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A B S T R A C T

FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less
damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect,
is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has
already been demonstrated in several preclinical models, a complete mechanistic description explaining why
tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the
experimental evidence. A common point between many of these is the role of oxygen, which is described as a
major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species
(ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories,
while proposing new mechanisms that could provide a complete description of the FLASH effect based on pre-
clinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to
provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential
biological implications.

1. Introduction

Radiotherapy (RT) is a frequently used treatment modality in the
cure of cancer, with almost 50 % of cancer patients receiving ionizing
radiation (IR) worldwide. However, this technique is not exempt from
side effects, the main one being damage to healthy tissues surrounding
the neoplastic area. This radiation-induced toxicity is the main disad-
vantage of RT and greatly limits the dose that can be delivered to the
tumor, as defined in clinical irradiation planning. Despite improvements
aimed at widening the therapeutic window, such as intensity-modulated
RT (IMRT), stereotactic RT, spatially fractionated RT, and combination
therapies, new treatments are still required [1–4] to permit dose esca-
lation, with more significant tumor control, while simultaneously
limiting side effects and improving the patient’s quality of life.

Between the 1960s and 1980s, several groups observed a sparing

effect on normal tissues after irradiation at high dose rates in in vitro and
in vivo models, without testing the impact of high dose rates on tumor
growth [5–8]. In 2014, Favaudon et al. observed that in addition to
lower toxicity in normal tissues, ultra-high dose rate (UHDR) irradiation
was characterized by the same tumor control as the conventional dose
rate (CONV), and they coined the term FLASH effect [9]. According to
the current understanding, the FLASH effect can be achieved by limiting
the irradiation time to fractions of a second (reaching the millisecond,
and sometimes even the microsecond range), thereby drastically
increasing the radiation dose rate when compared to the dose rates
currently used in clinics (order of hundredths of Gy/s). Despite the lack
of a clear “recipe” to induce the FLASH effect, experimental evidence
indicates that the sparing effect is triggered by a minimal average dose
rate of 40 Gy/s [10], although others suggest a maximal protection
observed when the dose rate is above 100 Gy/s [11,12]. However, the
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average dose rate does not seem to be the only key parameter triggering
the FLASH effect. Recent findings suggest that the dose per pulse (DPP)
and dose rate per pulse are equally important, with a combination of
UHDR and high DPP (>4 Gy) offering the greatest protection against the
cytotoxic effects of IR [13]. In this context, an exhaustive description of
the (frequently omitted) irradiation parameters used in each study —
instantaneous dose rate, DPP, pulse frequency, mean dose rate, overall
irradiation time, and radiation linear energy transfer (LET) — would
allow a clearer definition of the physical conditions required to trigger
the FLASH effect [14–16].

To date, the “FLASH effect” has been mainly studied in mice (tumor-
free and tumor-bearing) [10], but also in large mammals such as mini-
pigs [17,18], cats [17,18] dogs [19,20], humans [21,22], but also
zebrafish [23–25] and C. elegans embryos [26,27]. Table 1 summarizes
the investigations focusing on the outcome of UHDR irradiation in
normal tissues, independent of the radiation type. Table 2 summarizes
the results of in vitro investigations, showing the impact of UHDR irra-
diation on both normal and cancer cells. Despite the diversity of the
irradiated targets, most of these investigations share a low to medium
LET (reaching a maximum of few tens of keV/µm in water in some cases
[28,29]). To date, only a few studies have been conducted on medium-
or high-LET. It would be interesting to swipe over the LET range with the
same biological endpoint to study whether the FLASH effect is affected
by the beam ionization density. In addition, the O2 concentration has a
crucial impact on triggering a differential biological response between
CONV and UHDR irradiation.

However, a complete mechanistic description of the FLASH phe-
nomenon is currently lacking. Oxygen tension in the irradiated tissue
plays a prominent role in the occurrence of the FLASH effect, as high-
lighted in both in vivo [26,62] and in vitro studies [48]. Indeed, in vivo,
the sparing effect in the brains of mice after UHDR irradiation was
reversed by increased oxygenation obtained through carbogen breath-
ing [26], or when high levels of oxygen were used as carriers for the
administration of anesthetic gas to the skin and brain of mice [63,64].
These observations were further confirmed in the skin of mice, where
the sparing effect was impaired by the modification (either an increase
or decrease) of the oxygen concentration in the irradiated area [65].
Interestingly, while the modification of oxygen tension was shown to
abrogate the normal tissue-protective effect offered by UHDR irradia-
tion, it was shown to be as effective in controlling the growth of acute
hypoxic tumors as it is for physiological tumors [66]. Indeed, although a
decrease in oxygen concentration during irradiation induced a strong
decrease in tumor control after CONV irradiation [66,67], UHDR irra-
diation was not affected by acute hypoxia. In vitro, however, the role of
oxygen is not straightforward, as shown in, where four out of seven
cancer cell lines showed higher surviving fractions after UHDR irradi-
ation under normoxic conditions (21 % O2), suggesting that a reduced
O2 concentration may not be a universal requirement for triggering the
FLASH effect in vitro.

Because of the significant impact of oxygen tension on the occur-
rence of the FLASH effect, this review describes several hypotheses
related to oxygen, either as dissolved molecules or reactive oxygen
species (ROS). Section 2 discusses the rise and fall of the oxygen
depletion hypothesis. In Section 3, in silico, in vitro, and in vivo studies
investigating ROS production following UHDR and CONV irradiation
are described. The importance of investigating ROS production (either
directly or indirectly) following UHDR and CONV irradiation is also
highlighted, and, in Section 4, a few approaches aiming to experimen-
tally determine ROS production in vivo upon UHDR and CONV irradia-
tion are proposed. The production of ROS and their impact on cellular
damage, such as ferroptosis, mitochondrial damage, and senescence/
inflammation, are described in Section 5. This ROS-induced cellular
damage may provide new insights into the differential effects observed
in normal tissues compared to those in tumors upon UHDR irradiation.
Finally, we propose a hypothetical model that could be involved in the
FLASH effect, based on differential ROS production (caused by different

oxygen tensions between the two tissues) and cellular differences
(including a higher labile iron pool in cancer cells than in normal cells)
between normal and tumor tissues.

2. O2 depletion cannot be the core explanation for the FLASH
effect

Oxygen also plays a pivotal role in the DNA response to IR and is the
main actor in what is called oxygen fixation theory. Most radiation-
induced DNA damage is efficiently repaired by an endogenous DNA
damage response (DDR). However, this task is prevented when O2 reacts
with DNA radicals to produce peroxyl radicals, RO2

•, whose repair
through DDR is difficult or impossible [68,69]. The oxygen fixation
theory is one of the most important concepts in radiobiology and is one
of the main theories explaining the higher radioresistance of hypoxic
cells. Hence, a decrease in O2 concentration is associated with radio-
protection owing to reduced DNA damage. Tumor hypoxia is a key
feature of the tumor microenvironment and has a strong impact on
tumor initiation, progression, and metastasis [70–72]. Hence, tumor
hypoxia is primarily associated with poor prognosis after RT [73].
Hypoxia induces complex cell reprogramming mostly by activating
hypoxia-inducible factors (HIFs) [74]. HIFs are transcription factors,
composed of an α-subunit stabilized specifically under hypoxia and a
β-subunit constitutively expressed. Three α-subunits exist (HIF1α,
HIF2α, and HIF3α), and the one most often described is HIF1α [75].
Accordingly, high HIF1α and/or HIF2α expression in tumors is mostly
associated with poor prognosis and with a poor response following RT
[72]. Furthermore, HIF1α activation is associated with a strong radio-
protection. Indeed, the silencing of HIF1α is associated with an increase
in RT sensitivity, both in vitro and in vivo, likely via resistance to
apoptosis induction, metabolism modification (increase of glycolysis
metabolism), and cell cycle regulation (cell cycle arrest) [74]. In
conclusion, severe hypoxia is associated with cell radioresistance via
reduced DNA damage fixation (the oxygen fixation theory) and the in-
duction of cell reprogramming, which is mostly mediated by HIF tran-
scription factors.

The depletion of oxygen was the first hypothesis to explain the
FLASH sparing effect observed in normal tissues, according to which,
radiochemical oxygen depletion (ROD) at UHDR irradiation would be
faster than the time required to reoxygenate the irradiated tissues [76],
creating a transient hypoxic (and therefore, radioresistant) region. The
basis of this hypothesis traces back to the late 1950s, when Dewey et al.
showed a correlation between dose rate and oxygen consumption [77].
However, oxygen depletion increases radioresistance in both normal
and tumor tissues [69]. The difference in oxygenation status between
cancerous and normal tissues was proposed to be the driving force of the
FLASH effect. Indeed, the decrease in O2 concentration is more pro-
nounced in normal tissues than in neoplastic tissues, making the former
relatively more radioresistant. In contrast, a decrease in O2 concentra-
tion would be less relevant in tumors because these tissues are already in
severe hypoxia, resulting in no or only a small increase in radio-
resistance [78,79].

In recent years, the oxygen depletion theory has been challenged
several times. In silico models have mostly shown that oxygen depletion
at UHDR irradiation is negligible in normal tissues at clinically relevant
doses and cannot fully explain the increase in radioresistance [80,81].

Experimental measurements of ROD in water phantoms suggest a
higher oxygen depletion at CONV irradiation compared to UHDR irra-
diation, with the former depleting more O2 than UHDR irradiation for
the same dose [82–88]. Interestingly, dose-escalation studies showed
that the O2 depletion per unit dose decreased as the total delivered dose
increased, probably owing to the competing recombination of radicals
[82,85].

These observations were partially confirmed by oxygen depletion
measurements in in vivo models. In this context, irradiation of mice
showed no O2 depletion in the CONV group, presumably because ROD is
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Table 1
Table 1: list of investigations delivering irradiation at UHDR on in vivo models.

Targeted
organ

Biological
outcome

Particle
used

LET
(keV/
um) in
water

Number
of pulses

Pulse
width

Pulse dose rate
(or
Instantaneous
dose rate) [Gy/
s]

Total dose
delivered
[Gy]

Dose per
pulse
[Gy]

Average
dose rate
[Gy/s]

Total time
of
irradiation

Ref.

Brain (mice) FLASH group did
not develop
neurocognitive
deficit. Carbogen
breathing
annihilates the
sparing effect.
Lower level of
H2O2 (water
phantom)

electrons
(5.6 MeV)

0.2 1 1.8 μs 5.5 E06 10, 12, 14 10, 12, 14 5.5 E06 1.8 μs [26]

UHDR/CONV has
same tumor
control, with
UHDR better
preserving
cognitive
functions at
moderate doses

electrons
(5.6 MeV)

0.2 1 1.8 μs 5.6 E06, 7.8
E06

10, 14 10, 14 5.6 E06,
7.8 E06

1.8 μs [30]

2 1.9 E06 2 x 7 Gy 7 1.9 E06 each
fraction
delivered
in several
days (1,8
μs pulse
each day)

4 3.9 E06 4 x 3.5 Gy 3.5 3.9 E06
3 5.6 E06 3 x 10 Gy 10 5.6 E06

2 6.9 E06 25 12.5 2.5 E03 10 ms
UHDR induced
lower
inflammation and
an ameliorated
radiation-induced
increases in
astrogliosis and
microgliosis over
early (2–6 weeks)
to delayed (6
months) times
postirradiation

electrons
(5.6 MeV)

0.2 1 1.8 μs 5.5 E06 10 10 5.5 E06 1.8 μs [31]

Preservation of
cognitive function
after 10 Gy WBI
single dose after 2
and 6 months PI.
Moreover,
reduced induction
of reactive
astrogliosis and
preserved
hippocampal cell
division

X-ray (6
GeV)

 1 per slice 270 ms 1.2 E04 10 10 37 270 ms [32]

10 GyWBI showed
full memory
preservation for
dose rate > 100
Gy/s and a
gradual descrease
of cognitive
function as dose
rate is lowered (2
months PI)

electrons
(5.6 MeV)

0.2 from 1 to
1000

1.8 μs 5.5 E06 10 10 from 5.5
E06 to
0.1 Gy/s

from 1.8 μs
to 100 s

[17]

Reduced memory
impairment and
no significant
reduction of
dendritic spine
density for UHDR
cohort. At UHDR,
fewer
inflammation
markers were
overexpressed (3
at UHDR, 5 in
CONV)

electrons
(16 and
20 MeV)

around
0.23

18 pulses
on
average

2 μs 8.75 E05 30 1.75 200 and
300 Gy/s

0.1 s (for
300 Gy/s)
or 0.16 (for
200 Gy/s)

[33]

UHDR is better in
preserving
hippocampal and

electrons
(6 MeV)

0.2 1 1.8 μs 4.4 E06 8 8 4.4 E06 1.8 μs [34]

(continued on next page)
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Table 1 (continued )

Targeted
organ

Biological
outcome

Particle
used

LET
(keV/
um) in
water

Number
of pulses

Pulse
width

Pulse dose rate
(or
Instantaneous
dose rate) [Gy/
s]

Total dose
delivered
[Gy]

Dose per
pulse
[Gy]

Average
dose rate
[Gy/s]

Total time
of
irradiation

Ref.

perirhinal cortical
circuity, without
anxiety/
depression, and
social interaction
comparable with
CTR
UHDR had lower
impact on
vasculature,
higher expression
of junction
protein, and
without inducing
apoptosis (24 h
and 1 week PI at
25 Gy)

electrons
(5.6 MeV)

0.2 2 1.8 μs 6.9 E06 25 12.5 2500 10 ms [35]

Lung No lung fibrosis up
to 20 Gy in
FLASH; 30 Gy
FLASH and 7.5 Gy
CONV activated
caspase-3 to a
similar extent

electrons
(4,5 MeV)

0.2 not
provided

1 μs not provided 17, 20 and
30

17, 20
and 30

60 from 283 to
500 ms

[9]

Alveolar structure
of FLASH cohort
was similar to CTR
(while alveolar
fibrosis in CONV
was more severe)

X-ray (8
MeV)

/ 1 25 ms 1200 30 30 1200 25 ms [36]

Abdomen
(mice)

Higher LD50 for
mice irradiated at
UHDR

protons
(230
MeV)

0.4 from 80
to 150

21 μs 6200 From 10
to 19

0.125 96 from 100 to
200 ms

[37]

UHDR group had
more remaining
crypts and lower
alteration
between 7.5 and
12 Gy. A reduction
of the average
dose rate
(increasing the
number of pulses/
increasing time
between pulses)
resulted in lower
crypt survival

electrons
(6 MeV)

0.2 From 1 to
1250
pulses

3.4 μs From 3.3 E06
to 1.1 E04

From 0 to
20 Gy
(crypts
survival)
12 Gy
(impact of
beam
structure)

From
0.01 to
20 Gy

From
0.25 to
3.3 E06

From 3.4 μs
to 30 s

[38]

In tumor-free
mice, UHDR
showed higer
surviving fraction,
and a 2-fold
higher presence of
regenerating
crypts. No
differences in
hemotopoietic
toxicity (16 Gy).
UHDR group had
higher epithelial
integrity and,
overall, less
radiation-induced
intestinal injury
than CONV group

electrons
(16 MeV)

0.23 7 or 8 5 μs 4 E05 14 or 16
Gy

2 216 80 ms [39]

UHDR/CONV had
same tumor
control. In tumor-

proton
(230
MeV)

2–3
(SOBP),

1 140 μs 108 15 15 108 140 ms [40]

(continued on next page)
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Table 1 (continued )

Targeted
organ

Biological
outcome

Particle
used

LET
(keV/
um) in
water

Number
of pulses

Pulse
width

Pulse dose rate
(or
Instantaneous
dose rate) [Gy/
s]

Total dose
delivered
[Gy]

Dose per
pulse
[Gy]

Average
dose rate
[Gy/s]

Total time
of
irradiation

Ref.

free mice,
significantly
higher number of
regenerating
crypts after SOBP/
plateau UDHR
compared to
CONV

0.4
(plateau)

CONV depleted
less circulating
bodies and
lymphocytes than
UHDR. In
addition, higher
surviving fraction
after 16 Gy gastric
irradiation at
CONV compared
to UHDR

electrons
(20 MeV)

0.24 not
measured

4 μs not measured 16 not
measured

35 450 ms [41]

UHDR preserved
proliferating
crypts and
induced less
fibrosis than
CONV,
maintaining same
tumor control

proton
(230
MeV)

0.4
(plateau)

1 approx.
0.2 s

78 15 or 18
Gy

15 or 18
Gy

78 approx.
0.2 s

[42]

Nasal (cat) Low skin toxicity
at > 12 months PI
with local tumor
control for 5 out of
6 cats

electrons
(5.6 MeV)

0.2 not
provided

not
provided

5 E06 from 25 to
41

from 25
to 41

300 from 80 to
130 ms

[17]

Skin (mice) Less skin toxicity
at UHDR vs CONV
for doses > 30 Gy

electrons
(16 MeV)

0.23 5, 8, 10,
15, 20

5 μs 4.0 E05 10, 16,
20, 30, 40

2 180 from 55 to
222 ms

[43]

Skin (mini-
pig)

FLASH spots
histologically
comparable to
CTR, with no skin
alteration and hair
follicle
preservation only
at UHDR

electrons
(5.6 MeV)

0.2 not
provided

not
provided

5 E06 from 22 to
34

from 22
to 34

300 from 70 to
100 ms

[17]

Skin (human,
cutaneous
lymphoma)

Single fraction at
UHDR resulted in
less side effects
than previous
fractionated
treatments (20 Gy
in 10 fractions, or
21 Gy in 6
fractions),
maintaining the
efficacy against
the tumor

electrons
(5.6 MeV)

0.2 10 1 μs E06 15 1.5 166 90 ms [21,22]

Zebrafish
embryo

UHDR embryos
were significantly
longer than CONV
group for doses >
10 Gy

electrons
(5.6 MeV)

0.2 not
provided

not
provided

> 1.8 E05 from 5 to
12

not
provided

> 40 < 200 ms [44]

Higher surviving
fraction after
CONV vs UHDR,
despite showing

electrons
(20 MeV)

0.24 1441 5 ps E09 26 0.018 2.4 E05 111 µs [45]

(continued on next page)
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slower than oxygen rediffusion from the vascular system. At the same
time, a slight decrease in tissue oxygen concentration could be detected
at UHDR irradiation, both with proton and electron beams, which was
more pronounced in oxygenated normal tissues than in hypoxic tumors
[84,85]. In conclusion, despite the small transient decrease in oxygen
concentration induced by UHDR irradiation, a large body of literature
agrees on considering ROD as one of the contributors to the FLASH effect
rather than the main driving force.

Molecular oxygen is the main factor in the fixation of IR-induced
DNA damage and represents the most important cause of cell death,
regardless of the dose rate. Surprisingly, no study so far has showed that
DNA damage can account, on its own, for the observation of the FLASH
effect. Indeed, although some studies reported lower DNA foci numbers
after UHDR irradiation for doses >20 Gy [54,89] and for early time
points only [52], other studies showed no significant difference in DNA
damage induction (at least for double-strand breaks (DSBs)) when the
two irradiation regimes were compared [10,49,90–92]. To date, only a
few studies on DNA damage with exposure to moderate LET have been
published [27,28]. Investigating the DDR of high-LET UHDR irradiation
could provide valuable insights for determining the specific impact of
the DNA response on the FLASH effect. This could be done by assessing,
for example, if (and eventually, how) high-LET radiations in the UHDR
regime impact the nature and/or efficiency of DNA repair mechanisms,
or if they could activate specific DDR pathways not triggered by CONV
irradiation. In conclusion, while the role of DNA damage in the FLASH
effect is still uncertain, it is well established that IR-induced oxygen
depletion is only one of several contributors to this phenomenon.

3. Reactive oxygen species at UHDR and CONV RT

3.1. Simulation

In common clinical practice, IR is delivered at a dose rate on the
order of a few Gy/min. The resulting ionization tracks are well-
separated over time and are therefore thought to be independent of

each other. In such configurations, interactions between radical species
originating from different tracks are unlikely.

However, upon UHDR irradiation, the tracks are much less separated
in time owing to the very short timeframe required to perform irradia-
tion, ranging from micro- to milliseconds. Therefore, intertrack in-
teractions are more likely and must be considered, because the time
required to deliver the radiation dose is comparable to the temporal
lifespan of the radical species [93]. Recombination between tracks can
modify the yield of radiolytic products and their biological effects on the
cell.

Thompson et al. investigated how the probability of interaction be-
tween tracks changes according to the energy of the particle. Proton
simulations were performed using the TOPAS toolkit, and different
timeframes ranging from 1 ps to 1 ns were investigated. Their study
confirmed that the intertrack probability is low when clinically relevant
doses are considered, and become relevant only for doses above 20 Gy
for high-energy, low-LET protons (even higher doses are required for
higher-LET protons). In addition, the impact of intertrack interactions
on the radiolytic yield of chemical species was studied for protons of
different LETs. No significant differences were observed in the molecular
yield of hydrogen peroxide species, for biologically relevant timeframes
within a clinically relevant dose range [94]. This observation was
confirmed by Alanazi et al., who simulated the impact of dose and dose
rate on the modification of radiolytic yield. More precisely, the authors
reported a significant increase in molecular yield exclusively with
sparsely ionizing high energy, low-LET protons (300 MeV, LET of 0.3
keV/µm) and doses above 70 Gy [95].

Kreipl et al. [96] exploited the PARTRAC code to investigate the
production of hydroxyl radicals, starting from 1 ps after radiation until
the end of the heterogeneous chemical phase (approximately 1 µs). The
authors, considering 20 MeV protons, predicted that only high doses (>
50 Gy) could impact the yield of OH• radicals, in agreement with
Thompson et al., who further investigated the probability of intertrack
interactions and consequent modification of the radical yield for proton
beams of different LETs [94].

Table 1 (continued )

Targeted
organ

Biological
outcome

Particle
used

LET
(keV/
um) in
water

Number
of pulses

Pulse
width

Pulse dose rate
(or
Instantaneous
dose rate) [Gy/
s]

Total dose
delivered
[Gy]

Dose per
pulse
[Gy]

Average
dose rate
[Gy/s]

Total time
of
irradiation

Ref.

less
morphological
alterations
Comparable
embryonic
survival or
structural
integrity after
UHDR vs CONV

proton
(224
MeV)

0.41 single
pulse

single
pulse

500 from 10 to
42.5

not
provided

100 from 100 to
420 ms

[46]

Higher body
length after UHDR
irradiation
compared to
CONV 4 days post-
irradiation, while
no differences in
survival or spinal
curvature were
observed

proton
(68 MeV)

0.97 single
pulse

< 5 ms > 8 E03 30 or 40
Gy

30 or 40
Gy

> 8 E03 < 5 ms [47]

C. elegans Lower growth
delay after UHDR
irradiation
compared to
CONV

proton (4
Mev) and
electron
(9 MeV)

10 for
proton,
0.2 for
electron

1 pulse
for
proton, 8
or 16 for
electron

10 and
20 ms for
protons,
77 or
165 ms
for
electron

1000 Gy/s for
proton, 6.6
E05 for
electron

10 and 20
Gy

10 or 20
Gy for
proton,
1.3 for
electron

1000 Gy/
s for
proton,
126 Gy/s
for
electron

10 and 20
ms for
protons, 77
or 165 ms
for electron

[27]
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Table 2
.Table 2: list of investigations delivering irradiation at UHDR on in vitro models

Cell line Biological outcome Particle
used

LET
(keV/um)
in water

Number of
pulses

Pulse width Pulse dose
rate [Gy/s]

Total dose
delivered [Gy]

Dose per
pulse
[Gy]

Average
dose rate
[Gy/s]

Oxygen concentration Total time of
irradiation

Ref.

DU 145 (prostate
cancer cell line)

Clonogenic assay (from 1.6
% O2 to normoxia): no
FLASH in normoxic
condition; sparing effect in
hypoxia (1,6% O2) for dose >
15 Gy

electrons
(10 MeV)

0.21 from 1 to 7 3,5 μs From 8,6
E06 Gy/s
(single
pulse) to
714 Gy/s (8
pulses)

from 3 to 25 Gy, in
multiples of 3 Gy

3 600 1.6–2.7–4.4–8.3–20
% O2

From 3,5 μs
(single pulse)
to 35 ms (8
pulses)

[48]

MCF7, MDA-MB-231
(human breast
cancer), HeLa, LU-
HNSCC4 (SCC from
patient), WiDr
(colon cancer).
MRC5
(human fibroblast)

A trend of increased surviving
fraction after UHDR
irradiation (clonogenic
assay). DNA-foci formation
(53BP1) and cell
synchronization gave similar
responses after UHDR or
CONV irradiatio1)

electrons
(10 MeV)

0.21 from 1 to 4 3,5 μs 8.6 E05 from 3 to 12 Gy, in
multiples of 3 Gy

3 From 800
Gy/s (4
pulses) to
8,6 E05
(single
pulse)

normoxia From 3,5 μs
(single pulse)
to 15 ms (4
pulses)

[49]

A549 (lung cancer)
vsIMR90
(normal lung
fibroblast)

FLASH significantly reduces
viability in cancer cells, but
not normal cells (clonogenic
assay þ CCK-8). Limited
damage to mitohondria of
normal cells. Lower radiolytic
yield of H2O2 at UHDR vs
CONV (water phantom)

proton
(4,5 MeV)

10 1 From 15 ms
(1,5 Gy) to
150 ms (15
Gy)

100 From 1,5 to 15 Gy From 1,5
to 15 Gy

100 normoxia From 15 ms
(1,5 Gy) to
150 ms (15
Gy)

[50]

A549 and H1437 No difference was observed at
normoxic condition
(clonogenic assay and in RIF
number); the sparing effect
was observed ONLY at FLASH
dose rate, low O2 tension and
for doses > 8 Gy.

He ions 4,5 at
Pristine
Bragg
peak, 16
in SOBP

1 From 14 to
86 ms

from 140 to
210

From 2 to 12 Gy From 2 to
12 Gy

from 140
to 210

normoxia and 1 % O2 from 14 ms (2
Gy) to 86 ms
(12 Gy)

[51]

PBMCs (human
peripherial blood
mononuclear cells)

UHDR as potent as CONV in
killing ex-vivo PBMCs. Same
was observed with in-vivo
circulating lymphocytes

electrons
(20 MeV)

0.24 several 4 not
measured

Dose escalation (0,
2, 4, 6, 8 Gy) for
clonogenic assay;
Single dose
(2 Gy) to assess
apoptosis in
PBMCs

not
measured

35 normoxia From 60 (2
Gy) to 200 ms
(8 Gy)

[41]

KPC and Panc02
(both murine
pancreatic cell
lines)

Clonogenic assay: UHDR is
more potent in reducing cell
clonogenicity than CONV

H454 (murine
glioblastoma)

Clonogenic assay: UHDR
and CONV were isotoxic at
10 Gy in reducing cell,
whereas higher surviving
fraction at 20 Gy UHDR (3-
fold increase in normoxia, 6-
fold increase at 4 % O2)

electrons
(5,6 MeV)

0.2 2 or 3 approx. 0.2 μs 1,8 E06 10 or 20 Gy 5 or 6,6
Gy

100 normoxia and
physioxia (4 % O2)

From 100 (10
Gy) to 200 ms
(20 Gy)

[26]

MRC5, IMR90
(healthy lung),
PBEC (primary
bronchial
ephitelial cells),
A549 (cancer lung)

DNA damage (53BP1, g-
H2AX; 30 min PI):
significant lower 53BP1 foci
number after UHDR
irradiation for both normal
cell lines. Conversely, no
difference was observed for
A549 (5 Gy).UHDR spares

electrons
(4,5 MeV)

0.2 from 3 (2
Gy) to 7 (5
Gy)

1,45 µs 4,6 E05 5 Gy for DNA
damage, 2 or 4 Gy
to assess
proliferation and
differentiation in
PBEC

0.7 75 normoxia From 30 (2
Gy) to 70 ms
(5 Gy)

[52]

(continued on next page)
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Table 2 (continued )

Cell line Biological outcome Particle
used

LET
(keV/um)
in water

Number of
pulses

Pulse width Pulse dose
rate [Gy/s]

Total dose
delivered [Gy]

Dose per
pulse
[Gy]

Average
dose rate
[Gy/s]

Oxygen concentration Total time of
irradiation

Ref.

PBEC from radiation-induced
cell death for moderate doses
of radiation
(4 Gy)

A549 spheroids.HT-
26, MDA-MB-321
for confirmation
(SPHEROIDS)

Growth assay: higher
clonogenic survival for
irradiation at UHDR
compared to CONV for
spheroids model until 15 Gy.
No difference was observed
for monolayer using the same
beam parameter

electrons
(16 MeV)

0.23 5, 10, 15,
20

5 µs 4 E05 5, 10, 15, 20 1 90 oxygen gradient
(intrinsic property of
spheroid)

from 50 (5
Gy) to 200 ms
(20 Gy)

[53]

IMR90 (normal lung
fibroblast)

Clonogenic assay: no
statistically difference in surv.
fraction at any tested doses
(indipendently on dose rate).
DNA damage (g-H2AX, 30
min PI): lower RIF number
for highest dose (20 Gy) at
highest dose rate (1000 Gy/
s).
Senescence induction (b-
gal, 2 months PI): lower
induction of senescence for
100 and 1000 Gy/s vs CONV
(20 Gy).
TGF-beta expression: lower
expression of TGF after
irradiation at 1000 Gy/s vs
CONV (assessment made only
at 20 Gy)

proton
(4,5 MeV)

10 1 < 100 ms for
clonogenic
assay and
DNA IRIF
formation;
< 200 ms for
senescence
and TGF
expression

100 or 1000 From 0,5 to 20 Gy From 0,5
to 20 Gy

100 or
1000

normoxia < 100 ms for
clonogenic
assay and
DNA IRIF
formation;
< 200 ms for
senescence
and TGF
expression

[54]

Mammalian cells
(HeLa S.3 cells)

Clonogenic assay (no
comparison with CONV):
higher surviving fraction with
higher average dose rate, and
in hypoxic condition (0.35 %
and 0 % vs 21 % O2)

electrons
(15 MeV)

0.23 1 or 2 1.3 µs 3.5 E07 for
45 Gy

from 2 to 45 Gy from 2 to
45 Gy

> E06 Normoxia and
hypoxia

1.3 µs (single
pulse) or 5.2
µs (two
pulses)

[8]

HeLa, P.388
(leukemia cells
extracted from
murine donor)

Clonogenic assay (no
comparison with CONV):
higher surviving fraction
when cells are under hypoxic
conditions (0.35 % or 0 %O2)

electrons
(400 keV)

0.21 single
pulse

3 ns approx. E9 from 2 to 25 Gy from 2 to
25 Gy

approx. E9 0 % and 21 % O2 3 ns [55]

HeLa Clonogenic assay (no
comparison with CONV):
irradiation in hypoxic (0.35%
O2) or anoxic condition
increases cell survival

electron  single
pulse

1 µs from 3 E06
to 2.7 E07

from 3 to 27 Gy from 3 to
27 Gy

from 3 E06
to 2.7 E07

0, 0.35 and 21 % O2 1 µs [56]

HeLa Clonogenic assay (no
comparison with CONV):
surviving fraction of hypoxic
cells (0.35 % O2) is higher
than normoxic ones

electrons
(10 MeV)

0.21 single
pulse

10 ns 2 E07 from 3 to 33 Gy from 3 to
33 Gy

2 E07 normoxia and
hypoxia

10 ns [57]

(continued on next page)
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Table 2 (continued )

Cell line Biological outcome Particle
used

LET
(keV/um)
in water

Number of
pulses

Pulse width Pulse dose
rate [Gy/s]

Total dose
delivered [Gy]

Dose per
pulse
[Gy]

Average
dose rate
[Gy/s]

Oxygen concentration Total time of
irradiation

Ref.

U-87 MG, HT-144,
V79

Clonogenic assay: no
difference in surviving
fraction between irradiation
at UHDR and CONV, in
normoxic and anoxic (<0.02
% O2) condition

electrons
(20 MeV)

0.24 single
pulse

3.2 µs from 6 to 30
E08

from 2 to 27 Gy from 2 to
27 Gy

from 6 to
30 E08

0 and 21 % O2 3.2 µs [58]

mice fibroblast (V79-
379-A)

Clonogenic assay: no
difference in surviving
fraction in normoxia up to 15
Gy, nor in anoxia up to 38 Gy
between UHDR and CONV

electrons
(50 MeV)

0.32 from 4 to 8
in oxic
cond., from
12 to 24 in
anoxic
cond.

6 µs 2.7 E05 from 3.2 to 38 Gy 1.6 Gy 380 0 and 21 % O2 from 20 to
120 ms

[59]

CHO Clonogenic assay: no
difference in surviving
fraction between UHDR and
CONV.As
O2 concentration decreases,
surviving fraction of cells
irradiated at UHDR increases

electrons
(600 keV)

0.19 single
pulse

3 ns approx. E9 from 0 to 50 Gy from 0 to
50 Gy

approx. E9 0 and 0.5 % O2 3 ns [60]

HeLa Clonogenic assay (no
comparison with CONV):
higher surviving fraction
when cells are irradiated at
UHDR and kept in hypoxic
condition. As O2 level
decreases, surviving fraction
increases.

electrons
(350 keV)

0.22 single
pulse

3 ns not
provided

from 0 to 40 Gy from 0 to
40 Gy

not
provided

0 and 1 % O2 3 ns [5]

HeLa, CHL-F Clonogenic assay: higher
surviving fraction after
irradiation at UHDR for high
doses (>5 Gy)

X-ray (2
MVp or
3.7 MV)

 single
pulse

few tens of ns from 0.3 to
2 E09

from 2 to 15 Gy from 2 to
15 Gy

from 0.3 to
2 E09

normoxia few tens of ns [61]
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Finally, to study the interaction of primary radiolytic species
resulting from water radiolysis, Abolfath et al. performed a molecular
dynamics simulation and observed the formation of spaghetti-like ag-
glomerates of ROS, whose mobility and reactivity were mitigated by the
presence of intermolecular interactions (such as hydrogen bonds and
electric polarity forces) between single radical species. The authors re-
ported that these ROS complexes (called non-ROS) are formed only at
UHDR irradiation, and are more likely to be formed under physiological
O2 conditions (4–5 % O2) than in hypoxic regions [97].

Taken together, these studies agree on attributing only a small
impact to the interaction between primary radiolytic radicals at clini-
cally relevant doses, even when the dose rate is increased above the
UHDR limit.

3.2. Experimental investigations

Other groups have experimentally investigated the impact of the
radiation dose rate on ROS and H2O2 production in vitro, in vivo, and
through water phantom irradiation. Guo et al. assessed ROS production
in IMR90 cells exposed to proton irradiation at a UHDR (100 Gy/s) or
CONV with or without incubation with the ROS scavenger N-ace-
tylcysteine (NAC). This experiment showed a clear difference in terms of
ROS production, with UHDR irradiation producing less ROS than CONV
irradiation [50]. Consistently, Montay-Gruel et al. showed that NAC and
amifostine, two antioxidant molecules, reduced the toxicity of CONV
irradiation in zebrafish, whereas they had no effect on UHDR irradia-
tion, suggesting that ROS toxicity and/or production are lower in UHDR
irradiation (vs. CONV irradiation) [26]. Of note, neither NAC nor ami-
fostine are specific antioxidants, meaning that it is not possible to gain
any insights into the impact of radiation dose rate on the yield of a
specific ROS. For this purpose, overexpression of superoxide dismutase 2
(a specific superoxide scavenger) or mitochondrial catalase (a specific
H2O2 scavenger), which has already been shown to decrease radiation-
induced normal tissue injury, could be investigated [98]. In contrast,

Kim et al. observed the opposite trend, measuring higher ROS produc-
tion in UHDR-irradiated tumor tissues using a 2′,7′-dichlorodihydro-
fluorescein diacetate (DCFDA) fluorescent probe [99], although the
detection of ROS in tissue sections using this technique is technically
questionable due to the extremely short lifetime of these species [100].
Furthermore, through water phantom irradiation, several groups have
reported a negative correlation between the H2O2 yield and dose rate
[26,87,101], and a more pronounced difference for electrons compared
to proton irradiation [102,103]. In addition, ROS production was
assessed using the nonspecific ROS sensor CellROX [103]. Generally,
ROS production with UHDR irradiation was much lower than that with
CONV irradiation (in pure water with both protons and electrons). This
decrease in ROS production was more pronounced than that observed
with H2O2. This suggests that there is also a difference in the yield of
ROS other than H2O2 (e.g., OH. or superoxide) under UHDR versus
CONV irradiation. The lipid peroxidation level, an end product of ROS,
was also assessed following proton UHDR and CONV irradiation in a
chemical-based model at both 4 % O2 and 21 % O2 [104]. The lipid
peroxidation level strongly increased in a dose-dependent manner
following CONV irradiation, but not following UHDR irradiation.
Furthermore, the lipid peroxidation level following CONV irradiation
was significantly lower at 4 %O2 than at 21 %O2, while the level of lipid
ROS after UHDR irradiation was unaffected by varying oxygen levels.
We hypothesized that the difference in lipid peroxidation in the CONV
versus UHDR regimens would be negligible even at lower oxygen con-
centrations, mostly relevant to tumor tissue (i.e., below 4 % O2).

Notably, all water phantom irradiations were performed in pure
water at 21 % O2 [87,101,103] or 4 % O2 [26,102]. Interestingly, the
oxygenation level in normal tissues is generally higher than that in
cancer tissues (3.4 %-9.5 % in normal tissues and 0.3 %-2.2 % in cancer)
[105,106]. Hence, the studies described above were performed at oxy-
gen concentrations relevant in normal tissues, but not in tumor tissues.
Despite the much lower complexity of water phantoms compared to in
vivo samples, we speculate that UHDR irradiation produces less H2O2

Fig. 1. Hypothetical model of ROS production by UHDR and CONV irradiation. a) Above 3.9 % O2, UHDR irradiation induces a lower H2O2 generation than
CONV irradiation in pure water or chemical based-models [87,102,104] (Sunnerberg et al., 2023; Kacem et al., 2022; Froidevaux et al., 2023). b) Below 4 % O2, the
potential difference between UHDR and CONV irradiation on H2O2 production is still unknown but the results in [84,87,104] (Sunnerberg et al., 2023; El Khatib
et al., 2022; Froidevaux et al., 2023), suggest that there is no difference for UHDR compared to CONV irradiations in the production of H2O2 and lipid perox-
idation below 3 % O2. c) Based on the results performed in vitro, it is possible that a differential effect in H2O2 production and lipid peroxidation for UHDR compared
to CONV irradiation occurs only in normal tissues, since the pO2 is above 4% O2 in most of them. On the other hand, since the pO2 in tumor tissues is mostly below
2.2 % O2, it is possible that there is no difference for UHDR compared to CONV irradiations in the production of H2O2 (and of other ROS), and hence no difference in
tumor control. Furthermore, these results suggest that non-hypoxic tumors could be “spared” by UHDR irradiation and show the importance of testing this
experimentally. Created with Biorender.com.
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(and likely other ROS as well) than CONV irradiation, specifically in
normal tissues, but not in tumors, due to their intrinsically different
oxygenation levels (Fig. 1).

This is consistent with studies showing an impairment of the FLASH
sparing effect via modification of the oxygenation status in normal tissue
or via the use of antioxidant molecules [26,62]. Nonetheless, this would
mean that well-oxygenated tumors could be spared by UHDR irradia-
tion, and it would be very interesting to test whether the increase in pO2
in the tumor, which could be induced by mild hyperthermia [107] or by
hyperbaric oxygen therapy [108], would also protect tumors exposed to
UHDR irradiation.

3.3. Differences in the antioxidant pool between normal and tumor tissues
and the need to investigate ROS production during UHDR and CONV
irradiation in vivo

The difference in ROS levels produced during UHDR versus CONV
irradiation may support the theory of Spitz et al., who proposed that a
differential antioxidant capability in cancer versus normal tissues would
be the basis for explaining the FLASH effect [109]. More specifically, the
smaller pool of labile iron (limiting Fenton-type reactions) and faster
detoxification of radicals in normal tissues would result in a lower
concentration of organic hydroperoxides compared to cancer tissues
when the dose is delivered at the UHDR. This differential response
would disappear at the CONV, because the antioxidant system of both
types of tissue would efficiently annihilate the radicals generated during
the irradiation pulse.

The model proposed by Labarbe et al. correlated IR-induced damage
with the concentration of peroxyl radicals. More specifically, UHDR
irradiation results in a high transient production of peroxyl radicals,
leading to more local recombination between these radicals and,
consequently, protection of the entire irradiated volume [110]. Hu et al.
continued their investigations along this path, suggesting that the dif-
ferential effect observed in normal and tumor tissues at UHDR irradia-
tion is derived from the higher concentration of antioxidants present in
neoplastic tissues. In normal tissues, the physiological antioxidant pool
becomes saturated with IR-produced ROS and is unable to fully protect
cells from the cytotoxic effects of these species. However, when ioni-
zations are close in time, that is, at the UHDR, the recombination of
radicals may participate in the overall decrease in ROS. This would not
be the case in tumor tissues, where a higher concentration of antioxi-
dants would be sufficient to tackle the ROS insult, regardless of the
recombination mechanism, resulting in the same cytotoxic effects in
CONV and UHDR irradiation [111]. Based on these in silico and in vitro
results, the impact of the dose rate on the yield of radical species de-
serves further investigation, particularly for hydroxyl or superoxide
radicals, owing to their high reactivity, but also for hydrogen peroxide.
Indeed, most, if not all, studies so far that have been performed in silico
or in vitro, do not fully recapitulate the complexity of in vivomodels, and
hence, are poorly representative of what really happens in irradiated
tissues. Some techniques that seem relevant in the FLASH field are
described in Section 4 with the aim of experimentally measuring in vivo
the yield of ROS resulting from UHDR irradiation.

4. Methods to assess ROS production during irradiation

The oxygen concentration in irradiated tissues plays a prominent role
in the generation of the FLASH effect, potentially affecting the yield of
different ROS after irradiation. These reactive species can potentially
have a tremendous effect on cell fate, impacting many cellular functions
and triggering life-threatening processes such as lipid peroxidation. It is
worth investigating whether an increase in the radiation dose rate af-
fects the production of these species in in vivo models, including the
degree of complexity that cannot be considered in in silico simulations
and cell-free models. The following paragraph describes the experi-
mental methodologies aimed at providing new insights into ROS

production after UHDR irradiation. Although this objective is highly
complex, investigations focusing on the production of primary radicals
and their oxidative products are fundamental in obtaining a clearer and
more complete view of the events occurring downstream of UHDR
irradiation.

Although mass spectrometry (MS) has been extensively used to
detect lipid peroxidation and protein oxidation (end products of ROS
reactions) [112,113], investigations regarding the generation of primary
radicals have not progressed in recent years. The following list of
methodologies aims to stimulate investigations as a possible roadmap,
proposing techniques that can circumvent the obstacles set by the
intrinsic nature of ROS (short lifespan and low concentration).
Currently, investigations regarding radical production rely mainly on in
silico models, the reliability of which is frequently questioned owing to
the (over)simplifications introduced to run the simulations [114]. In this
context, the experimental assessment of primary ROS using the meth-
odologies listed below could overcome this limitation, allowing direct
measurement in a more physiological context.

4.1. Bioluminescence

Bioluminescence corresponds to the emission of light during luciferin
oxidation by the enzyme luciferase. Peroxy-caged luciferin-1 (PCL-1)
technology has been used for the in vivo detection of ROS [115]. Basi-
cally, in the absence of specific ROS, luciferin is “caged,” preventing its
oxidation and light emission. In the presence of ROS or reactive nitrogen
species (RNS), such as H2O2, hypochlorite (HOCl), or peroxynitrite
(ONOO–), luciferin becomes accessible and can be oxidized by luciferase
with the concomitant emission of light, which can be quantified by
bioluminescence imaging [115,116]. This type of indirect measurement
has been successfully used in murine tumor, peritoneal cavity, and testis
models [115,117]. Bioluminescence was detected up to 1 h after injec-
tion of H2O2 into the peritoneal cavity in a concentration-dependent
manner [115]. Furthermore, in vitro investigations showed that light
emission reached its maximum level 10 min after the incubation of PCL-
1 with H2O2, HOCl, or ONOO– [116]. Therefore, this technique allows
the assessment of ROS/RNS production during or immediately after
irradiation.

4.2. Positron emission tomography tracers

Positron emission tomography (PET) is a relatively noninvasive
technique [118] that has several clinical and preclinical applications in
oncology, neurology, and cardiology. This technology has recently been
used to detect ROS in several preclinical models. Radiotracer 18F-DHMT
has attracted increasing interest in this context [119–121]. In the pres-
ence of superoxide, this compound is oxidized and binds to DNA, per-
sisting for a prolonged period, whereas it is quickly cleared in the
absence of superoxide. After 60 min of treatment with doxorubicin, the
radioactivity detected in the hearts of mice corresponded to the oxidized
form of 18F-DHMT [120]. Nonetheless, the time for which the compound
remains oxidized once superoxide production through IR is complete is
unknown. Another PET tracer, galuminox [122], is weakly fluorescent,
but is oxidized in the presence of superoxide or H2O2 and becomes
highly fluorescent. Hence, this compound could be used in transparent
animals such as zebrafish, a model often used in FLASH studies.
Recently, a study showed a FLASH effect in another transparent model,
the C. elegans worm; therefore, this tracer could also be used in this
model [27]. There was a threefold higher retention of this compound in
the lungs of mice treated with lipopolysaccharide (LPS), a known
inducer of ROS production in the lungs. Nonetheless, the time required
for the compound to revert to its unoxidized form and be cleared from
the organ of interest remains unknown. In conclusion, certain PET
tracers can be used to assess superoxide and/or hydrogen peroxide
production shortly after irradiation. However, it should be assessed
whether their oxidized forms are stable and for how long.
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4.3. Upconverting nanoparticle-based near-infrared nanoprobes

Fluorescence-based techniques can also be implemented to detect
ROS production in biological systems, with probes absorbed in the near-
infrared (NIR) region being the most promising because of the low
interference from the system under investigation. Upconverting nano-
particles (UCNPs) are frequently used for this purpose and offer high
tissue penetration, low toxicity, and high physical/chemical stability
when injected in vivo [123]. Most of the time, UCNPs are coupled with
appropriate energy acceptors that absorb the energy emitted from the
nanoparticles through linear resonance energy transfer (LRET) and re-
emit it at higher frequencies. ROS detection occurs when the radical
reacts with the acceptor, which enables (or prevents) LRET and the
corresponding detection of signals from the energy acceptor (or from the
UCNPs themselves). The flexibility of this approach represents its main
strength, enabling the modification of the absorption spectra of the
energy donor using different dopants or energy acceptors that selec-
tively react with any ROS species. According to the energy acceptor and
dopants used, the emission of fluorescence (following the reaction with
ROS) can be in either the NIR wavelength (above 750 nm, permitting its
detection in living animals) or in the visible light range. For the latter,
the signal can be directly detected in transparent animals such as
zebrafish, whereas tissue sections can be used for nontransparent
models.

In this context, Li et al. developed an in vivo probe to detect hydroxyl
radicals in murine liver sections by coupling sandwich-structured
UCNPs with an azo dye (which quenches the fluorescence of the
UCNPs); this system provides a linear response between upconverted
luminescence (UCL) and OH• radical concentration in the 2–195 fM
range [124]. The azo dyes of these probes decompose in the presence of
OH• radicals, suggesting that UCNPs can emit fluorescence for a pro-
longed period following azo dye decomposition. Indeed, the longer the
probe was incubated in the liver, the higher the fluorescence intensity.

Following the same principle as ROS detection, changing the energy
acceptor enabled several groups to detect specific types of ROS or
nonspecific ROS in living organisms. Hao et al. measured H2O2 levels in
vitro and in vivo in mice [125]. By changing the dopant and shifting from
Yb3+ to Nd3+, Wang et al. tuned the spectral properties of the energy
donor; they reduced the absorption wavelength of the nanoparticles to
808 nm to lower overheating due to water absorption and specifically
studied H2O2 production in cells and living mice [126]. Finally, an NIR
fluorescent probe was developed to accurately detect the superoxide
radical levels in ferroptosis-mediated epilepsy in mouse tissue sections
[127].

In summary, LRET-based UNCPs have great potential for ROS
detection in small animals, enabling high physical/chemical stability
while providing high tissue penetration and almost no toxicity upon
injection. Furthermore, the flexibility provided by the energy donor/
acceptor couple allows the measurement of specific ROS concentrations
and reduces the interference that could arise from other reactive species
in living animals (transparent or not) and in animal tissue sections.

4.4. Aromatic hydroxylation

ROS can also be detected indirectly by targeting the adducts formed
through reactions with suitable substrates rather than the radical itself.
Once formed, the hydroxylated products can be separated and directly
measured using liquid chromatography-mass spectrometry (LC-MS).
This approach can be used to detect highly reactive radicals such as
hydroxyl radicals by causing them to react with aromatic compounds.
Salicylate and phenylalanine have already been used for this type of
application because hydroxylated products are not endogenously pre-
sent within cells as metabolites [128,129]. However, the application of
these substrates for ROS detection in vivo has recently been questioned
because of the great impact of the intracellular chemical environment on
the hydroxylation process [130]. An interesting alternative is benzoic

acid derivatives, a family of probes that become fluorescent upon re-
action with highly reactive ROS [131].

4.5. Genetically encoded redox biosensors

Genetically encoded redox biosensors (GERB) are genetically enco-
ded fluorescent proteins that exist in oxidized or reduced forms with
different fluorescence profiles. Hence, these biosensors are ratiometric,
meaning that the global expression of the proteins is not important, but
rather the fluorescence ratio between the oxidized and reduced forms.
These probes are genetically encoded, and hence can be expressed in
specific cell types or in specific cell compartments, enabling the detec-
tion of the signal directly from transparent models (such as zebrafish);
however, they have also been successfully used in nontransparent
models (such as mice). According to the type of GERB, the protein can be
sensitive to redox status (glutathione/glutathione disulphide (GSH/
GSSG) ratio), nicotinamide adenine dinucleotide hydrogen/nicotin-
amide adenine dinucleotide+ (NADH/NAD+) ratio, or presence of H2O2
[132]. In this study, we focused on the H2O2-sensitive biosensors.

There are two families of H2O2-sensitive GERBs: the HyPer family
and the redox-sensitive green fluorescence protein 2 (roGFP2) family.
Seven versions of HyPer have been developed: HyPer, Hyper-2, Hyper-3,
Hyper-7, HyPer-H34Y-A406V, TriPer, and HyPerRed. For most of them,
the kinetics of oxidation and reduction are very fast and can hence be
used for real-time monitoring of H2O2 production. Among the HyPer
proteins, only HyPer-7 is insensitive to pH, which seems very interesting
in the UHDR field because the intracellular and extracellular pH of
normal and tumor tissues are slightly different [133,134]. In chloro-
plasts, the intensity ratio between oxidized and reduced probe fluores-
cence was reduced by 10 % after 10 min of H2O2 stimulation and by 25
% after 20 min [135]. Considering the rapid decrease in the signal, it
could find application as a live probe, with the fluorescent output being
measured during irradiation.

At least two types of roGFP2 can be used to assess H2O2 level in vivo:
roGFP2-Orp1 and roGFP2-Tsa2 (and its variant ΔCR) [136–138].
However, roGFP2-Orp1 is sensitive to other intracellular oxidants
[139,140]. On the other hand, roGFP2-Tsa2ΔCR is much less impacted
by other oxidants, making it a more appropriate probe for H2O2 detec-
tion [136]. Furthermore, after stimulation of yeast by H2O2, roGFP2-
Tsa2ΔCR showed a prolonged augmentation of its oxidized/reduced
ratio, (lasting for about 20 to 100 min, according to H2O2 concentra-
tion), compared with roGFP2-Orp1 or HyPer proteins (several seconds/
minutes) [136]. Hence, roGFP2-Tsa2ΔCR seems to be the most inter-
esting GERB for assessing H2O2 production during irradiation, because
once oxidized, the reduction rate is strongly slower than for other
GERBs. However, this reduction rate was assessed only in yeast, and it
would be interesting to assess this rate using other models.

4.6. Mass spectrometry

MS is another technique that allows the rapid and highly accurate
detection of several ROS. Although techniques based on fluorescent
probes may produce adducts, increasing the noise of the measurement,
MS enables a more accurate measurement of specific adducts through a
change in the mass-to-charge ratio (m/z). This approach has been
extensively used to detect many radical species both in vivo and in vitro
(already reviewed in [100]). For instance, Portier et al. reported altered
dynamics of oxylipins in response to radiation, with a dependence on the
dose rate and oxygen status. More specifically, irradiation of normal
cells (but not cancer cells) at the CONV induces a more prominent in-
crease in oxylipins than UHDR irradiation [141].
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5. Implications of irradiation-induced ROS on cell fate

5.1. Mitochondria

Irradiation causes an increase in mitochondrial ROS (mtROS),
creating a pro-oxidative environment and starting a vicious cycle
eventually leading to impairment of the organelle functions (a process
called “ROS-induced ROS release”) [142,143]. As hypothesized by
Vozenin and Limoli, CONV and UHDR irradiation may have different
effects on mitochondrial metabolism, mtROS production, and the elec-
tron transport chain [10]. Similarly, Guo et al. showed that irradiation of
normal cells (IMR90 fibroblasts) at a UHDR preserved mitochondrial
structure, copy number, and the overall mitochondrial network, with a
smaller impact on mitochondrial functions when compared to CONV
irradiation (ATP production after UHDR irradiation was approximately
13 % higher than CONV irradiation). Mitochondrial dynamics followed
the same trend, with lower colocalization of Drp-1/p53 in the UHDR-
irradiated group. Furthermore, the mean mitochondrial length was
strongly diminished by CONV irradiation but was unaffected by UHDR
irradiation in normal cells. However, in A549 lung cancer cells, the
mitochondrial network structure was equally affected by both irradia-
tion regimens [50]. Nonetheless, the authors did not specifically assess
mtROS production according to the dose rate. Given the impact of the

oxidative environment onmitochondrial health, we think that it is worth
focusing on this organelle because UHDR irradiation appears to limit the
production of H2O2 and possibly other radicals in normal tissues.
Investigating the oxidative environment within mitochondria could be
performed through probes that specifically target this organelle (e.g.,
MitoSOX and MitoTEMPO, respectively, to detect and protect the
organelle from the deleterious effect of superoxide radicals, respec-
tively), or by introducing ROS-detecting molecules (such as dihy-
droethidium), or spin traps (DEPMPO) in the mitochondrial matrix by
coupling these molecules with triphenylphosphonium, a mitochon-
driotropic carrier that allows increasing the concentration of the cargo
within the organelle by two orders of magnitude [144]. These methods
may offer valuable insights into the oxidative state within the mito-
chondrial matrix, which is particularly relevant for free-radical-induced
lipid peroxidation of cardiolipin, a phospholipid located exclusively in
the inner mitochondrial membrane.

Interestingly, several studies have linked H2O2 to the pseudo-
peroxidase activity of cytochrome c [145,146], whose complex can
initiate the radical process via hydrogen abstraction from one of the
cardiolipin side chains. In this context, the reduced production of H2O2
in normal tissues after UHDR irradiation (Fig. 1) could result in less
oxidation of lipids in the inner mitochondrial membrane, protecting the
organelles from the deleterious effects of IR (Fig. 2).

Fig. 2. Hypothetical model of ROS-induced damage by ultra-high dose rate (UHDR) vs conventional dose rate (CONV). In the hypothetical mechanism we
propose, the differential cytotoxicity of UHDR compared to CONV could depend on different levels of radiolytic H2O2 (and, maybe, of other ROS) production. Briefly,
at UHDR, the short irradiation time generates a peak in H2O2, that saturates the iron pool of normal cells (a), but not of the cancer ones (b), preventing its
regeneration and its availability for other Fenton reactions. In addition, the lower radiolytic yield of H2O2 in normal cells would result in a lower oxidation of
cardiolipin by the pseudo-peroxidase H2O2-cyt c complex, protecting mitochondria from the deleterious effect of ionizing radiation. On the other hand, the longer
irradiation time at CONV dose rate would allow the regeneration of Fe2+ and its implication in further Fenton reactions, resulting in higher amount of OH⋅ radicals (c
and d). Hence, the lower H2O2 yield in normal cells at UHDR irradiation, and the saturation of iron pool would limit the extent of lipid and cardiolipin oxidation,
whereas no difference would be observed in UHDR irradiated tumor cells (vs CONV irradiated). Created with Biorender.com.
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To our knowledge, only one study investigating the mitochondrial
response after UHDR irradiation has been published [50]. Further in-
vestigations could provide interesting insights into the mechanisms
underlying the effects of FLASH.

5.2. The potential role of ferroptosis

An altered oxidative environment could also impact ferroptosis, a
non-apoptotic cell death triggered by weakening of the antioxidant
potential and consequent accumulation of lipid peroxides (LOOH)
[147,148]. These molecules are most frequently generated as a conse-
quence of the abstraction of an allylic hydrogen in polyunsaturated fatty
acid (PUFA) by highly reactive radicals such as OH•, HO2

•, or other RO•.
Furthermore, ferroptosis is involved in irradiation-induced damage to
normal tissues, such as the intestine, heart, lung, and skin [149].

A direct correlation between the IR dose and lipid peroxidation has
been known for decades [150,151], and irradiation-induced ROS have
been proposed as initiators of this process [152]. The impact of radiation
dose rate on the initiation of the oxidative cascade was investigated at
the beginning of the 1990s. Although not measured in the UHDR regime,
lipid peroxidation has been shown to be positively correlated with the
concentration of Fe2+ ions and, more interestingly, negatively correlated
with the dose rate, with lower lipid peroxidation as the dose rate
increased [153–156]. In these studies, the inverse correlation between
the induction of lipid peroxidation and the dose rate was termed the
“inverse dose-rate effect” [157].

Regarding the UHDR regime, Froidevaux et al. were the first to
investigate the impact of radiation dose rate on lipid peroxidation,
showing a dose-dependent production of peroxidation end products
(namely, LOOH and malondialdehyde (MDA)) at CONV irradiation,
while no induction of lipid peroxidation was observed at UHDR irradi-
ation (> 540 Gy/s) in a chemical-based model. Oxygen was also shown
to affect this process when irradiation was performed at CONV irradi-
ation, with a peroxidation yield that was halved at 4 % O2 compared
with that at 21 % O2 [104].

This observation was further confirmed by the only in vivo study
assessing the link between peroxidation yield and dose rate, with UHDR
irradiation inducing less lipid peroxidation than CONV irradiation after
abdominal irradiation in mice, 24 h after irradiation [158].

This oxidative process has attracted increasing interest in the FLASH
community, especially when coupled with the free iron pool within cells
and ferroptosis [10,147,148,153,159]. Excessive iron levels are associ-
ated with tumorigenesis and are hallmarks of cancer [160–163]. In the
context of lipid peroxidation, iron is very important because it catalyzes
the formation of highly reactive hydroxyl radicals through the Fenton
and Haber-Weiss reactions. The resulting hydroxyl radicals help cancer
cells acquire new cancer hallmarks [164,165] and initiate lipid peroxi-
dation by abstracting the allylic hydrogen of unsaturated lipid chains.
Vilaplana-Lopera [159] recently postulated an interesting theory to
explain the differential responses to radiation at the UHDR in tumors
versus normal tissues, linking the altered iron pool, lipid peroxidation,
and the corresponding induction of ferroptosis. In this model, the
combination of oxygen depletion induced by the UHDR and physiolog-
ical iron content protects normal cells from lipid peroxidation and, ul-
timately, induces less ferroptosis compared to cancer cells, where the
even lower oxygen concentration is counterbalanced by the deregulated
free iron content. This also explains the iso-efficacy observed for UHDR
versus CONV irradiation in tumor tissues.

However, because radiation has been shown to marginally deplete
O2 in living tissues (Section 2), ROD is unlikely to be the initial step in
the induction of the FLASH effect. Therefore, we propose a slightly
different and ROD-independent mechanism, based on a differential
production of hydroxyl radicals via Fenton reaction, and introducing the
concept of “saturation” of the Fe2+ catalyst (Fig. 2). The extremely short
time required to irradiate normal tissues at the UHDR does not allow the
physiological pool of Fe3+ to be regenerated, whereas radiation-induced

H2O2 species are still present, limiting the production of reactive OH•

and, consequently, the extent of lipid peroxidation. At CONV irradia-
tion, the longer time required to perform irradiation allowed the
reduction of Fe3+ to Fe2+, fueling other Fenton reactions and increasing
the amount of OH• radicals. In contrast, a larger labile iron pool within
tumor tissues produces more OH• radicals, independent of the dose rate.
To test this hypothesis, iron-sequestering molecules, such as transferrin
or caeruloplasmin, could be used to stabilize the iron redox state (and
prevent its catalytic action in Fenton reactions). Additionally, inhibitors
of ferroptosis, such as liproxstatin-1 or ferrostatin-1, would allow us to
determine whether this process is directly involved in the differential
effect observed in UHDR versus CONV irradiation.

5.3. ROS/senescence/inflammation positive feedback loop

Senescent cells are in irreversible cell cycle arrest but are still
metabolically active. Radiotherapy-induced senescence is strongly
associated with radiation-induced normal tissue injuries [166–168].
Nevertheless, to our knowledge, only a few studies have investigated the
effect of UHDR irradiation on senescence induction. In vitro, it was
shown that UHDR proton irradiation induced a less important propor-
tion of senescence-associated β galactosidase positive cells than CONV
irradiation, in IMR90 fibroblasts [54]. In vivo, FLASH irradiation
induced a less important senescence-associated β galactosidase activity
as well as expression of senescence-associated markers in irradiated
mouse lung, compared with CONV irradiation [169].

It is well known that the overproduction of ROS (induced by radio-
therapy or other stimuli) can induce cell senescence via DNA damage-
dependent and − independent processes [167,170–172]. Dysfunctional
mitochondria producing high levels of ROS and senescence-associated
secretory phenotype (SASP) are other hallmarks of senescent cells [173].

Senescent features are not locally confined, but may spread through
the SASP, whose composition is dynamic, stress-dependent, and het-
erogeneous. The SASP comprises cytokines, chemokines, and growth
factors, which are released within the extracellular environment, pro-
moting chronic inflammation and tissue fibrosis in neighboring healthy
tissues [167,168,170].

Excessive oxidative stress can lead to an auto-sustained loop between
senescence, ROS production, and chronic inflammation [168,170,174].
Hence, it would be worth investigating the impact of UHDR irradiation
on the overall picture, because this kind of irradiation induces a lower
production of ROS than CONV irradiation, and hence, less senescence
[54,169]. The protective effect of FLASH-RT could, at least in part, be
derived from the reduced induction of the senescence phenotype, which
could be tested by administering senolytic drugs upon CONV and UHDR
irradiation [168].

6. Concluding remarks

FLASH RT may have a significant impact on the RT field, allowing
the expansion of the therapeutic window owing to its limited toxicity to
normal tissues. However, despite great interest in this treatment mo-
dality, the underlying mechanism(s) is not completely understood, and a
mechanistic description is still missing.

Although initial theories postulated that the sparing of normal tis-
sues was ascribable to transient hypoxia and/or a reduced amount of
DNA damage, further investigations undermined the basis of these
theories. Recent studies have suggested that the radiation dose rate can
impact H2O2 (and other ROS) production. However, this dependence is
valid only for cells at physiological oxygen concentrations, whereas no
differences have been predicted for tissues under hypoxic conditions
(such as tumors). Hence, we speculate that there could be lower H2O2
generation following UHDR irradiation, specifically in normal tissue but
not in tumor tissue, due to the difference in the basal oxygenation levels
of these tissues (Fig. 1). Furthermore, the lower iron-labile pool in
normal cells, combined with the short timeframe of UHDR irradiation,
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allow for a specific decrease in lipid peroxidation in normal cells (Fig. 2).
This difference could have crucial implications, giving rise to a smaller
amount of highly reactive hydroxyl radicals (produced through the
Fenton reaction) and/or reducing the extent of cardiolipin oxidation in
healthy tissues, thus limiting mitochondrial damage. This could also
give rise to the less important induction of senescence in normal tissues.

Although technically challenging, the differences in cytosolic and
mtROS production between the two irradiation regimes should be
confirmed in vivo in both normal and tumor tissues. The methodologies
proposed in this review can potentially answer this question, providing
new experimental insights into what occurs immediately after
irradiation.
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