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Abstract: The assessment of heat transfer is a complex task, especially for operations in the oil and
gas industry, due to the harsh and flammable workspace. In light of the limitations of conventional
sensors in harsh environments, this paper presents a fiber Bragg grating (FBG)-based sensor for the
assessment of the heat transfer rate (HTR) in different liquids. To better understand the phenomenon
of heat distribution, a preliminary analysis is performed by constructing two similar scenarios: those
with and without the thermal insulation of a styrofoam box. The results indicate the need for a
minimum of thermal power to balance the generated heat with the thermal losses of the setup. In
this minimum heat, the behavior of the thermal distribution changes from quadratic to linear. To
assess such features, the estimation of the specific heat capacity and the thermal conductivity of
water are performed from 3 W to 12 W, in 3 W steps, resulting in a specific heat of 1.144 cal/g ºC
and thermal conductivity of 0.5682 W/m ºC. The calibration and validation of the HTR sensor is
performed in a thermostatic bath. The method, based on the temperature slope relative to the time
curve, allowed for the measurement of HTR in water and Kryo 51 oil, for different heat insertion
configurations. For water, the HTR estimation was 308.782 W, which means an uncertainty of 2.8%
with the reference value of the cooling power (300 W). In Kryo 51 oil, the estimated heat absorbed by
the oil was 4.38 kW in heating and 718.14 kW in cooling.

Keywords: fiber Bragg gratings; heat transfer rate; optical sensors; thermal analysis; specific heat;
thermal conductivity

1. Introduction

Thermal analysis (TA) and calorimetry are important concepts that denote a variety
of methods of measuring thermal properties [1]. The application of TA can be seen in
operations that demand precise thermal management, such as those in microprocessors
(which mainly use methods that aid heat dissipation) [2], in chemical production, asphalt
storage, high-power electric transformers [3], and in the oil and gas industry [4] (for the
assessment of the thermal parameters of fluids). Thus, TA is an important economic
and industrial research topic since it can provide safety and efficiency to a wide range of
industrial processes [4], e.g., by means of the thermal sensors of temperature [5], pressure,
density [6], specific heat, thermal conductivity [7], and heat flux [8,9].

In experiments involving TA, two different heating conditions can be considered:
transient state and steady state. Briefly, techniques operating in the transient state admit
measurements of temperature varying with time and space, while steady-state techniques
only admit a variation of spatial temperatures [10]. The main advantage of transient
systems is the simplicity of measurements, which can compensate eventual thermal losses
by means of calibrations without affecting the efficacy of the methods [11]. Steady-state
techniques have simpler math models but require complex thermal stability control and
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an efficient thermal insulation [12]. To simplify the complexity and optimize the time
consumption of thermal measurements, transient techniques are frequently proposed,
with low uncertainty and a measurement time of around a few tens of seconds. The
guarded hot plate, for example, makes possible fast measurements of thermal properties
with an uncertainty below 2% [13]. Besides that, the heat-flow meter, cylindrical cell,
direct heating, and the pipe method present uncertainties under 10%, 2%, 10%, and 20%,
respectively [11,14].

Another important point to be considered in thermal systems is the interdependence of
some thermal parameters such as density, specific heat, and thermal conductivity. Fourier’s
law describes conductive heat transfer as a relationship of thermal power with the thermal
conductivity, specific heat, density, and temperature gradient of a material [15]. Thermal
diffusivity (a material’s ability to intrinsically distribute heat) and thermal effusivity (a
material’s ability to exchange heat with the environment) depends simultaneously on
density, specific heat capacity, and thermal conductivity of the material [7]. In addition,
the well-known quantity of heat equation also relates the quantity of heat with the mass,
specific heat, and temperature variation of a material [10]. Such characteristics of the
thermal parameters make the task of measuring the heat transfer rate (or heat flux) even
more complex, since in this case, the measurements depend not only on the temperature
measured, but also on other characteristics of the sample [10].

Concerning the calibration of heat flux and HTR sensors, some potential problems may
appear. The most significant of them is the presence of different heat transfer mechanisms
during the experiments (i.e., conduction, convection, and radiation) [16]. For analyses
involving temperatures smaller than 1000 K, radiation can be neglected [17]. For analyses
in fluids, convection and conduction depend on several variables, intrinsic and extrinsic to
the setup, which makes the formulation of a mathematical model that reliably describes the
system difficult [10]. That can be overcome by constructing an efficient thermal insulation
system that, depending on the application, is financially unfeasible. An easier solution
for that is the reproduction of both setups (calibration and experimentation) as closely
as possible. In this case, the thermal losses will be approximately the same during the
calibration and the experiments, which would mitigate measurement uncertainties in the
experiments [16].

Besides the small size and electromagnetic immunity, fiber optic sensors (FOS) provide
characteristics such as intrinsic safety, chemical corrosion resistance, electrical insulation,
multiplexing capacity, and remote monitoring capabilities [18]. With different operation
principles such as the Fabry–Perot interferometer [19,20], the Mach–Zehnder interferom-
eter [21], and the fiber Bragg gratings (FBG) [22], FOS are frequently applied to measure
temperature [23], pressure [24], vibration [25], strains [26,27], density [20], thermal conduc-
tivity [7], and liquid level [4]. In the oil and gas industry, beyond these advantages, FOS
provide safety for the sensing operations once the flammable gases released during the
refining process precludes the use of electronic sensors in the workspace [28]. Due to its
many advantages (mainly in an industrial workspace), fiber optic-based thermal sensors
have been widely investigated [17].

Aiming to combine the advantages of FOS with the concepts of TA and calorimetry, this
paper experimentally investigates thermal power distribution in real scenarios. An FBG-
based temperature sensor is characterized in order to measure temperature, specific heat,
thermal conductivity, and heat transfer rate. At first, thermal distribution is observed in
two similar setups, with the difference being only in the thermal insulation between them.
The experiment allows for the investigation of the minimum heat needed to change the
heat transfer behavior from a quadratic to a linear distribution. Furthermore, an analysis
with mineral oil clarifies the relationship between liquid temperature and setup losses.
Subsequently, a system with forced convection is analyzed with water and kryo 51 oil.
In this case, a technique for estimating the heat transfer rate is proposed, which uses water
as the calibration liquid and the temperature slope relative to time to estimate the HTR
absorbed by the fluids.
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2. Materials and Methods
2.1. FBG: Construction Aspects, Operation Principles, and Characterization

For the experiments performed in this paper, one FBG was inscribed with a phase
mask technique, described in [29,30]. The inscription used a nanosecond-pulsed Nd:YAG
laser LS-2137U, emitting at 266 nm, with an 8 ns pulse time (LOTIS TII, Minsk, Belarus) in
order to produce periodic modulation in the refractive index of the core of a photosensitive
single-mode fiber GF1B (ThorLabs, Newton, NJ, USA). In order to protect the phase mask,
45 mm of the fiber protection (acrylate) was removed around the FBG region of the sensor,
which had 10 mm of physical length. The Bragg wavelength was calculated as follows:

λB = 2ne f f Λ, (1)

where ne f f is the effective refractive index and Λ is the Bragg grating period [22]. Effects of
elongation and thermal expansion on the sensing region result in variations of the Bragg
wavelength, which can be calculated by:

∆λB = λ0[(1 − Pε)ε + (α + ζ)∆T], (2)

where λ0 is the initial value of the Bragg wavelength, Pε is the effective photoelastic
constant, ε is the strain applied to the gratings, α is the thermal expansion coefficient of the
fiber material, ζ is the thermo-optic coefficient, and ∆T is the temperature variation [31].

For the characterization of the FBG relative to temperature, the immersion thermostat
ECO RE 630S (LAUDA, Berlin, Germany) was configured to set the range of the liquid’s
temperature at 20 °C–50 °C, in 5 °C steps. After that, the FBG was carefully fixed in the ther-
mostat bath in order to mitigate the influence of the strain on the sensor response. The FBG
was read by an optical interrogator, sm125 (Micron Optics, Atlanta, GA, USA)), while
the reference temperature was collected by a temperature sensor, LRZ 918 Pt100/LiBus
(LAUDA, Berlin, Germany), with a 0.02 ºC resolution. The relationship between wave-
length shift and temperature variation was obtained by means of a linear regression of the
collected data.

2.2. Analysis of Thermal Power Distribution and Stability

Due to the complexity of controlling the heat flow in experiments using transient
temperature, an analysis of the interactions between the setup and the external medium was
conducted, which could provide important information such as the minimum HTR needed
to stabilize the thermal interactions in the systems. To demonstrate such a phenomenon,
two experimental setups depicted in Figure 1a,b were implemented. Both setups were
composed of a cylinder glass beaker with a 2.1 cm radius and a height of 6.5 cm, which
was heated with a Peltier heat sink TEC1-12706 (Hebei I.T., Shanghai, China) placed
underneath. The heat flow of the Peltier was controlled with a DC power supply model
2231A-30-3 (Keithley, Solon, OH, USA) by switching the Peltier supply current. To perform
the experiments, a liquid (water or mineral oil) was used to fill the beaker and an FBG was
immersed in the liquid to measure the temperature variation. The experiments presented
in this section focused on assessing thermal interactions of fluids under natural convection
in order to gradually relate the thermal phenomena from the simplest cases to the most
complex systems (which made use of fluids under forced convection).

Another important point considered was the temperature gradient of the liquid
inside the beaker. In preview works, we presented a method based on machine learning,
which used the temperature of fluids to estimate liquid level by using an array of 3 FBGs
multiplexed. In the experiment, a glass test tube with a 2.2 cm radius and a height of
22.5 cm presented a temperature gradient maximum of around 2.8 ºC, considering the
distance of 18.5 cm between the FBGs [32]. In relation to that, all experiments described in
this paper were realized by positioning the FBG at the same fixed point once changes in
the FBG position could cause errors in the estimation of heat distribution. In the case of
experiments using a beaker, the FBG was fixed at 2.2 cm from the bottom of the vessel.
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Figure 1. Experimental setup for the analysis of heat distribution, with (a) one not thermally insulated
and (b) another using a styrofoam box to thermally insulate the setup.

The analysis we performed consisted of the comparison of two scenarios. The first
scenario, depicted in Figure 1a, consisted of filling the beaker with water and switching the
Peltier’s supply current from 0.25 A to 1 A, in 0.25 A steps, every 10 min (which produced
heat power from 3 W to 12 W, in 3 W steps, approximately). As no other heat source
was actuating in the system, each component of the setup (Peltier, beaker, and liquid) lost
part of its thermal power to the surroundings, which had a constant room temperature
of 23 ºC. In previous works, the safe operational current for the Peltier was estimated
as 1 A (considering the thermal conditions of the setup). In the experiment without the
box, the thermal power of 9 W (or 0.75 A) was enough to switch the heat distribution
from quadratic to linear. In contrast, the linear distribution could not be reached with 1 A
in the experiment with the box, so we decided to force the Peltier to work with 1.25 A
and 1.5 A in order to try to stabilize the thermal distribution. In addition, the thermal
conditions in the experiment with the box allowed measurements with 1.5 A for a short
period of time until the maximum electric power supported by the Peltier was reached.
Figure 1b presents the second scenario, which consists of adding a styrofoam box in order
to thermally insulate the setup. The range of Peltier supply current used was from 0.25 A
to 1.5 A, in 0.25 A steps every 10 min (resulting in an HTR range of 3 W–18 W, in 3 W
steps, approximately). In this case, the temperature losses in Peltier (L1), the beaker (L2),
and the top of the beaker (L3) changed the internal temperature of the box (Tbox), which
increased the thermal instability of the system. To verify the stability of the heat absorbed
by the liquids in the first scenario, an estimation of the specific heat capacity and thermal
conductivity of the water was realized by means of Equations (3) and (4), respectively,
as discussed in previous works [7]:

Cp =
Q

m · ∆T
, (3)

k = c · (0.7556 + 0.0008386 · ρ + 0.8788 · Cp) · ∆t
∆T

, (4)

where Cp is the specific heat capacity of the liquid (in cal/g °C), Q is the heat quantity (in
cal), m is the mass of the sample (in g), ∆T is the temperature variation (in °C), k is the
thermal conductivity of the fluid (in W/m ºC), ∆t is the time of measurement (in s), and c
is the calibration constant of the setup.

As discussed in [7], the relationship presented in Equation (4) was obtained after theo-
retical and data analyses. In the theoretical analysis, the well-known Fourier’s law related
the thermal conductivity with the temperature gradient (∆T, in ◦C), while the relationship
of k with ρ and Cp could be verified from the definition of thermal effusivity [15]. In the
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process of data analysis, a database of thermal parameters was constructed with the nomi-
nal values of k, ρ, and Cp of different fluids. After that, a first order polynomial equation
related k with ρ and Cp (as shown in Equation (4)). The calibration constant had to be recal-
culated for each setup change. In order to simplify the correlation of Equations (3) and (4),
the method of thermal conductivity estimation used specific heat in cal/g °C. A direct
conversion to J/kg · K could be realized with the relationship: 1 cal/g °C = 4186.8 J/kg · K.

2.3. Measurement of Heat Transfer Rate

The setup applied in the measurement of the heat transfer rate was the same as the one
used in FBG characterization, described in Section 2.1. Figure 2 depicts the experimental
setup, which consists of immersing the FBG in the thermostat bath container filled with
approximately 5 L of water and Kryo 51 oil (separately). The thermostat bath had two
operation modes for the power supply: one for increasing temperature (which inserted
2 kW into the liquid) and one for decreasing temperature (which removed 300 W from
the liquid). The FBG was fed and read through the optical interrogator, and the data were
processed in a laptop. It is worth noting that the thermostat bath had an internal pump of
28 L/min, which eliminated gradients of temperature by creating a forced convection in
the liquid.

Figure 2. Experimental setup for the measurement of the HTR in liquids undergoing forced convection.

The HTR estimation technique developed in this paper is mainly based on Newton’s
law of cooling, which relates convection with temperature variation. Briefly, the FBG-based
temperature sensor was used to measure temperature (relative to time) in the thermostat
bath configured for the maximum heat power rate (2 kW). After that, the calibration of the
sensor was performed, with the slope of the temperature relative to time (in ºC/s) associated
with 2 kW (which represents the HTR of the thermostat bath for water). The equation to
estimate the HTR is given by the following:

qLiq =
qmax

Smax
· SLiq, (5)

where qLiq (in kW) is the heat transfer rate and SLiq (in ºC/s) is the temperature slope,
calculated in curves of transient temperature relative to time. The parameters of calibration
are qmax = 2 kW (maximum heat power inserted by the thermostatic bath in the water)
and Smax = 0.09064 ºC/s, which is the temperature slope relative to time when the HTR
of the thermostat bath in water is 2 kW. Thus, Smax is obtained in the calibration process,
while SLiq is measured in the liquid sample to be analyzed.



Sensors 2021, 21, 6922 6 of 13

3. Results and Discussions
3.1. Temperature Calibration

Since the FBG enables safe measurement in flammable and corrosive oils, all the
thermal experiments were performed with FBG-based sensors. Initially, a temperature
calibration was realized, aiming to relate the temperature variation in liquids with the
Bragg wavelength shift. This relationship can be verified in Figure 3, which relates the
Bragg wavelength (centered in 1568.25 nm) with temperature ranging from 20 ºC to 50 ºC,
in 5 ºC steps. This temperature range is due to the liquid temperatures in the oil industry,
which is normally under 50 ºC to protect the environment from explosions. The sensitivity
obtained in the FBG was 11.1 pm/ºC, and the correlation coefficient was 0.9999.

Figure 3. Characterization of the FBG-based temperature sensor.

3.2. Analysis of Thermal Power Distribution and Stability

The big challenge in HTR sensor development is the thermal losses existent in all
real systems. For stationary methods, heat losses mean uncertainty and measurement
errors, which demand a highly complex thermal insulation. In the case of transient sensors,
the thermal losses can be compensated by means of a calibration constant, which can
simplify the analysis and make it more adaptive to different scenarios. Despite that,
the application of the calibration constant in transient temperature systems depends on
the repeatability of the experiments performed. For example, in the measurement of
thermal conductivity in liquids by means of a transient method, a calibration constant
can be used since the HTR absorbed by the liquid is more or less constant. In addition,
the HTR generated in the setup is distributed to all setup elements, including the external
environment. For this reason, a minimum HTR is required for all thermal systems so
that HTR distribution can reach an equilibrium point. To illustrate the aforementioned
discussion, two scenarios of natural convection were created. As shown in Figure 1a,
the first scenario consists of heating a beaker without any thermal insulation, but with
constant room temperature (23 ºC), by means of a Peltier fed with a current ranging from
0.25 A to 1 A, in 0.25 A steps. In the second scenario (Figure 1b), the same experiment
was performed, but inside a styrofoam box, which acquired room temperature directly
influenced by the losses L1, L2, and L3. In this case, the range of the Peltier supply current
could be expanded from 0.25 A to 1.5 A, in 0.25 A steps. Once the room temperature inside
the styrofoam box rose during the experiments, the maximum safe current of operation
with the Peltier was expanded from 1 A to 1.5 A. The experimental data is presented in
Figure 4. The experiments were performed with each step of current for approximately
10 min, except with 1.5 A, in order to prevent equipment damage.
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Figure 4. Experimental data collected in the beaker experiment. Ip is the supply current of the Peltier.

An analysis of the temperature was performed by calculating the slopes of wavelength
shift increasing (or increasing temperature) relative to time for each Peltier supply current
(with a 250 s sample time). As shown in Figure 5, the experiment performed inside the
styrofoam box has a quadratic behavior, while the curve without thermal insulation seems
to change its quadratic behavior in a position relative to the 1 A current. The quadratic
behavior in the curves is due to the unstable heat distribution in the setup (once the heat
power generated by the Peltier has a linear increase, in 3 W steps). When the styrofoam
box was present in the setup, the heat losses (L1, L2, and L3) caused an increase in room
temperature. With this rising temperature, the beaker absorbed heat from the air in the
box, which destabilized the absorption of heat by the liquid.

Figure 5. Comparison of the thermal distribution behavior in the experiment with the beaker (with
and without thermal insulation).

The results of the experiment without the styrofoam box, shown in Figure 5, indicate
a change in the behavior of the thermal distribution, from quadratic to linear (in a position
relative to 1 A). To better investigate this, Figure 6a shows samples with 250 s (or 500 mea-
surements points) collected during the Peltier actuation. Figure 6b shows the fitting curves
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of the data relative to time for each Peltier supply current. The intense slope variation in
curves 2 and 3 indicates that the minimum heat power necessary to obtain a linear behavior
of temperature in the setup is 9 W (when ip = 0.75 A). Thus, curves 1 and 2 refer to the
unstable heat power distribution, while curves 3 and 4 represent a linear heat distribution.
To validate that, the estimation of the specific heat capacity and thermal conductivity in
water were performed using curves 1–4, as described in previous works [7].

Figure 6. (a) Experimental data measured in the beaker experiment, for ip = 0.25 Ã, ip = 0.5 Ã, ip = 0.75 Ã, and ip = 1 Ã
with (b) their respective fitting curves.

The estimation was realized by using the Peltier supply current of 1 A (12 W) as
reference power to calculate the calibration constant of Equation (4), once that higher
thermal power accelerated the balancing process in heat distribution. The estimations are
presented in Table 1. By comparing the values in curves 1 and 2, it can be noted that the
specific heat and thermal conductivity estimated have high measurement error as compared
with the reference values (Cpwater = 0.9986 cal/g ◦C and kwater = 0.613 W/mK). On the
other hand, the estimation in curve 3 have specific heat and thermal conductivity closer to
the reference values, which confirms the hypothesis that curves 3 and 4 would be sufficient
to balance the thermal interactions of the system. The slope in Figure 6 was calculated with
the wavelength relative to time, while in Figure 5, it was the wavelength relative to current.
Although the final temperature is similar in Figure 6, the rate of temperature (as a function
of time) rises faster as higher is the supply current (hence the steeper slope).

Table 1. Specific heat capacity and thermal conductivity estimation in water.

Curve i (A) Cp (cal/g ºC) k (W/mK)

1 0.25 3.3132 18.2605
2 0.5 1.8507 3.3131
3 0.75 0.8713 0.6643
4 1.0 0.9986 0.6130

Another important issue to be analyzed is the relationship between liquid temperature
and setup losses. For that, an experiment with the setup shown in Figure 1a was performed
using mineral oil as a liquid sample. The choice of mineral oil was due to its low thermal
diffusivity (compared with water), which makes heat transfer inside the liquid difficult,
but clarifies the relationship between temperature and the thermal losses. The experimental
results are presented in Figure 7, which shows the curves of temperature measured in
mineral oil relative to time, in three measurement cycles with different initial temperatures.
Each cycle of measurement was performed by switching the power generated in Peltier
from 3 W (ip = 0.25 A) to 12 W (ip = 1 A), in power steps of 3 W (0.25 A) and time steps of
approximately 10 min. After that, two samples in each cycle were selected when ip = 0.75 A.
The first sample of each cycle began at the exact moment the current switched from 0.5 A
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to 0.75 A and continued for 200 s after that (which represents 400 points of measurements).
The second sample in each cycle, which also lasted for 200 s, began immediately after the
first 200 s of the first samples. As can be seen, when ip is lower than or equal to 0.5 A, the
heat lost for the room is bigger than the heat absorbed by the Peltier in cycles 2 and 3, while
in cycle 1, the heat absorption is higher than the heat lost. By analyzing the switching point
from ip = 0.5 A to ip = 0.75 A in each cycle, an inversely proportional relationship can be
noted between the slopes of the samples and their corresponding liquid temperature (see
Figure 8). Finally, after each measurement cycle, the Peltier is turned off (ip = 0 A) until the
temperature of the mineral oil stabilizes (approximately 5 min). This process prevents the
heat absorbed by the liquids at the end of a cycle to disturb the absorption at the beginning
of the next cycle.

Figure 7. Curves for the temperature relative to time, measured in mineral oil in order to evaluate
the impact of different initial temperatures of the liquid (which implies different setup losses).

Thus, after reaching the minimum heat power required by the thermal system, the heat
power losses can be considered approximately linear and inversely proportional to the tem-
perature of the liquid (in this case, with a correlation coefficient of R2 = 0.9947 and a slope
of −4.34124 × 10−4 s−1). The results indicate a possibility to develop a compensation tech-
nique for systems which depend on HTR measurements. Finally, in scenario 2 of Figure 7,
when ip = 0.5 A, the temperature slope measured relative to time was approximately
0 ºC/s, while in ip = 0.75 A the slope calculated was 0.00292 ºC/s. Once the difference
between ip = 0.5 A and ip = 0.75 A was 3 W (according to Peltier’s manufacturing manual),
the HTR absorbed by the liquid at this point could be estimated as approximately 3 W
(once the inclination in ip = 0.5 A was approximately zero). Although, the setup presented
in Figure 1a strongly suffered from heat losses, the experiments indicate the possibility of
developing a method for measuring HTR in liquids. A thermostat bath provides a heat
system with better insulation required to validate the method.
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Figure 8. Relationship between the initial temperature and the temperature slope relative to time,
calculated for ip = 0.75 Ã (see Figure 7). The linear relationship between such parameters indicates
that the setup losses are lineally dependent on the initial liquid temperature.

3.3. Measurement of Heat Transfer Rate

The calibration of the FBG for the HTR measurements was performed by means of
the heater datasheet, which provided a reference thermal power (qmax) of 2 kW (calibrated
in water). As shown in Figure 9 left, the temperature slope measured in water (Smax) was
0.09064 ºC/s. Figure 9 right shows a slope of −0.013994 ºC/s, when temperature decreased
by means of the thermostat bath cooling. Replacing these values in Equation (5), where
Sliq is the slope in decreasing temperature, the cooling heat power estimated is 308.782 W.
After comparing the estimated power with the reference value of cooling power (300 W),
the estimation presented a relative error of 2.8%, which validates the estimation of the
proposed method.

Figure 9. Temperature in relation to time and its respective slopes, measured in the thermostat bath
experiment for water and Kryo 51 oil.
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By comparing the increasing and decreasing temperatures in Figure 9, it can be noted
that a heat source under the same conditions produces different temperature variations in
water and in oil. That can be explained by the relationship of heat power with the thermal
parameters of the fluids (such as density, specific heat, and thermal conductivity). This
means that liquids with different properties under the same conditions absorb different
values of heat power. For example, in the thermostat bath, the manufacturing manual
mentioned that the nominal values of heat and cooling could be obtained by using water
as the calibration fluid. Despite that, different calibration fluids would result in different
nominal values for the equipment. Knowing that, the estimation of the HTR in Kryo 51
could be performed by means of the water calibration data (as previously calculated with
water) and the inclinations of heating and cooling with Kryo, shown in Figure 9 left, right,
respectively. The estimated HTR, when HTR was at a maximum, was 4.38 kW in heating
and 718.14 kW in cooling.

The final experiments aimed to perform measurements of the HTR in water and Kryo
51 oil. The results are shown in Figure 10, which compare temperature variation with the
estimated HTR during the experiment. As expected, it can be noted that the characteristics
of heating and cooling during the experiments, such as the time required to hit maximum
power, or its behavior to keep the temperature constant (by means of the on–off keying
of the heater/cooling power supply). In addition, the experiment showed better heat
distribution for Kryo 51 once the increasing and decreasing temperatures were smaller
than those of water (which can also be seen in Figure 9 left, right). Finally, the big difference
between the HTR of water and Kryo oil (under the same conditions) indicates the feasibility
of a liquid identification system by rearranging the method proposed in this paper.

Figure 10. Estimation of the heat transfer rate of water (a,b) and Kryo 51 oil (c,d).

4. Conclusions

This paper presented a set of thermal experiments to discuss thermal power dis-
tribution in systems of liquid processing. In addition, a methodology to estimate the
heat transfer rate in a system with forced convection was proposed. For all experiments,
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an FBG-based temperature sensor was constructed, with a sensitivity of 11.1 pm/ºC and a
correlation coefficient of R2 = 0.9999.

For the analysis of thermal distribution, two similar setups were constructed to com-
pare the thermal interactions in systems with and without thermal insulation. The ex-
periment showed that the temperature (and the thermal power distribution) had either a
linear or a quadratic behavior, depending on the thermal power generated in the setup
and the room temperature. In addition, the change from quadratic to linear behavior
was possible through minimum thermal power, which could balance the thermal power
absorbed and lost by the components of the setup. To assess such features, the estimation
of the specific heat capacity and thermal conductivity of water was performed from 3 W to
12 W in 3 W steps (resulting in a specific heat of 1.144 cal/g ºC and thermal conductivity
of 0.5682 W/mK), which shows that more heat power implies more thermal stability for
the systems. The analysis performed with the mineral oil showed that the heat power ab-
sorbed by the liquid could be directly related with its temperature, by means of a constant
−4.1556 × 10−4 s−1. The last set of experiments aimed to develop a method for measuring
the heat transfer rate in liquids. The setup, using a thermostat bath, used an internal pump
to create a forced convection in the liquid in order to reduce the temperature gradient.
The method made the measurement of HTR in water and Kryo 51 oil possible.

Future work should include the multiplexing of multiple FBGs in a probe for the devel-
opment of a quasi-distributed sensor. Besides that, the experiment performed with mineral
oil indicates that a compensation technique can be developed in order to improve the
measurements of specific heat and thermal conductivity with the method used. In addition,
a mix of different liquids can be investigated, in order to simultaneously detect parameters
such as liquid level, specific heat, thermal conductivity, and HTR in a water–oil interface.

Author Contributions: Conceptualization, R.L. and A.L.-J.; methodology, C.M., R.L., A.L.-J., C.E.S.C.
and A.F.-N.; validation, R.L. and A.L.-J.; formal analysis, R.L. and A.L.-J.; data curation, R.L.; writing—
original draft preparation, R.L., A.F.-N., C.M., C.E.S.C. and A.L.-J.; writing—review and editing, R.L.,
A.F.-N., C.M., C.E.S.C. and A.L.-J.; supervision, A.L.-J. and A.F.-N. All authors have read and agreed
to the published version of the manuscript.

Funding: The authors would like to thank and acknowledge funding received from Petróleo
Brasileiro S. A.—PETROBRAS (2017/00702-6), the research project of Fundação de Amparo à Pesquisa
e Inovação do Espirito Santo (FAPES) “PRONEM” (88336650), and the funding received from CNPq
for the realization of this research project. C. Marques acknowledges Fundação para a Ciência e a
Tecnologia (FCT) through the CEECIND/00034/2018 (iFish project); this work was developed within
the scope of the project i3N, UIDB/50025/2020 and UIDP/50025/2020, financed by national funds
through the FCT/MEC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available by reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, or in the decision to publish the results.

References
1. Hemminger, W.; Sarge, S. Chapter 1—Definitions, Nomenclature, Terms and Literature. In Handbook of Thermal Analysis and

Calorimetry: Principles and Practice; Brown, M.E., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1998; Volume 1, pp. 1–73.
[CrossRef]

2. He, Y. Rapid thermal conductivity measurement with a hot disk sensor: Part 2. Characterization of thermal greases. Thermochim.
Acta 2005, 436, 130–134. [CrossRef]

3. Harris, A.; Kazachenko, S.; Bateman, R.; Nickerson, J.; Emanuel, M. Measuring the thermal conductivity of heat transfer fluids
via the modified transient plane source (MTPS). J. Therm. Anal. Calorim. 2014, 116, 1309–1314. [CrossRef]

4. Leal-Junior, A.G.; Marques, C.; Frizera, A.; Pontes, M.J. Multi-interface level in oil tanks and applications of optical fiber sensors.
Opt. Fiber Technol. 2018, 40, 82–92. [CrossRef]

http://doi.org/10.1016/S1573-4374(98)80004-6
http://dx.doi.org/10.1016/j.tca.2005.07.003
http://dx.doi.org/10.1007/s10973-014-3811-6
http://dx.doi.org/10.1016/j.yofte.2017.11.006


Sensors 2021, 21, 6922 13 of 13

5. Woyessa, G.; Pedersen, J.K.M.; Fasano, A.; Nielsen, K.; Markos, C.; Rasmussen, H.K.; Bang, O. Zeonex-PMMA microstructured
polymer optical FBGs for simultaneous humidity and temperature sensing. Opt. Lett. 2017, 42, 1161–1164. [CrossRef] [PubMed]

6. Leal-Junior, A.G.; Marques, C. Diaphragm-Embedded Optical Fiber Sensors: A Review and Tutorial. IEEE Sens. J. 2021,
21, 12719–12733. [CrossRef]

7. Lazaro, R.C.; Marques, C.; Castellani, C.E.S.; Leal-Junior, A. FBG-Based Measurement Systems for Density, Specific Heat Capacity
and Thermal Conductivity Assessment for Liquids. IEEE Sens. J. 2021, 21, 7657–7664. [CrossRef]
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