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Reliability of CT radiomic features 
reflecting tumour heterogeneity 
according to image quality and 
image processing parameters
Bum Woo Park1,3, Jeong Kon Kim   1,2,3, Changhoe Heo1 & Kye Jin Park   2*

The reliability of radiomics features (RFs) is crucial for quantifying tumour heterogeneity. We assessed 
the influence of imaging, segmentation, and processing conditions (quantization range, bin number, 
signal-to-noise ratio [SNR], and unintended outliers) on RF measurement. Low SNR and unintended 
outliers increased the standard deviation and mean values of histograms to calculate the first-order 
RFs. Variations in imaging processing conditions significantly altered the shape of the probability 
distribution (centre of distribution, extent of dispersion, and segmentation of probability clusters) in 
second-order RF matrices (i.e. grey-level co-occurrence and grey-level run length), thereby eventually 
causing fluctuations in RF estimation. Inconsistent imaging and processing conditions decreased the 
number of reliably measured RFs in terms of individual RF values (intraclass correlation coefficient 
≥0.75) and inter-lesion RF ratios (coefficient of variation <15%). No RF could be reliably estimated 
under inconsistent SNR and inclusion of outlier conditions. By contrast, with high SNR and no outliers, 
all first-order RFs, 11 (42%) grey-level co-occurrence RFs and five (42%) grey-level run length RFs 
showed acceptable reliability. Our study suggests that optimization of SNR, exclusion of outliers, 
and application of relevant quantization range and bin number should be performed to ensure the 
robustness of radiomics studies assessing tumor heterogeneity.

Radiomic data analysis has emerged as a definitive promising technique in medical imaging studies, shifting 
the diagnosis platform from traditional visual interpretation to high-throughput extraction of quantitative 
parameters. Supported by sophisticated hardware and software, a huge dataset consisting of multiple radiomics 
features (RFs) can be extracted from radiological images for quantitative image analysis. In the past decade, 
radiomics-based approaches have shown great potential for tissue characterization and improving the diagnostic 
performance in many disease entities1.

Tumour heterogeneity is recognized as an important indicator of tumour growth and metastasis, as it is closely 
related to diverse genetic mutations, metabolic inhomogeneity, hypoxia, and acidosis2. Intratumoural hetero-
geneity can be spatially assessed using cross-sectional imaging data, and RF-based texture analysis can provide 
voxel-scale information about the compositional distribution profile within a tumour. In this context, several 
studies have demonstrated the feasibility of RF methods for predicting treatment response and patient prognosis 
from computed tomography (CT), magnetic resonance imaging and positron emission tomography images3–7.

To apply RFs obtained from different institutions and machines in medical practice, their reliability should 
be guaranteed. Alterations to histogram and probability matrices (the backbones for calculating the first- and 
second-order RFs, respectively) eventually leads to unstable RF measurements8. Several studies have shown that 
various conditions affecting image quality significantly influence the reliability of RF measurements. For example, 
inconsistencies across CT scanners such as, spatial resolution, tube current, noise, and reconstruction algorithm 
may decrease the reliability of CT-derived RFs9–14. The reliability of RFs also depends on the techniques used for 
lesion segmentation, grey-level discretization and quantization range8,15–18. Therefore, failure in controlling such 
confounding factors may lead to inaccurate and unreliable RF estimation9,15,19–22.
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From this perspective, this study evaluated the effects of quantization range, bin number, signal-to-noise ratio 
(SNR), and the inclusion of unintended outliers, and assessed how they interact with each other to affect the 
reliability of RF measurements. To understand the mechanism of RF fluctuations, we performed the alterations 
to the histogram and second-order RF matrices, to simulate various RF calculation conditions. Thereafter, using 
representative CT images with different proportions of tumour heterogeneity, we evaluated the reliability of RF 
value measurements of RF values and the consistency of their inter-lesion ratios using reproducibility statistics. 
On the basis of the study results, we discuss strategies to improve the reliability of RFs in the evaluation of tumor 
heterogeneity.

Results
Detailed processes for study processes in regards to lesion selection, image matrices generation, simulation exper-
iments, and reliability tests were summarized in Fig. 1.

Evaluation of simulation experiments on histograms and probability matrices.  Histograms.  The 
histograms obtained by varying the SNR of the original images and including outlying values are demonstrated 
in Fig. 2. The addition of noise to the original CT image decreased the SNR and increased the standard deviation 
(SD) (16.3 Hounsfield unit (HU) for high SNR versus 24.7 HU for low SNR) and range (19.0–103.0 HU for high 
SNR versus −6.2–155.4 HU for low SNR). When outliers were added, the mean value and SD increased because 
of the high CT values of bone-equivalent outliers (mean values of 62.4 HU without outlier versus 67.8 HU with 
outliers; SDs 16.3 HU without outliers versus 45.2 HU with outliers). These alterations would affect the measure-
ment of first-order RF values by changing a fraction of the pixels at each grey level (i.e., the essential histogram 
parameter used for calculating the first-order RFs).

GLCM and GLRLM.  The probability distribution in the GLCM was altered remarkably by changes in the quan-
tization range, SNR, and outliers, as demonstrated in Fig. 3a. Overall, the probability in the GLCM showed a 
diagonal distribution, which was more concentrated in the center of matrix than in the periphery. With regards 
to quantization ranges in high and low SNR conditions, the probability distribution was most concentrated with 
the quantization range of mean ± 3 SD, followed by min‒max and mean ± 2 SD. When low SNR was applied, 
the probability distribution was dispersed in all quantization ranges. By contrast, the addition of outliers made 
the probability distribution markedly concentrated in all quantization ranges. In particular, with the min‒max 
quantization range, the presence of outliers shifted the centre of the distribution to the upper left direction in 
the matrix. The use of mean ± 3 SD or mean ± 2 SD did not fully compensate the concentration effect caused 
by outliers. In the condition of low SNR and inclusion of outliers, the probability dispersion induced by the low 
SNR was reduced by the concentrating effect of the outliers. The response to bin numbers showed that the greater 
bin number were chosen, the more segmented the probability distribution became, while the overall distribution 
shape was maintained (Fig. 3b).

The probability distribution in the GLRLM was significantly altered by variations in quantization range, SNR, 
and outliers (Fig. 4a), which changed the GLRLM-derived RF values. The probability values in the GLRLM were 
distributed mostly in the upper rows because the grey level run length was three or less on the original CT images. 
Similar to the GLCM, the GLRLM showed the highest probability concentration with the quantization range of 
mean ± 3 SD, followed by min‒max and mean ± 2 SD. Low SNR dispersed the distribution of the direction of 
grey levels, while the addition of unintended outliers concentrated the probability distribution in all conditions, 
shifting it towards the left with the min‒max quantization range. The differences in bin number had an effect sim-
ilar to that observed in the GLCM, with the distribution being more segmented at higher bin numbers (Fig. 4b).

Reliability test.  First-order RFs.  In the intra-class correlation coefficient (ICC) assessment, all first-order 
RFs showed the ICCs ≥ 0.75 for the conditions of quantization range and bin number. By contrast, the conditions 
of SNR and outliers strongly affected reliability, as ICCs ≥ 0.75 were only shown by five (28%) and three (18%) 
RFs showing the ICCs ≥ 0.75, respectively (Supplementary Table 1). Under optimal conditions with high SNR 
and no outliers, all first-order RFs had ICCs ≥ 0.75 (Supplementary Table 2).

In the CV assessment of the consistency of inter-lesion RF ratios (i.e., the ordering of RFs among three lesions 
representing different proportions of heterogeneity should be consistent under varying conditions), the variation 
of quantization range option had little effect, as all RFs showed the CVs ≤ 15%. With variable bin number, all 
parameters except uniformity showed CVs ≤ 15%. However, SNR and outlier options significantly limited the 
reliability of the inter-lesion RF ratios, with only one (6%) RF (entropy) having a CV ≤ 15% with variable SNR, 
and all RFs having a CV > 15% with variable outlier options. When these confounding factors were optimized 
with high SNR and no outliers, the CVs for all parameters were ≤15%, irrespective of the quantization range and 
bin number options (Supplementary Table 2).

GLCM-derived RFs.  The ICCs for 27 GLCM-derived RFs were influenced by all calculation conditions (Fig. 5). 
Eight RFs had ICCs ≥ 0.75 (31%) with variable quantization range, 23 (88%) had ICCs ≥ 0.75 with variable bin 
number, 10 (38%) had ICCs ≥ 0.75 with variable SNR, and one (4%) had an ICC ≥ 0.75 with variable outliers. 
With high SNR and no outliers, 16 (62%) GLCM-derived RFs showed ICCs ≥ 0.75, regardless of the quantization 
range and bin number options (Table 1).

The reliability of inter-lesion RF ratios also strongly depended on the conditions (Fig. 6). Only one RF (4%) 
showed a CV ≤ 15% with variable quantization range, while 18 (69%) showed CV ≤ 15% with variable bin num-
ber, and three (12%) showed CV ≤ 15% with variable SNR. No RF showed a CV ≤ 15% for variations in outliers. 
In the optimal condition of high SNR and no outliers, 16 (62%) RFs exhibited CVs ≤ 15%, regardless of the quan-
tization range and bin number options.
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Figure 1.  Study processes for lesion selection, image matrix generation, and reliability tests. A radiologist 
identified three representative patterns of tumour necrosis on the CT images of patients who treated with 
metastatic urothelial carcinoma. The original CT values in the left upper-boundary of the image matrices were 
replaced by 2 × 2 voxel clusters of outlying grey value, to evaluate the effect of unintended outlier in the region-
of-interest (black squares indicating the location of outliers). By adding noise levels, three image matrices were 
generated (high, intermediate, and low signal-to-noise level). Consequently, a total of 27 image matrices were 
generated. These imaging data were quantized by applying various quantization ranges, and bin numbers. 
Accordingly, reliability for radiomics feature values and inter-lesion ratios were evaluated.
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With inconsistent SNR and outlier conditions, no GLCM-derived RF showed reliable measurement of individual 
values or inter-lesion ratios (i.e. ICC ≥ 0.75 and CV ≤ 15%). However, under the optimal condition of high SNR and 
no outliers, 11 (42%) GLCM-derived RFs demonstrated ICCs ≥ 0.75 and CVs ≤ 15%, with these including cluster 
tendency, contrast, difference average, difference entropy, dissimilarity, homogeneity, inverse difference moment, 
inverse difference moment normalized, inverse difference normalized, sum entropy, and variance (Table 1).

Figure 2.  Alterations in the histogram according to SNR and outlier conditions. Histograms from the original CT 
image (high SNR, (a), low-SNR CT image (b), outlier-containing high-SNR CT image (C), and outlier-containing 
low-SNR CT image (d). Low SNR and unintended outliers (red arrows in (c) and (d)) increased the SD and range 
of the histogram. The mean value was increased by the extremely high CT values of bone-equivalent outliers.
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GLRLM-derived RFs.  The ICC assessments of 12 GLRLM-derived RFs demonstrated the variations in condi-
tions to have substantial influence on the reliability of individual RF values (Fig. 5). With variable quantization 
range, no RF showed an ICC ≥ 0.75. When the bin number was varied, 10 (83%) RFs demonstrated ICCs ≥ 0.75. 
With either variable SNR or outliers, only two (17%) RFs showed ICCs ≥ 0.75. In the optimal condition of high 
SNR and no outliers, eight (67%) RFs had ICCs ≥ 0.75, irrespective of the quantization range and bin number 
options.

The CVs for the inter-lesion ratios of GLRLM-derived RFs were also strongly affected by the variations in 
conditions (Fig. 6). There were three (25%) RFs with CVs ≤ 15% with variable quantization range, five (42%) with 
CVs ≤ 15% with variable bin number, and one (8%) with a CV ≤ 15% with variable SNR. With variable outlier 
options, no GLRLM-derived RF showed a CV ≤ 15%. In the optimum condition of high SNR and no outliers, 
eight (67%) RFs showed CVs ≤ 15%, regardless of the quantization range and bin number options.

With inconsistent SNR and outlier conditions, no GLRLM-derived RF showed reliable measurement of either 
individual values or inter-lesion ratios (i.e., ICC ≥ 0.75 or CV ≤ 15%). By contrast, with high SNR and no out-
liers, five (42%) GLRLM-derived RFs showed reliable measurement according to both parameters, with these 
being high grey-level run emphasis, total number of runs, run percentage, short run emphasis and short run high 
grey-level emphasis (Table 2).

Figure 3.  Alterations in the GLCM according to image and image processing conditions. (a) The GLCM 
from the original CT image (high SNR) shows a diagonal probability distribution. The distribution was most 
concentrated with a distribution of the mean ± 3 SD, and then min‒max, followed by the mean ± 2 SD. Low 
SNR dispersed the probability distribution. The addition of outliers concentrated the distribution, shifting it 
towards the upper left direction in the min‒max quantization range. (b) Increasing the bin number segmented 
the probability distribution while maintaining the overall shape.
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Discussion
We experimentally investigated alterations in the histogram and probability matrices of second-order RFs in 
relation to variations in quantization range, bin number, noise level (i.e., SNR), and inclusion of outliers. We then 
subsequently performed the reliability tests with variations in these parameters in tumours with the different pro-
portions of necrosis, evaluating the reliability and consistency of RF values and inter-lesion RF ratios. We found 
that all tested parameters resulted in the unreliable RFs, with inclusion of outliers particularly altering the histo-
gram parameters (i.e., mean or SD) and distribution of the probability matrix, and consequently demonstrating 
unreliable measurement of RFs and inconsistent comparisons of inter-tumoural heterogeneity. Variations in SNR 
affected the variability of RFs in our study, as widely shown in phantom-based studies13,23. Considering that SNR 
and outliers demonstrated strong effects on the RF reliability and quantification of inter-tumoural heterogeneity, 
achieving appropriate SNR levels on image acquisition and excluding unintended outliers from the segmentation 
must take precedence for improving the reliability of RF measurements.

The impact of noise on radiomics measurements has been extensively evaluated, in relation to differing tube 
current, slice thickness resampling, reconstruction kernel, and reconstruction algorithms13,24–28. With regard to 
the influence of SNR on second-order features, our simulation demonstrated that the addition of noise dispersed 
the probability distribution, in keeping with previous literature13. We interpret this effect to be a result of the 
noise-induced increase in the SD of the image data. Interestingly, the degree of dispersion was greater in the quan-
tization range of mean ± 2 SD than in the other quantization ranges. It means that a narrow quantization range is 
more vulnerable to variations in image noise. Therefore, the quantization range should be carefully applied with 
consideration of its relationship with the SNR level. Furthermore, efforts should be made to reduce variations in 
image acquisition and processing, to achieve generalizable and stable results.

Outlier control is an important factor influencing RFs29, although to our knowledge, there have been only 
limited studies evaluating how outliers affect the reliability of RFs16,30. Our simulation results demonstrated that 
the unintended inclusion of outliers within ROIs seems to have the strongest impact on the GLCM and GLRLM. 
The addition of an outlier strongly concentrated the probability distribution in all quantization ranges. Moreover, 
in the matrices with the min‒max quantization range, the distribution was shifted to the upper left direction in 
the GLCM, and to the left in the GLRLM. As expected, this left-sided shift was not observed with the quantization 
range of mean ± 2 SD or mean ± 3 SD, because the effect of the outliers truncated with these settings. Although 
the quantization range of mean ± 3 SD was used for outlier removal30 and provided more reliable information, the 
effects of outliers could not be fully removed by the normalization process, as demonstrated in the current study. 
Therefore, to achieve reliable RFs, outlier control should be carefully performed as part of the image segmenta-
tion process. Moreover, the presence of outliers should be identified with reference to histograms and probability 
matrices.

Figure 4.  Alterations in the GLRLM according to image and image processing conditions. (a) The probability 
in the GLRLM was distributed mostly in the upper rows as the run length of the original CT image was 3 or less. 
The distribution was most concentrated with mean ± 3 SD, followed by min-max, and mean ± 2 SD. Low SNR 
dispersed the probability distribution. The addition of outliers concentrated the distribution and shifted it to the 
left with the min‒max quantization range. (b) Increasing the bin number segmented the probability distribution 
while maintaining the overall shape.
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Figure 5.  Heatmap showing the ICCs of GLCMs and GLRLMs with image and image processing conditions. 
The left-most column represents the option being varied, while the second to fourth columns indicates the other 
options being fixed. The green to yellow colour shows the acceptable range of ICCs (i.e., equal to or greater 
than 0.75). Abbreviations: IMC = information measure of correlation, IDM = inverse difference moment, 
IDMN = inverse difference moment normalized, IDN = inverse difference normalized, GLNU = Grey-Level 
Nonuniformity, HGRE = High Grey-Level Run Emphasis, LRE = Long Run Emphasis, LRLGE = Long Run 
Low Grey-Level Emphasis, LRHGE = Long Run High Grey-Level Emphasis, LRGE = Low Grey-Level Run 
Emphasis, RLNU = Run Length Nonuniformity, SRE = Short Run Emphasis, SRHGE = Short Run High Grey-
Level Emphasis, SRLGE = Short Run Low Grey-Level Emphasis.
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Contrary to SNR or the inclusion of outliers, the quantization range and bin number are conditions chosen by 
observers in the process of feature extraction. In a PET-based study, Hatt et al.31 suggested that resampling over 
64 bins did not provide additional information. The Image Biomarker Standardization Initiative mentioned that 
GLCM features may be better modelled with a higher number of grey levels (i.e., 32 or 64), whereas grey level size 
zone matrix features would be better characterized by a lower number of grey levels (8 or 16)32. Similarly, Li et al. 
mentioned that robust GLCM or GLRLM features could be achieved using their own parameter settings rather 
than at fixed parameters in regards to quantization range and bin number15. It is important to understand the var-
iability caused by these parameters and to identify the optimal image processing parameters for a specific purpose 
and imaging modality. In addition, the quantization range and bin number may determine the impact of low SNR 
and outlier inclusion, as shown in the current study. Therefore, the quantization range and bin number should 
be carefully chosen on the basis of an understanding of the raw data profile and the purpose of the RF extraction.

Although a number of studies have addressed issues regarding the reliability of RFs under varying parameters 
of image acquisition, processing, segmentation, and feature extraction13,15–17,24,25,27,33, there have been few studies 
discussing the interactions between quantization range, bin number, SNR, and outlier inclusion, as performed 
in our study. We evaluated histograms and probability matrices under varying parameters, demonstrating their 
potential interactions, to improve the understanding of the fundamental mechanisms of variability. In addition, 
we simulated the impact of unintended outliers and demonstrated the importance of outlier removal on image 
segmentation, as well as image processing. Furthermore, our experimental study was based on the image data of 
patients with the different necrotic features and evaluated the consistency of RFs representing inter-tumoural het-
erogeneity. This experimental design may more sensitively reflect changes in the heterogeneity of human tissues 
than phantom-based studies.

The current study has a few limitations. First, the number of cases used in our study was low. As our study 
aimed to demonstrate the consistency of RFs representing inter-tumour heterogeneity on the basis of imaging 
features extracted under 81 combinations of four conditions as a pre-clinical design, we classified the imaging fea-
tures of patients into three groups and used the representative image data. Additional clinical studies are required 
to show the associations between clinical outcomes and tumour heterogeneity measurements under optimal set-
tings for RF calculation. In addition, this study was based on CT data only, and the features suggested as reliable 
in our analysis may not be consistent across other modalities. Another limiting factor is that we generated the 
outlier-containing image matrix by replacing clusters of voxels in the original images, and therefore we will have 
lost some information from the patient data, which may act as a confounding factor. Furthermore, many other 
parameters such as the intra- or inter-observer reliability of image segmentation or the use of filters or kernels, 

Radiomic features

ICC CV (%)

Quantization range Bin number Quantization range Bin number

Angular second moment 0.73–0.99 0.99–0.99 0–10 4–41

Autocorrelation 0.80–0.81 0.99–0.99 8–16 0–0

Cluster Prominence 0.99–0.99 0.99–0.99 6–16 0–1

Cluster Shade 0.62–0.64 0.55–0.60 2–87 0–20

Cluster Tendency* 0.99–0.99 0.99–0.99 2–7 0–1

Contrast* 0.98–0.98 0.98–0.99 3–7 0–1

Correlation 0.50–0.74 0.90–0.98 0–0 0–0

Difference Average* 0.99–0.99 0.99–0.99 1–3 0–0

Difference entropy* 0.95–0.99 0.99–0.99 0–3 0–6

Difference variance 0.73–0.99 0.99–0.99 2–24 0–27

Dissimilarity* 0.99–0.99 0.99–0.99 1–3 0–0

Entropy 0.71–0.99 0.97–0.99 0–2 0–8

Harralick Correlation 0.80–0.81 0.99–0.99 8–16 0–0

Homogeneity* 0.99–0.99 0.99–0.99 0–3 0–2

Information measure of correlation1 0.42–0.86 0.94–0.95 1–10 6–27

Information measure of correlation2 0.52–0.95 0.98–0.98 0–2 1–6

Inverse Difference Moment* 0.99–0.99 0.99–0.99 0–5 1–5

Inverse difference moment normalized* 0.99–0.99 0.99–0.99 0–5 1–5

Inverse difference normalized* 0.99–0.99 0.99–0.99 0–3 0–2

Inverse Variance 0.99–0.99 0.99–0.99 1–41 3–47

Maximum probability 0.46–0.94 0.93–0.99 2–65 8–30

Mean 0.38–0.41 0.99–0.99 4–9 0–0

Sum average 0.38–0.41 0.99–0.99 4–9 0–0

Sum entropy* 0.78–0.99 0.99–0.99 0–3 0–4

Sum variance 0.83–0.87 0.99–0.99 8–17 0–0

Variance* 0.89–0.90 0.99–0.99 7–15 0–0

Table 1.  Reliability of GLCM-derived RFs in conditions with high SNR and no outliers. Note.—*RFs with ICCs 
≥ 0.75 and CVs of ≤15%.
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Figure 6.  Heatmap presenting the CVs of inter-lesion ratios in the GLCMs and GLRLMs with varying image 
and image processing conditions. The left-most column represents the option being varied, while the second to 
fourth columns indicate the other options being fixed. The yellow to green colour shows the acceptable range of 
CV (i.e. equal to or less than 15%). Abbreviations: IMC = information measure of correlation, IDM = inverse 
difference moment, IDMN = inverse difference moment normalized, IDN = inverse difference normalized, 
GLNU = Grey-Level Nonuniformity, HGRE = High Grey-Level Run Emphasis, LRE = Long Run Emphasis, 
LRLGE = Long Run Low Grey-Level Emphasis, LRHGE = Long Run High Grey-Level Emphasis, LRGE = Low 
Grey-Level Run Emphasis, RLNU = Run Length Nonuniformity, SRE = Short Run Emphasis, SRHGE = Short 
Run High Grey-Level Emphasis, SRLGE = Short Run Low Grey-Level Emphasis.
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were not evaluated in this study, and their effects on the reliability of RFs should be investigated in upcoming 
studies.

In conclusion, this study demonstrated that the reliability of RFs for evaluating tumour heterogeneity depends 
highly on the image quality and image processing conditions, including the quantization range, bin number, 
SNR, and presence of outliers, and illustrates the fundamental mechanisms of alteration to histograms and 
second-order RF matrices under varying parameters. In particular, the inclusion of outliers within ROIs showed 
a significant impact on the reliability of RFs and their inter-lesion ratios, hampering the robust evaluation of 
tumour heterogeneity. Optimal image SNR and the removal of outliers are crucial requirements for achieving 
robust and reproducible radiomics measurements, while relevant options for quantization range and bin number 
should be applied according to study purpose. The usefulness of RF assessment in medical imaging studies would 
be improved by making efforts to ensure that these factors are optimized.

Methods
Lesion selection and image matrix generation.  This study was approved by the institutional review 
board of Asan Medical Center and the requirement for informed consent was waived. The imaging data were 
de-identified in accordance with the Health Insurance Portability and Accountability Act (HIPAA) privacy rule. 
All methods were performed in accordance with relevant guidelines and regulations. Eighty-three patients who 
underwent immunotherapy for metastatic urothelial carcinoma between October 2015 and November 2017 were 
collected from the electronic database of our institution. In these 83 patients, 144 lymph nodes demonstrating 
various proportions of necrosis were identified by a board-certified experienced radiologist (K.J.P.). The extent 
of necrosis was visually assessed as a semantic feature defined as a lexicon to describe regions of interest (ROI) 
according to the radiologist’s “eye”1. From these estimates of necrosis extent, three representative lymph node 
types with different proportions of necrosis were identified, based on the following knowledge that such features 
are of prognostic value1: (a) tumour necrosis is closely related to the biological aggressiveness and patient prog-
nosis34; (b) tumour necrosis manifests as hypoattenuation on contrast-enhanced CT relative to non-necrotic 
tissue; and (c) heterogeneous CT values within metastatic lymph nodes are predominantly induced by different 
levels of intra-tumoural necrosis. The CT features of these three lesion types were as follows: (a) a mass with no 
or mild intratumoural heterogeneity demonstrating homogeneous enhancement; (b) a mass with intermediate 
heterogeneity, demonstrating multifocal hypoattenuations in 40% of the tumour area; and (c) a mass with severe 
heterogeneity demonstrating hypoattenuations in 70% or more of the tumour area (Fig. 1).

The radiologist drew ROIs encompassing the lesions while attempting to avoid including air, fat, vessel, and 
bone. Three image matrices with varying degrees of tumour heterogeneity were then generated from the ROIs 
(Fig. 1).

Image acquisition.  Contrast-enhanced CT images were obtained using 64-channel multidetector CT scan-
ners (Somatom Definition AS; Siemens Medical Systems) with the following parameters: voltage, 120 kV; effective 
tube current, 200 mAs; scan delay, 120 sec; voxel size, 0.6 mm3, slice thickness, 5 mm; pitch, 1; and gantry rotation 
speed, 0.5 s.

RF calculation.  The RFs were calculated using Matlab software (version R2018b, The Mathworks Inc., Natick, 
MA, USA), and included 17 first-order and 38 second-order RFs32 (Supplementary Table 3). The second-order 
RFs were extracted from GLCM (n = 26)35 and GLRLM (n = 12)36. To test the reliability of the RFs under varying 
conditions of quantization range, bin number, SNR level, and the presence or absence of outliers, three options 
were applied for each condition; three quantization ranges (min‒max, mean ± 2 SD and mean ± 3 SD), three bin 
numbers (32, 64, and 128), three SNR levels (high, intermediate, and low SNR), and three outlier options (no 
outliers, inclusion of outliers equivalent to air or bone). In total, each RF had 81 variations (three quantization 

Radiomic features

ICC CV (%)

Quantization range Bin number Quantization range Bin number

Grey-Level Nonuniformity 0.47–0.95 0.88–0.92 0–17 4–28

High Grey-Level Run Emphasis* 0.88–0.89 0.99–0.99 6–14 0–0

Long Run Emphasis 0.56–0.99 0.97–0.99 0–2 0–5

Long Run Low Grey-Level Emphasis 0.72–0.93 0.99–0.99 6–17 0–6

Long Run High Grey-Level Emphasis 0.92–0.94 0.98–0.99 21–90 8–69

Low Grey-Level Run Emphasis 0.95–0.97 0.99–0.99 3–63 2–59

Total number of runs* 0.89–0.98 0.81–0.86 0–0 0–1

Run Length Nonuniformity 0.64–0.94 0.82–0.87 0–1 0–5

Run Percentage* 0.89–0.98 0.93–0.93 0–0 0–1

Short Run Emphasis* 0.76–0.99 0.98–0.99 0–0 0–1

Short Run High Grey-Level Emphasis* 0.87–0.90 0.99–0.99 6–14 0–1

Short Run Low Grey-Level Emphasis 0.96–0.97 0.99–0.99 4–56 3–55

Table 2.  Reliability of GLRLM-derived RFs in conditions with high SNR and no outliers. Note.—*RFs with 
ICCs ≥ 0.75 and CVs of ≤15%.
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ranges × three bin numbers × three levels of SNR × three outlier options = 34) according to combinations of the 
above calculation conditions.

Details of RF calculation conditions.  Quantization range and bin number.  It was reported that the 
grey-level normalization method used affected the selected features and their classification performance16. The 
three different quantization ranges evaluated were min‒max, mean ± 2 SD and mean ± 3 SD, where min‒max 
represented the full range from the minimum to maximum values of the grey levels inside the ROIs (all grey levels 
were included), and the mean ± 2 SD and mean ± 3 SD options excluded grey levels outside the range of mean 
± 2 (or 3) SD.

The fixed bin number method in which grey level intensities are discretized to a fixed number of bins allows 
for direct comparisons of RFs across multiple ROIs30,32. Based on our literature review10,20, the three widely used 
bin numbers of 32, 64 and 128 were assigned.

SNR.  To assess the effect of SNR on the reliability of RFs, three different levels of SNR were generated by add-
ing white noise to the original CT images. On the basis of the SD of the original CT images being an average 
of 5.5 HU on the three CT images, white noise was added to increase the SD to 6.5 and 8.5 HU, which reduced 
the SNR to 92% (intermediate SNR) and 65% (low SNR), respectively, of that of the original image (high SNR). 
Consequently, RF features were then calculated from these images with different SNR level.

Outlier.  During segmentation, unintended inclusion of adjacent structures other than tumor such as bone or 
lung can affect the reliability of RFs. Such outliers may be accidentally included in a very low number of voxels at 
the periphery of ROIs during segmentation. To analyse the effect of outliers unintentionally included in ROIs, the 
original CT values located in a 2 × 2 voxel cluster located in the upper-left boundary of the image matrices were 
replaced by values equivalent to air (−950 HU) or bone (388 HU) (Fig. 1). Consequently, RFs were calculated 
from three outlier conditions (no outliers, air-equivalent outliers, and bone-equivalent outliers).

Evaluation of the simulation experiments.  To demonstrate the effects of changes to the imaging and 
segmentation quality, the interactions between the imaging parameters, and alterations to the histograms and 
the probability matrices were simulated for a CT image of scattered intratumoural necrosis, because they are the 
fundamental components for the calculation of the first- and second-order RFs (i.e., GLCM and GLRLM). As the 
quantization range and bin number are factors affecting the second-order RFs, their effects were only simulated 
on the probability matrix. Consequently, four histograms were constructed as follows: (a) high SNR without out-
liers, (b) low SNR without outliers; (c) high SNR with outliers equivalent to bone; and (d) low SNR with outliers 
equivalent to bone. In addition, the mean, median, standard deviation, and ranges of grey levels were calculated 
to understand the mechanisms of the RF fluctuations.

To demonstrate alterations in the probability matrix according to imaging and segmentation conditions, the 
following conditions were simulated: two setting (a) with the bin number fixed at 64, three quantization ranges 
(min‒max, mean ± 2 SD, and mean ± 3 SD), two levels of SNR (high and low), and two outlier options (no out-
liers and bone-equivalent outliers) were applied; and (b) with fixed settings of quantization range of the mean ± 
3 SD, high SNR and no outliers, three different bin numbers (32, 64, and 128) were applied. Therefore, a total of 
30 combinations of probability matrix were constructed to demonstrate changes according to differing imaging, 
segmentation, and processing options.

Reliability testing.  Reliability statistics.  To test the reliability of RFs for assessing tumour heterogeneity, 
reliability tests were performed to evaluate the stability of each RF values and consistency of the inter-lesion RF 
ratios for the three image matrices with different proportions of tumour necrosis and the various simulated image 
quality and processing parameters. Here, inter-lesion RF ratios were defined as the ratios of each RF value across 
the lesions showing different proportions of tumour necrosis (i.e., ratio of lesion with no or mild heterogeneity to 
lesion with intermediate heterogeneity; ratio of lesion with intermediate heterogeneity to lesion with severe heter-
ogeneity; and ratio of lesion with no or mild heterogeneity to lesion with severe heterogeneity). We hypothesized 
that optimal radiomics features should show consistency in these inter-lesion ratios.

First, the ICCs of RF values were calculated with one image processing option being varied and the others 
fixed, as previously described15. For example, the impact of quantization range was analyzed by varying the quan-
tization range with the other conditions of bin number, SNR and outlier options fixed. For the ICC measure-
ments, two-way random models (i.e., ICC [C,1)) were applied as follows37:

−
+ −

MS MS
MS k MR( 1)

,R E

R E

where MSR = mean square for rows, MSE = mean square error, and k = number of observations. The reliability 
for measuring each RF value was assessed using the ICCs, with ICCs equal to or greater than 0.75 being taken to 
indicate acceptable reliability.

In addition, the reliability of RFs was assessed in terms of inter-lesion RF ratios between tumors with different 
proportions of heterogeneity. The consistency of inter-lesion RF ratios was evaluated using coefficients of vari-
ation (CVs), with the CVs equal to or less than 15% being taken to indicate acceptable reliability. The CV was 
defined as the ratio of the SD to the mean.
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Data availability
All software code to run the experiments used to produce all the results presented in this work is freely shared on 
the GitHub website at: https://github.com/HEOCHANGHOE/Asan_RF.
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