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Abstract Yellow Fever (YF) is an arbovirus endemic in tropical regions of South America and

Africa and it is estimated to cause 78,000 deaths a year in Africa alone. Climate change may have

substantial effects on the transmission of YF and we present the first analysis of the potential

impact on disease burden. We extend an existing model of YF transmission to account for rainfall

and a temperature suitability index and project transmission intensity across the African endemic

region in the context of four climate change scenarios. We use these transmission projections to

assess the change in burden in 2050 and 2070. We find disease burden changes heterogeneously

across the region. In the least severe scenario, we find a 93.0%[95%CI(92.7, 93.2%)] chance that

annual deaths will increase in 2050. This change in epidemiology will complicate future control

efforts. Thus, we may need to consider the effect of changing climatic variables on future

intervention strategies.

Introduction
Yellow Fever (YF) is a vaccine preventable, zoonotic, arbovirus endemic in tropical regions of Africa

and Latin America. It is responsible for approximately 78,000 deaths per year, although under

reporting is high and since YF has a non-specific symptom set, misdiagnosis is an issue

(Garske et al., 2014). YF has three transmission ‘cycles’ in Africa: urban, zoonotic and intermediate.

The urban cycle, mediated by Aedes Aegypti mosquitoes, is responsible for explosive outbreaks

such as the one seen in Angola in 2016 (Ingelbeen et al., 2018; Wilder-Smith and Monath, 2017).

While the urban cycle can rapidly amplify transmission, the majority of YF infections are thought

to occur as a result of zoonotic spillover from the sylvatic reservoir in non-human primates (NHP).

This zoonotic cycle is mediated by a variety of mosquito vectors including Aedes africanus and, as

the NHP hosts are mostly unaffected by the infection in Africa, the force of infection due to spillover

is fairly constant, although land use change has been shown to affect this (Monath and Vasconcelos,

2015). The intermediate cycle is sometimes called the savannah cycle and is mediated by mosqui-

toes such as Ae. luteocephalus, who feed opportunistically on humans and NHP, although human-

human transmission is limited (Barrett and Higgs, 2007).

The Intergovernmental Panel on Climate Change (IPCC) states that global mean temperatures

are likely to rise by 1.5˚C, compared with pre-industrial levels, by between 2030 and 2052 if current

trends continue (Masson-Delmotte et al., 2018). Increases are projected not only in mean tempera-

ture but also in the extremes of temperature, extremes of precipitation and the probability of

drought (Kharin et al., 2013; Dunning et al., 2018).

With multiple mosquito vectors and a zoonotic cycle depending on NHP hosts, the impact of cli-

mate change on YF is likely to be complex. Focusing on the main urban vector, A. aegypti, there is

strong evidence that projected climate change will alter its global distribution and thus, the risk of

diseases it carries (Ryan et al., 2019; World Health Organisation, 2018; World Health Organisa-

tion, 2018). Climate change has been predicted to increase the regions at risk from dengue and
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Zika transmission, although seasonal variation in temperature may mitigate the likelihood of out-

breaks in areas at the edges of the endemic zone (Mordecai et al., 2017; Huber et al., 2018).

Long-term projections of the future disease burden of YF are needed to inform vaccination plan-

ning (VIMC, 2019). Furthermore, differences due to climate change may increase the risk of epidem-

ics, a key consideration for the Eliminate YF Epidemics (EYE) strategy (World Health Organization,

2017).

In this manuscript, we extend an existing model of YF occurrence and disease burden to incorpo-

rate a nonlinear temperature suitability metric (Garske et al., 2014). We estimate temperature suit-

ability for YF based on the thermal response of the urban vector, Ae. aegypti, and the YF virus. We

combine this with YF occurrence data in a Bayesian hierarchical model in order to account for uncer-

tainty at each stage of the modelling process. This, along with established estimates of transmission

intensity informed by serological survey data, allow us to predict current and future transmission

intensity. Finally, we use ensemble climate model predictions of future temperature and precipita-

tion to project transmission and thus, burden in 2050 and 2070. Our results are the first examination

of YF burden under the potential future effect of climate change.

Results
As we estimate a static force of infection, we focus on transmission as a result of sylvatic spillover

rather than including the urban transmission cycle explicitly. As such, the results can be considered

the estimated effect of climate change on sylvatic transmission and resulting burden.

Model predictions for baseline scenario
Figure 1 (left) shows occurrence of YF across Africa from 1984 to 2018. Incidence is focused in the

West of Africa and, more recently, Angola and the Democratic Republic of the Congo. The model

predicts a high probability of YF report in these areas and reflects the general patterns of YF occur-

rence, see Figure 1 for comparison. Model fit can be characterised by the Area Under the Curve

(AUC) statistic (Huang and Ling, 2005), which was 0.9004, similar to the original model formulation

of Garske et al., 2014.

The predicted probability of a YF report is positively informed by temperature suitability with the

median posterior predicted distribution shown in Figure 2 (left). This highlights the high suitability

of countries such as Nigeria and South Sudan for YF transmission. In contrast, Rwanda, Burundi and

areas of Mali and Mauritania have low average temperature suitability. The fit of the thermal

response models is shown in Figure 2—figure supplements 1–4.

Projected transmission intensity
Figure 2 (right) shows the median posterior predicted estimates of the force of infection for the

baseline/current scenario, a comparison of the force of infection estimated only from serological

studies, and those estimated from the GLM is provided in Figure 2—figure supplement 1. When

we incorporate the ensemble projections of temperature and precipitation change we see heteroge-

neous impacts on force of infection. Figure 3 shows the percentage change in median force of infec-

tion for the year 2070. Projections for 2050 are shown in Figure 3—figure supplement 1.

The posterior distributions of predicted changes in force of infection in different African regions

are shown in Figure 4 (region definitions shown in Figure 4—figure supplement 1). Projections for

individual countries are given in the Appedix. In West Africa, the predicted change is clustered

around zero in the majority of scenarios; this is particularly the case for year 2050. However, due to

wider uncertainty in 2070 and for RCP scenario 8.5 in general, there is a more discernible increase.

In the East and Central regions, a predicted increase in force of infection is more apparent. Whilst

the differences between 2050 and 2070 are difficult to see for RCP scenario 2.6, both peak above

zero. In RCP scenarios 4.5, 6.0 and 8.5, the distinction between years is clear, particularly in 8.5, with

the greatest increases seen in 2070 as temperatures are expected to continue to rise.

When we examine the changes at country level, shown in the appendix, the changes are more

heterogeneous. For RCP 2.6 Guinea Bissau, the change in force of infection in 2070 is potentially

broad, with a credible interval spanning zero: 10.3% (95%CrI [�33.2% , 96.3%]). Whereas in Central

African Republic, there is a notable increase by 87.1% (95%CrI [12.4% , 390.2%]).
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Projected burden
The projected percentage change in the annual number of deaths caused by YF across Africa is

given in Table 1; the projected annual deaths per capita for endemic countries are shown in Figure 5

and in Figure 5—figure supplement 1. These projections assume vaccination is static from 2019

onwards that is that only routine vaccination continues at 2018 levels. Similarly, we assume case man-

agement is unvarying. Aggregated numbers of deaths per country and region are shown in the

appendix.

While lower 95% credible intervals in Table 1 are negative, the overall posterior probabilities that

climate change will increase YF mortality are very high for each climate scenario. The probability that

deaths will increase is 95.5% (95% CrI [95.3%, 95.7%]) for RCP 2.6 in year 2070, rising to 95.9% (95%

CrI [95.7%, 96.1%]) for RCP 8.5 in year 2070, values for all scenarios and years are shown in appendix

1.

As with the force of infection projections, the most severe increases are seen for RCP scenario

8.5, especially in year 2070. The distinction between current projected deaths per capita and those

under each RCP scenario are most clearly seen for countries in Central Africa, such as Central African

Republic, and East Africa, such as Ethiopia. The four countries with the least distinct change, Liberia,

Guinea, Sierra Leone and the Gambia, are all in West Africa, commonly thought to see the most

intense YF transmission. As such, it appears that the most marked increases in burden are found in

East and central Africa.

Figure 1. Observed YF occurrence (left) and median probability of a YF report predicted by the GLM.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Schematic of data sources and models adapted from Gaythorpe et al., 2019.

Figure supplement 2. Comparison of force of infection estimates for each admin level 1 unit where we have serological surveys between the estimate

from serological surveys only and the GLM within the Bayesian hiearchical model.

Figure supplement 3. Median posterior predicted deaths in 2050 (log10 scale).

Figure supplement 4. Median posterior predicted deaths in 2070 (log10 scale).
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Discussion
We build on an established model of YF occurrence and transmission to accommodate temperature

and precipitation projections for four climate emissions scenarios. Non-linear dependence on tem-

perature was incorporated by utilising a function of temperature suitability, informed by thermal

response data for A. aegypti. We jointly estimated parameters for the temperature suitability and

occurrence models in a Bayesian framework, allowing us to quantify the uncertainty in our projec-

tions. We found that model fit remained good with a median AUC of 0.9004 despite necessary

changes to the covariates used in the occurrence model compared with past work Garske et al.,

2014; where changes were required in order to include covariates for which climate change projec-

tions were available. This gave us some confidence in the suitability of the model for projecting the

impact of climate change on YF transmission through to 2070, the last year for which climate emis-

sion scenario projections are available for temperature and precipitation.

The force of infection is projected to increase for the majority of countries in each scenario. Con-

sistently, the Central African Republic is one of the countries most likely to see an increase in trans-

mission, while Liberia and Guinea Bissau have more uncertain projections. This highlights that the

most severe proportional increases in force of infection are seen outside West Africa. However, as

transmission is currently highest in West Africa, even a small future relative increase of 3% (seen for

Figure 2. Median predicted model outputs for baseline scenario. (Left) Median posterior predicted temperature suitability for the African endemic

region with average temperature. (Right) Median predicted FOI for the African endemic region at baseline.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Bite rate per day of Aedes aegypti mosquitos in response to temperature change.

Figure supplement 2. Mortality rate per day of Aedes aegypti mosquitos in response to temperature change.

Figure supplement 3. Inverse extrinsic incubation period in response to temperature change.

Figure supplement 4. Temperature suitability in response to temperature change.
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Figure 3. Percentage change in force of infection in 2070. Median predicted change in force of infection in the African endemic region in 2070 for the

four emission scenarios.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Percentage change in force of infection in 2050.
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Liberia in scenario RCP 2.6 in year 2050, see appendix) could equate to a substantial increase in the

projected absolute number of annual YF deaths.

In all scenarios, there is a high probability that the number of deaths and deaths per capita will

increase in the African endemic region. The most marked changes are seen for RCP 8.5, the most

severe emission scenario; however, changes are heterogeneous geographically with large propor-

tional increases occurring in Central and East Africa. We expect the number of deaths per year to

increase by 10.0% (95% CrI [�0.7, 34.1]) under RCP scenario 2.6 or 40.0% (95% CrI [�2.9, 178.6])

under RCP scenario 8.5 by 2070 (see Table 1 for other values).

We assume that the force of infection changes linearly between 2018 and 2050, and between

2050 and 2070. Video 1 illustrates this by showing posterior samples of the change in deaths by

region for all years between 2018 and 2070. For RCP scenario 2.6, deaths largely cease increasing

after year 2050, in line with the assumption that RCP 2.6 represents the situation where contributing

Figure 4. Posterior distribution of the change in the spatial mean force of infection (%) for each region of Africa, year and climate scenario.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Country groupings in regions used in the manuscript with West, yellow; Central, purple and East, green.
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carbon activities peak by 2030; however, this scenario has been suggested to be ‘unfeasible’

(Mora et al., 2013; van Vliet et al., 2009). In RCP scenario 8.5, carbon contribution activities are

assumed to continue increasing throughout the century. A potential impact of this is seen in the

number of YF deaths predicted by our model in East and Central Africa, which accelerate after 2050.

Climate change may affect not only the magnitude of YF disease burden but also its distribution.

We find that, through the projected changes in both temperature and rainfall, transmission may

change heterogeneously across the region. This is emphasised by their individual contribution; in the

appendix, we explore the effects of changes in only temperature or rainfall. This illustrates that whilst

temperature change will drive the variation in transmission intensity with rainfall often acting to miti-

gate, in some countries there can be a ‘perfect storm’ of altering rainfall and temperature leading to

increases in transmission that would not occur if only temperature was varying. This may lead to

changing priorities with respect to vaccination. However, it is unclear whether the comparatively low

proportional increase in burden seen for West Africa is due to more intensive vaccination or due to

the limited increase in force of infection. Our results suggest that there could be drastic proportional

increases in burden in East and Central Africa that may lead to greater vaccine demand in areas

which have previously been of lower risk. Thus, whilst the countries experiencing the highest num-

bers of deaths will remain high risk, see Figure 1—figure supplement 3 and Figure 1—figure sup-

plement 4 for the median distribution of deaths per year, countries such as Ethiopia and Somalia

may become higher priority targets for vaccination.

Our analysis has a number of limitations. In order to utilise emission scenario projections, we

were limited to covariates with projections in 2050 and 2070, namely temperature and precipitation.

This meant that we adapted our previous best-fit model (Garske et al., 2014) to include tempera-

ture range, temperature suitability and precipitation rather than enhanced vegetation and landcover.

This change slightly reduced fit quality, giving an AUC of 0.9004 as opposed to to 0.9157

(Gaythorpe et al., 2019). Vegetation is a key factor determining habitat of non-human primates, an

element that may not be captured by the temperature suitability index which focuses on the vector

A. aegypti. This omission may lead to an overestimation of the future burden as elements such as

desertification and the impact of increasing frequencies of forest fires are not considered

(Overpeck et al., 1990; Huang et al., 2016; James et al., 2013).

Similarly, whilst the RCP scenarios model socio-economic and land-use changes, we do not explic-

itly include these aspects here (van Vuuren et al., 2011). As such, we omit the human choices that

may affect population distributions and behaviour, for example urbanisation which has been shown

to both reduce disease burden (Wood et al., 2017) and increase emergence of arboviruses

(Gubler, 2011; Hotez, 2017). In the same way, while our model accounts for migration through use

of the UN WPP population data, climate scenario-specific migration is not included in the model.

This may mean that we under estimate the potential increases in burden due to increased infringing

of human environments on the sylvatic cycle. Projecting these non-linear relationships between

human behaviour and transmission would be highly uncertain and is a source of ongoing research.

Vaccination is the main control method for yellow fever and whilst we account for vaccine cover-

age and efficacy in this mansucript, we do not explicitly propagate uncertainty in vaccination

Table 1. Predicted percentage change in deaths in the African endemic region in 2050 and 2070 compared to the baseline/current

scenario.

Year Scenario 95% CrI low 50% CrI low Median 50% CrI high 95% CrI high

2050 RCP 2.6 �2.36 4.49 10.84 18.58 37.91

2050 RCP 4.5 �2.40 7.32 16.71 28.16 57.43

2050 RCP 6.0 �2.78 6.79 15.49 25.86 51.85

2050 RCP 8.5 �2.17 11.03 24.92 41.84 88.33

2070 RCP 2.6 �0.74 4.11 9.99 17.03 34.10

2070 RCP 4.5 �2.76 7.77 19.28 33.56 71.08

2070 RCP 6.0 �4.56 8.63 21.35 36.70 77.70

2070 RCP 8.5 �2.90 16.08 39.57 72.43 178.63
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Figure 5. Posterior predicted annual YF deaths per capita for each country in the African endemic region in 2070. Countries are ordered by longitude.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Posterior predicted deaths per capita for each country in the African endemic region in 2050.

Figure 5 continued on next page
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coverage. This will be uncertain not only through data scarcity on vaccination campaign doses, wast-

age and clustering of doses, but also through the uncertainty in demography. We have presented a

comparison of scenarios where, in all cases, vaccination coverage distribution, is held to be the

same. As such, whilst we focus on the effect of changing transmission, we will underestimate the

uncertainty in our estimates of burden in the future.

Data availability constrains aspects of our modelling approach. We use A. aegypti and YF-specific

datasets to inform the thermal response relationships and thus, temperature suitability index. How-

ever, some data, such as information on the extrinsic incubation period are severely limited; we use

a dataset of experimental results from 1930s (Davis, 1932). These data may be outdated due to cur-

rent mosquito species potentially adapting to different climates as well as improved experimental

procedures. This is a key data gap for YF and new experimental results concerning the extrinsic incu-

bation period could provide valuable insight into the dynamics of the virus in mosquitoes today.

As further experimental data on thermal responses for A. aegypti and other vectors of YF become

available, the temperature suitability index developed here will be able to be enhanced. YF is known

to have multiple vectors, each contributing to transmission cycles differently (Monath and Vasconce-

los, 2015), which are likely to have different thermal responses. Focusing only on the urban vector

of YF, as we have in this manuscript, means that we will likely under-estimated the uncertainty in the

thermal response of the vectors of YF and thus future projections of burden. Additionally, whilst we

have included a relatively detailed relationship between transmission and temperature, we have only

assumed a simple relationship with rainfall. Currently models of thermal response for vectors of dis-

eases such as YF are well parametrised with experimental results; however, this is not yet the case

for the influence of rainfall on transmission although there are clear links with aspects such as vector

breeding. As these relationships are better characterised, we can further refine the relationships in

the current work to reflect the more nuanced relationships between temperature, rainfall and

transmission.

We focus only on a constant force of infection model which is similar to assuming the majority of

transmission occurs as a result of zoonotic spillover. This assumption is supported by recent studies

Gaythorpe et al., 2019; however, the urban transmission cycle, driven by A. aegypti plays a crucial

role in YF risk and was responsible for recent severe outbreaks such as that in Angola in 2016. Incor-

porating climate projections into models that

examine multiple transmission routes and ther-

mal responses for multiple vectors, would pro-

duce a more realistic picture of how the

dynamics of this disease may change with

climate.

Climate change is projected to have major

global impacts on disease distribution and bur-

den (Mordecai et al., 2017; Huber et al., 2018;

Kraemer et al., 2015). Here, we examined the

specific effects on YF and find that disease bur-

den and deaths are likely to increase heteroge-

neously across Africa. This emphasises the need

to implement and prepare for new vaccination

activities, and consolidate existing control strate-

gies in order to mitigate the rising risk from YF.

Intervention through vaccination is the gold stan-

dard for YF, and new approaches are being

implemented with respect to fractional dosing

which is a useful resort to respond to urban out-

breaks in case of vaccine shortage

Figure 5 continued

Figure supplement 2. Posterior predicted deaths for each country in the African endemic region in 2050.

Figure supplement 3. Posterior predicted deaths for each country in the African endemic region in 2070.

Video 1. Percentage change in deaths from 2020 to

2070 in three regions in the African Endemic region

under 4 climate change scenarios. 100 samples of the

posterior predicted trajectories are shown.

https://elifesciences.org/articles/55619#video1
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(Vannice et al., 2018). Yet, vaccination is not the only potentially effective control for YF, with novel

vector control measures such as the use of Wolbachia showing promise, and perspectives to improve

clinical management or urban resilience (Rocha et al., 2019; World Health Organization, 2017).

Finally, in order to monitor and respond to changing transmission patterns, effective and sensitive

surveillance will be essential.

Materials and methods
A schematic of data sources and models is shown in Figure 1—figure supplement 1.

Datasets
We use a number of data sets to inform both the generalised linear model (GLM) of YF occurrence

and the temperature suitability model. Additionally, we rely on estimates of transmission intensity

informed by serological studies which are detailed in Gaythorpe et al., 2019 and described below.

YF occurrence
Details of YF outbreaks occurring from 1984 to present day were collated into a database of occur-

rence, extended from Garske et al., 2014. These data were collected from the World Health Orga-

nisation (WHO) weekly epidemiological record (WER), disease outbreak news (DON), published

literature and internal WHO reports (World Health Organization, 2009; World Health Organiza-

tion, 1996). The database includes all outbreaks recorded for yellow fever and is resolved at prov-

ince level, any reports that could not be resolved at province level were excluded. Additionally,

reports of suspected YF cases were collected in the WHO African Regional Office YF surveillance

database (YFSD); this included data from 21 countries in West and Central Africa. The database was

based on the broad case definition of fever and jaundice leading to a large proportion of cases

attributed to non-YF causes and cross-reactivity with other flaviviruses was not considered. However,

the incidence of suspected cases can be used as a measure of surveillance effort and is included as a

covariate in the generalised linear model. We assume this to be constant over time due to scarcity of

data on the subject.

YF serological status
Surveys of seroprevalence were conducted in Central and East Africa. We use these to assess trans-

mission intensity in specific regions of the African endemic zone. The current study includes surveys

from published sources (Diallo et al., 2014; Kuniholm et al., 2006; Merlin et al., 1986;

Omilabu et al., 1990; Tsai et al., 1987; Werner and Huber, 1984) and unpublished surveys from

East African countries conducted between 2012 and 2015 as part of the YF risk assessment process

(Mengesha Tsegaye et al., 2018). The surveys were included only if they represent the population

at steady state, as such outbreak investigations were omitted (Garske et al., 2014). Additionally, in

the majority of surveys, vaccinated individuals were not included; however, in South Cameroon, vac-

cination status is unclear and so we fit an additional vaccine factor for this survey. Summary details

of the seroprevalence studies are included in the apendix.

Past vaccination coverage and demography
Vaccination coverage is estimated using data on historic large-scale mass vaccination activities taking

place between 1940 and 1960 (Durieux, 1956; Moreau et al., 1999), routine infant immunisation

reported by the WHO and UNICEF estimates of National Immunization Coverage (WUENIC)

(World Health Organization/ UNICEF, 2015), outbreak response campaigns from 1970 onwards

which are detailed in the WHO WER and DON (World Health Organization, 2009; World Health

Organization, 1996) and recent preventive mass-vaccination campaigns carried out as part of the

yellow fever initiative (World Health Organisation, 2016). The coverage is estimated with the meth-

odology of Garske et al. and Hamlet et al. and is visualised in the polici shiny application

(Garske et al., 2014; Hamlet et al., 2018a). The application provides vaccination coverage esti-

mates at province level for 34 endemic countries in Africa which can be downloaded for years

between 1940 and 2050. We assume all targeted age groups have an equal chance of vaccination

irrespective of vaccination staus.
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Demography is obtained from the UN World Population Prospect (UN WPP) (DoE United

Nations, 2017). We dis-aggregate this to province level by combining it with estimates of spatial

population distributions from LandScan 2014 (Dobson et al., 2000). This allows us to estimate popu-

lation sizes at province level for each year of interest assuming that the age structure is relatively

similar across all provinces in each country.

Environmental and climate projections
We use three main environmental covariates within the generalised linear model of YF occurrence:

mean annual rainfall, average temperature and temperature range, shown in Figure 6 and listed in

Table 2. These are gridded data at various resolutions, ranging from approximately 1 km to 10 km,

which we average at the first administrative unit level (Nasa LPD, 2001; Xie and Arkin, 1996;

Hijmans et al., 2004).

Projected temperature and rainfall changes under climate change scenarios were obtained from

worldclim version 1.4 (Hijmans et al., 2005; Fick and Hijmans, 2017). These data provided the 5th

Intergovernmental panel on climate change (IPPC5) climate projections for four Representative Con-

centration Pathways (RCPs): 2.6, 4.5, 6.0 and 8.5 (van Vuuren et al., 2011). The different RCPs indi-

cate different possible emission scenarios and represent the resulting radiative forcing in 2100,

Figure 6. Spatial data inputs for generalised linear model. Countries shown in black are not considered endemic for YF. (a) Estimated mean monthly

rainfall (mm) for baseline/current scenario. (b) Average temperature at baseline/current scenario in ˚C. (c) Longitude. (d) Range in temperature at

baseline/current scenario in ˚C.
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measured in W/m2 or watts per square metre, see Table 3 for further information (Stocker, 2013).

Each scenario is assumed to peak at a different times, with emissions peaking between 2010 and

2020 for RCP 2.6, but rising throughout the century for RCP 8.5. Projections of the mean global tem-

perature rise by 2046–2065 are 1 or 2 ˚C for RCPs 2.6 or 8.5, respectively, compared to pre-industrial

levels of the 1880s. By the end of the century, these projections suggest a rise of 1 [0.3 to 1.7] or 3.9

[2.6 to 4.8]˚C for RCPs 2.6 or 8.5 (Stocker, 2013; Rogelj et al., 2012). Current warming is estimated

to be 0.85 ˚C since pre-industrial levels (Stocker, 2013). Based on current commitments through

aspects such as the Paris agreement, scenarios where temperatures are expected to rise by more

than 3 ˚C have been suggested to be most likely (Sanford et al., 2014). As such, a recent study

omitted the RCP 2.6 scenario as it is unlikely now to occur (Mora et al., 2013; van Vliet et al.,

2009).

Projected mean rainfall, maximum temperature and minimum temperature are available for each

RCP scenario in years 2050 and 2070. We take the midpoint and range of the temperature as inputs

for the model of YF occurrence, where the midpoint temperature is used to calculate the tempera-

ture suitability index.

We do not model changes in climate prior to 2018, instead using Worldclim baseline estimates

described as representative of conditions from 1960 to 1990 (Hijmans et al., 2005).

Temperature suitability
We estimate the components of the temperature suitability index from YF-specific sources of infor-

mation on extrinsic incubation period, vector mortality and bite rate for A. aegypti, the urban vector

of YF (Davis, 1932; Tesla et al., 2018; Hamlet et al., 2018b; Mordecai et al., 2017). The extrinsic

incubation period was estimated from the experimental results of Davis which were calculated spe-

cifically for YF in A. aegypti (Davis, 1932). We included bite rate data from both Mordecai et al.,

2017 and Martens, 1998 which both describe A. aegypti. Finally, vector mortality was estimated

from the experimental data of Tesla et al., 2018. Where data was provided in figure form, plots

were digitised to extract the information. All data used for fitting the temperature suitability model

are made available in the GitHub repo (https://github.com/mrc-ide/YF_

climateChange; Gaythorpe, 2020; copy archived at https://github.com/elifesciences-publications/

YF_climateChange). Whilst we focus only on thermal response of the urban vector of YF due to data

availability, we estimate the thermal response models within a Bayesian hierarchical framework in

order to capture some of the uncertainty that we miss from examining one vector species.

Table 2. Generalised linear model covariates.

Covariate Interpretation

log(survey quality) Log of the survey quality for countries in YFSD.

adm05 Country factors for countries not in YFSD.

longitude Longitude of province centroid

temperature suitability Temperature suitability at average suitability of province.

temperature range Temperature range in province.

rainfall Mean Precipitation in province.

log(pop) Log of the human population size of the province

Table 3. Projected change in global mean surface air temperature and CO2 concentrations by 2100

relative to the reference period of 1986–2005 (Stocker, 2013).

Scenario Temperature rise (˚C) [range] CO2 concentrations (ppm)

RCP 2.6 1 [0.3 to 1.7] 421

RCP 4.5 1.8 [1.1 to 2.6] 538

RCP 6.0 2.2 [1.4 to 3.1] 670

RCP 8.5 3.7 [2.6 to 4.8] 936
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Models
We reformulate an established model of YF occurrence to accommodate nonlinear dependence on

temperature and rainfall (Garske et al., 2014; Jean et al., 2020; Gaythorpe et al., 2019). We cou-

ple this with established results from a transmission model of serological status to estimate transmis-

sion intensity across the African endemic region at baseline/current environmental conditions . Then,

we project transmission intensity for four climate scenarios given projected changes in temperature

and rainfall.

YF occurrence
The generalised linear model (GLM) of YF occurrence provides the probability of a YF report at first

administrative unit level for the African endemic region dependent on key climate variables. In order

to assess the effect of climate change on YF transmission, we use the same methodology as

(Garske et al., 2014; Jean et al., 2020; Gaythorpe et al., 2019); and incorporate covariates indica-

tive of climate change that also have projections available in years 2050 and 2070 for different emis-

sion scenarios. As such, we omit enhanced vegetation index and land cover from the best fitting

model of Garske et al., 2014 in favour of the temperature suitability index which depends on the

average temperature, the temperature range and average rainfall. Temperature and rainfall are

known to have implications on both the vectors of YF and the distribution of the non-human primate

reservoir (Reinhold et al., 2018; Cowlishaw and Hacker, 1997). However, the effect of tempera-

ture, particularly on vectors, is highly non-linear with increased mortality seen at very low and high

temperatures; as such, we include the range in temperature as a covariate of our occurrence model

as well as the non-linear temperature suitability index (Mordecai et al., 2017; Tesla et al., 2018). A

full listing of covariates used in given in the appendix.

Temperature suitability
We model suitability of the environment for YF transmission through temperature dependence. It

has been shown that the characteristics of the virus and vector change with temperature

(Brady et al., 2014; Kraemer et al., 2015; Mordecai et al., 2017; Tjaden et al., 2018). We model

this using a function of temperature for the mosquito biting rate, the extrinsic incubation period and

mortality rate for the mosquito which we combine to calculate the temperature suitability based on

the Ross-MacDonald formula for the basic reproduction number of a mosquito-borne disease (Mac-

donald, 1957). In the below, we focus on A. aegypti.

The functional form used to model temperature suitability varies in the literature. We continue to

use a form which can be parameterised solely from data specific to YF (Hamlet et al., 2018b;

Garske et al., 2013). However, alternative formulations have been published in the context of other

arboviral infections (Mordecai et al., 2017; Ryan et al., 2019; Brady et al., 2014; Brady et al.,

2013; Tjaden et al., 2018).

Each input of the temperature suitability, zðTÞ, is modelled as a function of average temperature

where the individual thermal response follow the forms of Mordecai et al. The temperature suitability

equation is as follows:

zðTÞ ¼
aðTÞ2 expð��ðTÞ�ðTÞÞ

�ðTÞ
; (1)

where T denotes mean temperature, � is the extrinsic incubation period, a is the bite rate and m is

the mosquito mortality rate. The thermal response models for �, a and m follow Mordecai et al.,

2017 as follows:

aðTÞ ¼ acTðT � aT0ÞðaTm �TÞ0:5;

�ðTÞ ¼ 1=�cTðT � �T0Þð�Tm �TÞ0:5;

�ðTÞ ¼ 1=ð��cðT ��T0Þð�Tm �TÞÞ;

where the subscripts T0 and Tm indicate respectively the minimum and maximum values of each
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variable, and subscript c labels the positive rate constant for each model. The three resulting param-

eters for each model are estimated by fitting to available experimental data. The mortality rate m is

limited to be positive.

Mapping probability of occurence to force of infection
We utilise previously estimated models of seroprevalence informed by serological survey data,

demography and vaccination coverage information (Garske et al., 2014; Gaythorpe et al., 2019).

The transmission intensity is assumed to be a static force of infection, akin to the assumption that

most YF infections occur as a result of sylvatic spillover (Garske et al., 2014; Gaythorpe et al.,

2019). The force of infection is assumed to be constant in each province over time and age. As such,

we may model the serological status of the population in age group u as the following:

Sðl;uÞ ¼ 1�ð1�

P
a2uð1� expð�laÞÞpaP

a2u pa
Þð1�

P
a2u vapaP
a2u pa

Þ

where l is the force of infection, pa the population in annual age group a and va the vaccination

coverage in annual age group a. This provides us with estimates of force of infection in specific loca-

tions where serological surveys are available.

In order to estimate transmission intensity in areas where no serological survey data is available,

we link the GLM predictions with seroprevalence estimates through a Poisson reporting process.

The force of infection can be used to estimate the number of infections in any year. Thus, we may

calculate the number of infections over the observation period. These will be reported with a certain

probability to give the occurrence shown in the GLM. As such, we assume that the probability of at

least one report in a province over the observation period, qi, depends on the number of infections

in the following way:

qi ¼ 1�ð1� �iÞ
ninf ;i

where �c is the per-country reporting factor which we relate to the GLM in the following way:

ninf ;i lnð1� �cÞ ¼�expðXbÞ

where X are the model covariates and b, the coefficients. The probability of detection can then

be written in terms of the country factors, which are GLM covariates, bc, and b, the baseline surveil-

lance quality calculated from the serological survey data:

lnð� lnð1� �cÞÞ ¼ bc þ b:

Thus, we may transform the predictions given by the GLM of YF occurrence using the probability

of detection obtained in the provinces where we have both serological studies and GLM predictions

to produce FOI estimates for the entire endemic region.

Estimation
We estimate the models of temperature suitability and YF report together within a Bayesian frame-

work using Metropolis-Hastings Markov Chain Monte Carlo sampling with an adaptive proposal dis-

tribution (Andrieu and Thoms, 2008; McKinley et al., 2014; Roberts and Rosenthal, 2009;

Sherlock et al., 2015; Tennant and McKinley, 2019). The likelihood contains components for the

GLM of YF reports as well as the thermal response models and is given by the following:

logðLÞ ¼ logðLGLMÞþ logðLaÞþ logðL�Þþ logðL�Þ;

where logðLxÞ denotes the log likelihood of element x. The log likelihood for the GLM assumes

that the binary YF occurrence data is Bernoulli distributed (Garske et al., 2014):

logðLGLMÞ ¼
X

i

ðyi logðqiÞþ ð1� yiÞ logð1� qiÞÞ; (2)

where yi is the binary occurrence and qi is the probability of at least one YF report in province i.
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We propagate uncertainty in the estimation of the GLM from the thermal response models as well

as that from the seroprevalence into the resulting transmission intensity estimates.

The thermal response likelihoods are provided by an exponential distribution for bite rate, a Ber-

noulli distribution for mortality and a normal distribution for extrinsic incubation period.

The estimation, analysis and manuscript were all performed or written in R version 3.5.1, ridgeline

plots were generated with packages ggplot2 and ggridges (R Development Core Team, 2014;

Wickham, 2016; Wilke, 2018; Garnier, 2018).

Future projections
In order to assess future changes in force of infection, and thus disease burden, we incorporate

ensemble climate projections of temperature change and precipitation. We assume that the force of

infection is constant until 2018 and then changes linearly between 2018, 2050 and 2070, the years

for which climate projections are available. Furthermore, in order to compare only the influence of

changing population and force of infection, we assume that vaccination after 2019 is kept at the rou-

tine levels of 2018. As such, the results will not be affected by country-specific preventive vaccination

campaigns but, future burden will be over estimated as there are likely to be preventive and reactive

campaigns in future. We estimate burden by calculating the proportion of infections who become

severe cases and then, of those, the proportions that die, using published case fatality ratio esti-

mates (Johansson et al., 2014). We compare burden estimates with a baseline scenario assuming

the same demographic conditions and vaccination levels as the climate change scenarios but no

change in climate variables (precipitation and temperature) over time.

Additional information

Competing interests

Neil M Ferguson: Senior editor, eLife. The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

Bill and Melinda Gates Foun-
dation

OPP1117543 Tini Garske
Katy AM Gaythorpe

Bill and Melinda Gates Foun-
dation

OPP1157270 Katy A M Gaythorpe
Tini Garske

Medical Research Council MR/R015600/1 Katy A M Gaythorpe
Arran Hamlet
Tini Garske
Neil M Ferguson

This work was carried out as part of the Vaccine Impact Modelling Consortium (),

which is funded by Gavi, the Vaccine Alliance and the Bill & Melinda Gates

Foundation. The views expressed are those of the authors and not necessarily those

of the Consortium or its funders. The final decision on the content of the publication

was taken by the authors.We acknowledge joint Centre funding from the UK Medical

Research Council and Department for International Development. The funders had

no role in study design, data collection and interpretation, or the decision to submit

the work for publication.

Author contributions

Katy AM Gaythorpe, Conceptualization, Resources, Data curation, Software, Formal analysis, Valida-

tion, Investigation, Visualization, Methodology, Writing - original draft, Project administration, Writ-

ing - review and editing; Arran Hamlet, Formal analysis, Validation, Investigation, Visualization,

Methodology, Writing - review and editing; Laurence Cibrelus, Data curation, Writing - review and

editing; Tini Garske, Resources, Supervision, Funding acquisition, Methodology, Project administra-

tion; Neil M Ferguson, Supervision, Project administration, Writing - review and editing

Gaythorpe et al. eLife 2020;9:e55619. DOI: https://doi.org/10.7554/eLife.55619 15 of 27

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.55619


Author ORCIDs

Katy AM Gaythorpe https://orcid.org/0000-0003-3734-9081

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.55619.sa1

Author response https://doi.org/10.7554/eLife.55619.sa2

Additional files
Supplementary files
. Transparent reporting form

Data availability

Public repository data: Vaccination coverage: coverage is available to download from the PoLiCi

shiny app : https://shiny.dide.imperial.ac.uk/polici/. Serology surveys: There are seven published sur-

veys used, available at DOI: 10.1016/0147-9571(90)90521-T, DOI: 10.1093/trstmh/tru086, DOI: 10.

1186/s12889-018-5726-9, DOI: 10.4269/ajtmh.2006.74.1078, PMID: 3501739, PMID: 4004378,

PMID: 3731366 Demographic data: Population level data was obtained from UN WPP https://popu-

lation.un.org/wpp/, this was disaggregated using Landscan 2014 data https://landscan.ornl.gov/

landscan-data-availability. Environmental data: This was obtained from LP DAAC: https://lpdaac.

usgs.gov/ and worldclim http://www.worldclim.org/ Yellow fever outbreaks: These were compiled

from the WHO weekly epidemiologic record and disease outbreak news https://www.who.int/wer/

en/ and https://www.who.int/csr/don/en/. Data elsewhere: The data from the WHO YF surveillance

database and from recent serological surveys from WHO member states in Africa underlying the

results presented in the study are available from World Health Organization (contact: William Perea,

pereaw@who.int or Laurence Cibrelus, cibrelusl@who.int or Jennifer Horton, jhorton@who.int).

References
Andrieu C, Thoms J. 2008. A tutorial on adaptive MCMC. Statistics and Computing 18:343–373. DOI: https://
doi.org/10.1007/s11222-008-9110-y

Barrett AD, Higgs S. 2007. Yellow fever: a disease that has yet to be conquered. Annual Review of Entomology
52:209–229. DOI: https://doi.org/10.1146/annurev.ento.52.110405.091454, PMID: 16913829

Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Delatte H, Grech MG, Leisnham PT,
Maciel-de-Freitas R, Styer LM, Smith DL, Scott TW, Gething PW, Hay SI. 2013. Modelling adult aedes aegypti
and aedes albopictus survival at different temperatures in laboratory and field settings. Parasites & Vectors 6:
351. DOI: https://doi.org/10.1186/1756-3305-6-351, PMID: 24330720

Brady OJ, Golding N, Pigott DM, Kraemer MU, Messina JP, Reiner RC, Scott TW, Smith DL, Gething PW, Hay SI.
2014. Global temperature constraints on aedes aegypti and ae albopictus persistence and competence for
dengue virus transmission. Parasites & Vectors 7:338. DOI: https://doi.org/10.1186/1756-3305-7-338,
PMID: 25052008

Cowlishaw G, Hacker JE. 1997. Distribution, diversity, and latitude in african primates. The American Naturalist
150:505–512. DOI: https://doi.org/10.1086/286078, PMID: 18811289

Davis NC. 1932. The effect of various temperatures in modifying the extrinsic incubation period of the yellow
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Appendix 1

Serological surveys
The included surveys are the same as described in Gaythorpe, et al. Summary statistics for

these surveys are included in the following table Appendix 1—table 1.

Appendix 1—table 1. Characteristics of included serological surveys. Recreated from

Gaythorpe et al., 2019.

Location Sample size Year Reference

Nigeria 184 1990 Omilabu et al., 1990

Democratic Republic of the Congo 140 1985 Werner and Huber, 1984

Republic of the Congo 360 1985 Merlin et al., 1986

Cameroon (North) 840 1987 Tsai et al., 1987

Cameroon (South) 256 2001 Kuniholm et al., 2006

Uganda (zones) 584 2012

Rwanda (zones) 1286 2012

Zambia (zones) 3679 2013

Sudan (zones) 1814 2012

Kenya (zones) 1960 2013

Ethiopia (zones) 1645 2014 Mengesha Tsegaye et al., 2018

Democratic republic of the Congo (zones) 479 2014

South Sudan (zones) 1480 2014

Chad (zones) 352 2014

Appendix 1—table 2. Parameter estimates with low and high ends of the 95% credible

interval.

Parameter 95% CrI low Median 95% CrI high Meaning

a_c 0.0002 0.0003 0.0003 Bite rate

a_T0 0.2205 2.9285 7.2004 Bite rate

a_Tm 40.0223 40.1368 40.2981 Bite rate

adm05AGO 1.1382 1.7656 2.3960 GLM coefficients

adm05BDI �1.1566 �0.3275 0.4671 GLM coefficients

adm05ERI �0.9901 �0.1074 0.7519 GLM coefficients

adm05ETH �1.2878 �0.5366 0.1882 GLM coefficients

adm05GNB �1.4959 �0.7566 �0.0692 GLM coefficients

adm05KEN �1.1264 �0.3510 0.3722 GLM coefficients

adm05MRT �1.1837 �0.4218 0.2927 GLM coefficients

adm05RWA �1.1411 �0.3175 0.4826 GLM coefficients

adm05SDN �0.8870 �0.1106 0.6377 GLM coefficients

adm05SOM �1.0177 �0.1425 0.7144 GLM coefficients

adm05SSD �0.9086 �0.0796 0.7140 GLM coefficients

adm05TZA �1.3990 �0.6442 0.0812 GLM coefficients

adm05UGA �0.6618 �0.0081 0.6163 GLM coefficients

adm05ZMB �1.2049 �0.3840 0.3975 GLM coefficients

Intercept �16.4268 �13.2731 �10.2753 GLM coefficients

log.surv.qual.adm0 0.3209 0.5048 0.6917 GLM coefficients

Appendix 1—table 2 continued on next page
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Appendix 1—table 2 continued

Parameter 95% CrI low Median 95% CrI high Meaning

logpop 0.9133 1.1466 1.3913 GLM coefficients

lon �1.1806 �0.9173 �0.6557 GLM coefficients

mu_c �0.8003 �0.7578 �0.7166 Mortality

mu_T0 12.2133 12.7137 13.1498 Mortality

mu_Tm 38.0341 38.0481 38.0532 Mortality

iEIP_c 0.0001 0.0001 0.0002 Inverse EIP

iEIP_T0 10.9412 17.6724 22.2418 Inverse EIP

iEIP_Tm 39.0737 42.1075 45.5927 Inverse EIP

temp_suitability 0.0101 0.1523 0.3863 GLM coefficients

worldclim_rainfall 0.2338 0.4629 0.6969 GLM coefficients

worldclim_temp_range �0.1912 0.0368 0.2687 GLM coefficients

Appendix 1—table 3. Deaths in the African endemic region in 2050 and 2070 compared to

the baseline/constant scenario.

Year Scenario Median 95% Cr interval

2050 RCP 2.6 191309 [62462, 468985]

2050 RCP 4.5 200470 [66330, 499615]

2050 RCP 6.0 198096 [65113, 489494]

2050 RCP 8.5 214427 [69699, 554842]

2050 baseline 172668 [58177, 395300]

2070 RCP 2.6 273582 [90275, 653145]

2070 RCP 4.5 298822 [99694, 735109]

2070 RCP 6.0 301001 [99551, 739950]

2070 RCP 8.5 349157 [108913, 933389]

2070 baseline 249556 [84877, 560186]

Appendix 1—table 4. Probability of increase (%) in deaths in the African endemic region in

2050 and 2070 compared to the baseline/constant scenario.

Year Scenario Median 95% Cr interval

2050 RCP 2.6 92.97 [92.7, 93.23]

2050 RCP 4.5 94.85 [94.61, 95.07]

2050 RCP 6.0 94.89 [94.64, 95.13]

2050 RCP 8.5 95.98 [95.78, 96.17]

2070 RCP 2.6 95.47 [95.24, 95.7]

2070 RCP 4.5 94.64 [94.41, 94.88]

2070 RCP 6.0 94.10 [93.85, 94.35]

2070 RCP 8.5 95.94 [95.72, 96.15]

We estimated the components of the model within a Bayesian framework. The posterior

distributions of our parameters could not be written in closed form and so we sample using

Markov Chain Monte Carlo (MCMC) Materials and methods. We utilise the classical

Metropolis-Hasting algorithm for sampling, where the algorithm is well described by

Tennant, Mckinley and Recker. Similarly, we sample new parameters in the MCMC according

to a multivariate normal distribution which is adapted according to the covariance of the

Markov chain .
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Appendix 1—figure 1. Location of serological study sites shown in green.

Convergence of the Markov chains was assessed visually; however, the approximate

number of required iterations to achieve a standard degree of accuracy was calculated using

the Raftery statistic. Trace plots of all parameters are presented in Appendix 1—figure 2,

resulting parameter estimates are given in Appendix 1—table 2.
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Appendix 1—figure 2. Traceplots for all parameters.

Twenty chains were run for between 150,000 and 260,000 iterations.

Generalised linear model uncertainty
Uncertainty in the predictions of the generalised linear model of yellow fever risk are

presented for the baseline/current scenario in Appendix 1—figure 3. In these, 1000 samples

of the posterior predictive distribution were taken and the coefficient of variation was

calculated. Uncertainty is extensive, most particularly in East and Central Africa where there

are fewer reports of yellow fever occurrence. This uncertainty is propagated into the

projections of risk and transmission intensity.
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Appendix 1—figure 3. Coefficient of variation (%) for GLM predictions.
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Appendix 1—figure 4. Predicted force of infection change (%) for each country and scenario

in 2050. Note, countries are ordered by difference and may vary in position. (a) RCP 2.6,

(b) RCP 4.5, (c) RCP 6.0, (d) RCP 8.5.
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Appendix 1—figure 5. Predicted force of infection change (%) for each country and scenario

in 2070. Note, countries are ordered by difference and may vary in position. (a) RCP 2.6,

(b) RCP 4.5, (c) RCP 6.0, (d) RCP 8.5.

Transmission intensity projection uncertainty
We include uncertainty by sampling from the collected posterior distributions 1000 times to

give the results shown. This includes uncertainty both in estimated parameters and in the

estimates of CFR and proportion of infections that as categorised as severe. We do not

include the uncertainty in climate change projections of temperature and precipitation, as

such, the uncertainty shown is an under-estimate.

The difference between scenarios is calculated between corresponding samples from the

posterior predictive distribution. This means that any difference shown between scenarios is

only for one parameter set.
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The influence of rainfall and/or temperature change on
transmission intensity
In the following we calculate the mean transmission intensity from the median posterior

predicted force of infection for each province under three scenarios:

1. That both rainfall and tempature change as per climate scenario RCP 8.5,
2. That only rainfall changes as per climate scenario RCP 8.5; temperature remains at current

levels,
3. That only temeperature changes as per climate scenario RCP 8.5; rainfall remains at current

levels.

In Appendix 1—figure 6 we find heterogeneous effects by location. In general,

transmission is projected to be higher when modelled with both temperature and rainfall

change, this is driven by the change in temperature. In some countries such as Cameroon

and Congo, including the projected change in rainfall, moderates the influence of changing

temperature that is the highest transmission is seen when only temperature changes. In slight

contrast, for Uganda and Kenya, the highest transmission is seen when both temperature

and rainfall are changing suggesting a ‘perfect storm’ of climatic change.

Appendix 1—figure 6. Predicted mean force of infection per country for 2050 and 2070 under

3 modelling scenarios. Projections are calculated from the median posterior predicted force of

infection per province. All projections assume temperature and/or rainfall changing under

RCP 8.5.

Appendix 1—figure 6 is included for illustration of the relative effects of changes in

rainfall and temperature across the region. In all climate scenarios, both rainfall and

temperature are projected to change (see earlier figures) and so for the main text, we

include the influence of both for all projections. projected-number-of-deaths.

Projected number of deaths
The projected numbers of deaths in the African endemic region for 2050 and 2070 are

shown in Appendix 1—table 3. and the probability of an increase in deaths is shown in

Appendix 1—table 4.
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