
collagen accumulation which can lead to fibrosis (118). We
described an increased number of CD8 T cells in the parenchyma
surrounding lesions in IPF patients (5). It is plausible that
these patients lost the battle for homeostatic control of local
memory T cells that can mediate bystander inflammation. Of
note, respiratory T cells have a role in dysfunctional wound
repair resulting in fibrosis in acute lung injury models (119).
Further, one of the frontline treatments (Nintedanib) that
slows development of IPF by presumably targeting the kinase
activities of PDGF, FGF, and VEGF receptors, inhibits src family
tyrosine kinases, including the crucial T cell activating kinase
Lck, with similar IC50 values (120, 121). This could implicate
dampened T cell activity as a partial mechanism slowing
fibrotic progression in the lung. Thus, while lung damage and
repair models can happen in lymphocyte-scarce environments,
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certain T cell subsets exacerbate fibrosis and the jury may
need to be recalled as to whether local T cells play a role
in IPF pathogenesis and potentially viral pneumonic sequelae
in humans.

CONCLUSIONS

Although pulmonary resident memory CD8T cells have shown
outstanding immune-protective capacity, this does not seem to
be the case in aged hosts following respiratory viral infections.
In contrast, resident CD8T cells mediate pathology during the
disease course leading to non-resolution of lung inflammation
in aged hosts. Unexpectedly, aged hosts accumulate local TRM

cells despite a poor response in the circulation (6). This suggests
efforts should be retooled to restore their protective immunity
(122) and mitigate their pathogenic capacity rather than recruit
more to the mucosa. These opposing features of TRM cells in
young and aged hosts may identify a balance between immune
protection and pathology and shed light on their teleological

existence in a vital organ. While recent work has highlighted
the cellular and molecular networks that mediate pulmonary
TRM density in young healthy hosts, we are just beginning to

understand the potential they have to mediate damage when
homeostatic controls are lost, e.g. through the aging process.
Understanding the mechanisms modulating the balance of TRM

cell-mediated immunity vs. pathogenicity will be important to
selectively harness the beneficial function of TRM cells and
simultaneously mitigate their pathogenic potential.
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