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An essential protective role of IL-10 in the
immunological mechanism underlying
resistance vs susceptibility to lupus induction
by dendritic cells and dying cells
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Fang-Ping Huang1,3

Abstract

Objective. To define the role of IL-10 in lupus pathogenesis, and to understand the immunological mech-

anisms underlying resistance vs susceptibility to lupus disease induction by dendritic cells (DCs) and dying

cells.

Methods. Groups of IL-10-deficient and normal C57BL/6 mice were injected with syngenic DCs that had

ingested necrotic cells prepared by either freeze�thaw cycle (DC/necF/T) or heat shock (DC/necH/S) pro-

cedures, or with DC or necrotic cells alone, or with PBS only. Disease development, including proteinuria

and renal pathological changes, was monitored. Levels of autoantibodies against different lupus-

associated nuclear antigens were measured by ELISAs, and IC deposition in the kidneys was confirmed

by immunostaining.

Results. No significant proteinuria was detected in the mice. However, striking renal pathological changes

typical of IC-mediated GN were consistently observed in the DC/necF/T-treated IL-10�/� mice. These

included glomerular hypercellularity and macrophage infiltration, renal IC deposition, circulating kidney-

reactive autoantibodies and the presence of immunoglobulin G2 isotype-specific antibody complexes in

the diseased kidneys. We demonstrated further that host-derived IL-10 was primarily responsible for

protecting against the induction of pathogenic Th1 type of autoantibody responses in the mice.

Conclusion. IL-10 protects against the induction of lupus-like renal end-organ damage by down-

regulating pathogenic Th1 responses.
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Introduction

SLE is a complex autoimmune disorder and the aetiology

is still far from clear. The disease is characterized im-

munologically by the production of autoantibodies against

a variety of self-tissue antigens, particularly of the nuclear

components [1]. Development of IC-mediated kidney dis-

ease may result in renal failure, which is a severe compli-

cation and major cause of death in SLE [1, 2]. While B cells

are understandably very important in the process, the in-

duction of autoantibodies especially those of pathogenic

isotypes [3�6] is largely T-cell dependent and antigen

driven [1, 7]. The questions have been how these harmful

immune responses are initiated, perpetuated and, import-

antly, why they are under control in normal individuals

[8�11].

Emerging evidence indicates that processing and pres-

entation of autoantigens acquired from dying cells by den-

dritic cells (DCs) are involved in the development of lupus

disease [4, 12, 13]. The findings may provide and explain

immunologically the initial trigger of autoimmune
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responses, but more complex mechanisms appear to be

involved in the regulation of the disease induction and

development, which are evidently governed by multiple

and genetically determined disease predisposing or pro-

tective factors [14]. We have previously demonstrated that

injections of DCs loaded with syngenic necrotic cells (DC/

nec) induced strong ANA responses in mouse models [4].

The treatment not only accelerated disease progression in

a spontaneous lupus mouse model (MRL/lpr strain), but

also induced a full-blown lupus-like disease in the wild-type

(W/T) control MRL/+ mice. Another intriguing finding from

the study was that, in contrast to the susceptible Murphy

Roths Large (MRL) strains, similarly treated C57BL/6 mice

were fully protected from the disease induction despite

high levels of circulating anti-dsDNA antibodies. A patho-

genic Th1 type of response was found to be closely asso-

ciated with the disease induction. Importantly, the results

suggested that differences in the resistance vs susceptibil-

ity to disease induction could be explained by the presence

or absence of a feedback regulatory mechanism in which

IL-10 was likely to play an important role [4].

IL-10 is a potent immunosuppressive cytokine. It plays

an essential role in dampening down overt immune re-

sponses, especially the pro-inflammatory Th1 type of re-

sponse, and suppresses autoimmunity [15�17]. The

cytokine is known to inhibit DC maturation and functions,

including their ability to produce IL-12 essential for driving

Th1-cell differentiation [18]. The protective role of IL-10

has been previously demonstrated in several Th1-driven

autoimmune diseases, including RA [19] and IBD [20]. The

role of IL-10 in SLE is, however, still very controversial.

Elevated serum levels and enhanced in vitro production

of IL-10 have been reported in patients with SLE [21, 22].

Since IL-10 is also a cofactor for B-cell growth, as well

as a switching factor for IgG1, IgG3 and IgA antibody

isotypes, the enhanced IL-10 expression, particularly its

close association with disease activity, has been inter-

preted as being pathogenic in nature [22, 23]. In support

of this notion, results from several studies in SLE patients

and their relatives indicated an association of IL-10 pro-

moter polymorphism (high IL-10 expression) with the dis-

ease [24, 25], although the findings varied in studies on

different geographical populations [26]. Conclusions

drawn from one clinical trial in a group of six SLE patients

in Mexico reported 9 years ago did also suggest a bene-

ficial effect of anti-IL-10 treatment for the disease [27], but

so far there has been no further report to confirm these

findings.

Results from studies in mice also suggest that the IL-10

pathway is involved in murine lupus, but conflicting find-

ings have been reported too as to whether IL-10 may play

a disease-promoting or protective role [28�30]. While in-

jection of anti-IL-10 antibodies was shown to delay dis-

ease activity in NZB/W F1 lupus-prone mice [28], an

acceleration of disease onset and severity was observed

in MRL/lpr mice deficient in IL-10 gene [29]. Genetically,

while no linkage of IL-10 gene polymorphism to disease

susceptibility in the mouse has been reported to date,

polymorphism of the murine IL-10 receptor alpha chain

(Il10ra) of low expression has recently been shown to be

associated with the autoimmune phenotype in both of the

NZW and MRL mouse strains [31].

The present study therefore was designed to define the

role of IL-10 in lupus pathogenesis. By employing mice

with an otherwise resistant background (C57BL/6), but de-

ficient in their IL-10 gene (IL-10�/�), we tried to understand

the immunological and molecular mechanisms underlying

resistance vs susceptibility to lupus disease induction.

Materials and methods

Mice

IL-10 knockout mice (H-2b, strain B6.129P2-Il10tm1Cgn/J,

stock no. 002251, generation: N10F33, JAXR Mice

Database-002251 B6.129P2-Il10<tm1Cgn>/J), and W/T

control C57BL/6 mice (H-2b), were purchased from The

Jackson Laboratory (Bar Harbor, ME, USA) and set up as

breeders. The breeders of IL-10�/� strain have generally a

poor breeding efficiency, due to development of spontan-

eous IBD [32]. These mice and animals undergoing experi-

mental procedures were maintained in individual

ventilation cages (IVCs). All experiments involving live ani-

mals were carried out strictly according to the protocol

under licences approved by the Committee on the Use

of Live Animals in Teaching and Research (CULATR

761-03, 913-04), Hong Kong, and by the UK

Government Home Office (PIL70/5946).

DC generation and uptake of necrotic cells in vitro

DCs were prepared as previously described [4]. Briefly,

bone marrow precursor cells from 6- to 8-week-old

mice were cultured in medium containing murine GM-

CSF (20 ng/ml; Invitrogen) and murine IL-4 (5 ng/ml;

PeproTech) for 6 days. Two types of necrotic cell were

prepared from syngeneic mouse splenocytes, and cell ne-

crosis was induced by either a freezing (�80�C, 12 min)

and thawing (37�C) cycle (NecF/T), or by a heat-shock pro-

cedure (56�C, 1 h) (NecH/S), respectively. Cell necrosis

was confirmed by trypan blue (1%, Sigma), or by propi-

dium iodide (PI), staining. DCs were then co-cultured

overnight with the necrotic cells (1 : 5, DC : necrotic cells)

in vitro and the efficiency of dying cell uptake by DC as-

sessed as described previously [4]. DC purity and func-

tional phenotypes before and after co-culturing with dying

cells were analysed by flow cytometry using antibodies to

DC surface makers (MHC class II, CD11c, CD80, CD86,

CD40; BD Pharmingen).

Immunization protocol

A total of 1�106 DCs loaded with either NecF/T (DC/necF/T)

or NecH/S (DC/necH/S) cells of the same strain, or DC alone

(DC); or 5� 106 necrotic cells alone (Nec), were injected in

PBS intravenously into individual mice. In selected experi-

ments, for comparison, the W/TDC/nec or IL-10�/� DC/nec

cells were also injected reciprocally into the W/T and

IL-10�/�-recipient mice. Three injections were given at

14-day intervals starting at the age of 7�9 weeks.

At 12�16 weeks post-injection (5�6 months of age),
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the mice were sacrificed and renal pathological changes

assessed by histological and immunocytochemical exam-

inations. The in vivo model was repeated in principle five

times with consistent results, and the repeated experi-

ments were started freshly with naı̈ve and age- and

sex-matched animals, and monitored throughout until

the experimental end points.

Due to the poor breeding efficiency, however, the num-

ber of age- and sex-matched mice available for each of

the experiments, and repeated experiments, was often

limited and difficult to predict. In addition, IL-10�/� mice

with signs of enterocolitis [32] were excluded at initial

immunization. Therefore, each experiment had to be de-

signed based on availability of the mice with often small

group size, and priority of the experimental groups (i.e.

key groups only in some in vivo experiments). A total of

58 W/T and 72 IL-10�/�mice were tested in groups, in five

experiments, by the in vivo model. These included mice of

the two strains injected with either DC/necF/T (W/T: n = 22,

IL-10�/�: n = 27), DC/necH/S (W/T: n = 12, IL-10�/�: n = 16),

DC (W/T: n = 11, IL-10�/�: n = 11) or NecF/T (W/T: n = 3,

IL-10�/�: n = 3); and the control groups (Control) were

strain-, age- and sex-matched mice injected with PBS

only or no injection (W/T: n = 10, IL-10�/�: n = 15), respect-

ively. Also, during the experiments, some of the IL-10�/�

mice that developed severe enterocolitis had to be put

down for ethical reasons. When this occurred during a

relatively early stage of the experiments, they were

excluded from the quantitative pathological assessments

mentioned below (see supplementary tables 1 and 2,

available as supplementary data at Rheumatology Online).

Renal pathological assessments

Proteinuria was assessed weekly using Haema�combistix

(Bayer Diagnostics), graded according to the manufac-

turer’s instructions. Sixteen weeks after the initial DC im-

munizations, mice were killed and kidney tissues were

either snap-frozen, or fixed in Bouin’s solution for at

least 2 h, transferred into 70% ethanol and processed

into paraffin. For histological examinations, the

paraffin-embedded kidney sections were stained with

periodic acid�Schiff (PAS) reagent and scored for GN.

Glomerular cellularity was graded in a blinded fashion as

follows: Grade 0, normal; Grade 1, hypercellularity invol-

ving >50% of the glomeruli tuft in 25�50% of glomeruli;

Grade 2, hypercellularity involving >50% of the glomeruli

tuft in 50�75% of glomeruli; Grade 3, hypercellularity

involving >75% of the glomeruli or crescents in >25%

of glomeruli; and Grade 4, severe proliferative GN in

>90% of glomeruli. For consistency, the grading was all

done blindly by an experienced renal pathologist, H.T.C.

(second author), in the Hammersmith Hospital, London.

For detection of renal IC deposition, FITC-conjugated

goat polyclonal antibodies against mouse IgG (1/200 di-

lution; Sigma-Aldrich), IgG1 (1/100 dilution; Serotec,

STAR81F), IgG2b (1/50 dilution; Serotec, STAR83F) and

C3 (1/100 dilution; Cappel, #55500), and a rat anti-mouse

CD68 antibody (1/200 dilution), were used on the

frozen tissue sections. For IgG2ab subclass detection,

a biotinylated goat anti-mouse IgG2ab antibody (1/50 di-

lution; BD Pharmingen #553504) was added as the pri-

mary antibody, followed by FITC-conjugated streptavidin

(1/100 dilution; Vector, #SA5001). In selected experi-

ments, the staining intensity was quantified as previously

described and expressed as arbitrary fluorescence units

(AFU) [33].

Serological analyses

Blood samples were collected every 2 weeks, and serum

levels of anti-dsDNA Abs (IgG, IgG1, IgG2ab, IgG2b) were

measured by ELISA as described previously [4]. Briefly,

microtitre plates coated with type I calf thymus DNA

(Sigma) were treated with S1 nuclease (3 U/ml, Invitrogen)

to digest ssDNA. Serial diluted serum samples were

added and bound Abs detected with alkaline phosphatase

(AP)-conjugated goat anti-mouse IgG (Sigma), IgG1,

IgG2ab or IgG2b (Southern Biotech. Associates) detecting

antibodies. The results were expressed as arbitrary ELISA

units (AEU) relative to a standard positive control using

pooled sera from aged (5�6 months) and terminally ill

MRL/lpr lupus mice. The pooled MRL/lpr sera were

stored at �80�C as aliquots and used as a standard posi-

tive control throughout the study.

To determine the presence of kidney reactive autoanti-

bodies, serum samples doubling diluted (1 : 5 to 1 : 80)

were applied to the kidney sections prepared from

normal W/T mice (12 week old, female), and incubated

for 1 h at room temperature (RT). Bound antibodies (Abs)

were detected with fluorescein-conjugated IgG Fc-specific

anti-mouse Ab (1/200, Sigma), and analysed using an

Olympus BX4 fluorescence microscope (Olympus).

Statistics

The non-parametric Mann�Whitney test and the Student’s

t-test were used for statistical analysis of results from the

in vivo and in vitro experiments, respectively. Results from

the in vivo experiments were also reanalysed and con-

firmed by the one-way non-parametric analysis of var-

iance (ANOVA) test. P4 0.05 (*) was considered

statistically significant; 40.01 (**) highly statistically sig-

nificant; and 40.001 (***) very highly statistically

significant.

Results

To test the hypothesis that IL-10 plays a protective role

against lupus disease induction, groups of IL-10�/� and

W/T control mice (7�9 weeks old, female) were injected

intravenously with syngenic necrotic cells loaded DCs

(DC/nec), three times at bi-weekly intervals using a proto-

col we described previously [4]. Two types of necrotic cell,

prepared by either the freeze�thaw cycle (DC/necF/T) or

heat-shock procedure (DC/necH/S), were used and com-

pared in the present study (see Materials and methods

section). Experimental control groups included mice in-

jected with DCs alone, necrotic cells alone or PBS only.

Disease development was subsequently monitored

throughout the experiments.
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Mice deficient in IL-10 showed increased
susceptibility to DC/nec-induced renal disease

There was no significant proteinuria detected in any of

the experimental mouse groups during and after the

course of treatment (supplementary figure 1, available as

supplementary data at Rheumatology Online). However,

upon examining the kidneys at the end of each of three

repeated experiments (4 months after the first DC in-

jection), severe renal pathological changes typical of the

IC-mediated GN were consistently observed in the IL-10�/�

mice treated with DC/necF/T but not with DC/necH/S, DCs

or necrotic cells alone or PBS only; or in any of the simi-

larly treated W/T control mouse groups. The pathological

changes included increased glomerular size, glomerular

hypercellularity, narrowing of capillary lumens (Fig. 1A)

and macrophage (CD68+) infiltration (Fig. 1B). Results

from quantitative analysis (individually and blindly scored

0�4) confirmed that glomerular hypercellularity was signifi-

cantly higher (3- to 5-fold the mean scores) in the

DC/necF/T-treated IL-10�/� mice (Fig. 1A, dot plots) as

compared with mice of other treatment groups.

Lupus GN is typically characterized by IC deposition. To

determine whether the glomerular lesions were mediated

by ICs in the DC/necF/T-treated IL-10�/� mice, frozen kid-

ney sections were assessed for IgG and C3 deposition by

IF staining. Prominent glomerular IgG deposits were de-

tected in the DC/necF/T-treated IL-10�/�mice (Fig. 2A, dot

plots, n = 9). Although some glomerular IgG deposits were

also detected in the IL-10�/� mice treated with DC/necH/S

(n = 10) or DC alone (n = 5), the intensity of the staining was

significantly lower when compared with DC/necF/T-treated

IL-10�/�mice (Fig. 2A). No significant renal IgG deposition

was observed in mice treated with NecF/T alone (data not

shown). Similar findings were obtained for renal C3 de-

position (Fig. 2B). Results from quantitative analysis also

revealed that the intensity of C3 deposition in the DC/

necF/T-treated IL-10�/� mice was the highest among all

the experimental groups (Fig. 2B, dot plots). In contrast,

and consistent with our previous findings [4], no or very

low levels of glomerular IgG and C3 deposits were de-

tected in the similarly treated W/T control groups (Fig.

2A and B, open circles). The quantitative measurements

mentioned above were used where necessary for confirm-

ation purpose. These were done on tissues from selective

and representative experiments only. However, such

quantification had been repeated at least once, on tissues

from different experiments, with consistent results. The

data shown were pooled from three (Figs 1A and 2A)

and two (Fig. 2B) experiments, respectively. For CD68

staining, as a marker for macrophage infiltration, hence

additional supporting evidence of renal inflammation, the

kidney sections selected were the ones with high GN

score (53).

Serum ANA responses induced in DC/nec-treated
mice

The presence of circulating autoantibodies against nu-

clear constituents, anti-dsDNA in particular, is the hall-

mark of lupus disease [1]. We have previously

demonstrated that injection of syngenic DC/nec could

induce strong anti-dsDNA antibody responses in both

normal and lupus-prone mice, but disease induction was

closely associated with the types or isotypes of the auto-

antibodies so induced [4]. To understand the mechanism

underlying disease induction in IL-10�/� mice, serum

levels of autoantibodies against a range of different clas-

sical lupus-associated nuclear antigens were quantified.

Significant levels of anti-dsDNA IgG antibodies were

detected in the sera of all DC-injected mouse groups, of

both W/T and IL-10�/� strains. Surprisingly, the relative

levels induced by DC/necF/T treatment in the IL-10�/�

mice appeared to be similar, or even lower (e.g. for

anti-histone and anti-SM/nRNP), when compared with

those detected in the DC alone or DC/necH/S-treated

IL-10�/�, or the corresponding W/T control, disease-free

mice (supplementary figure 2, available as supplementary

data at Rheumatology Online). The serum anti-dsDNA

antibody levels in the mice treated with necrotic cells

alone were also similar to those in the PBS-treated or

untreated control mice (data not shown). In other words,

no significant difference in the serum levels of anti-ssDNA,

anti-chromatin, anti-histone and anti-SM/nRNP autoanti-

bodies between the diseased and disease-free mouse

groups was detected. Further isotypic analysis of the

serum autoantibodies (supplementary figure 3, available

as supplementary data at Rheumatology Online) and

total IgG (data not shown) also failed to reveal any signifi-

cant difference that could otherwise explain the disease

induction in the DC/necF/T-treated IL-10�/� mice.

Characterization of renal reactive autoantibodies in
DC/necF/T-treated IL-10�/� mice

There may be different explanations for the lack of correl-

ation between the serum levels of autoantibodies quanti-

fied and the renal disease development observed above.

For example, it could be due to different types or alterna-

tive specificities of the autoantibodies induced, or depos-

ition of the pathogenic autoantibodies onto the tissues

thus removing them from circulation.

To examine whether DC/necF/T treatment in IL-10�/�mice

induced antibodies specific for renal antigens, the pres-

ence and levels of circulating renal reactive autoantibo-

dies in these mice were also determined. For the

immunoreactivity assay, frozen kidney tissue sections

prepared from normal C57BL/6 mice were used as the

substrate. The results showed that sera from DC/necF/T-

treated IL-10�/�mice contained strong reactivities against

antigens present in the normal kidneys, but primarily on

the Bowman’s capsule and peritubular capillary network

(supplementary figure 4, available as supplementary data

at Rheumatology Online). Although the staining pattern

was different from the typical glomerular staining observed

on tissues taken directly from the diseased mice (Fig. 2A),

these results together suggested that DC/necF/T treatment

preferentially induced various nephrophilic autoantibodies

in IL-10�/� (but not similarly treated W/T) mice, which

could be responsible for causing the renal damage

observed.
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FIG. 1 Renal pathological assessments. Groups of W/T and IL-10�/�mice (7�9 weeks of age, female) were injected three

times, and at bi-weekly intervals, with 1�106 syngenic DCs that had been preloaded with necrotic cells prepared either

by the freeze�thaw (DC/necF/T) or heat-shock (DC/necH/S) procedure (see Materials and methods section), or with DC

alone (DC) or PBS alone (PBS). At 16-week post-injection (6 months of age), all mice were sacrificed and renal patho-

logical changes assessed by histological and immunocytochemical examination. (A) Kidney histological changes:

PAS-stained kidney sections showing representative micrographs for each of the four experimental groups. Glomerular

cellularity was scored (0�4, see Materials and methods section) for individual mice and shown as dot plots. (B) Glomerular

macrophage infiltration: immunostaining of kidneys for CD68 (brown) showing extensive macrophage infiltration in the

affected glomeruli of DC/necF/T—but not DC/necH/S-treated IL-10�/�mice. Original magnifications �20 in (A), and �40 in

(B). The quantitative data (dot plots) shown in (A) (randomly selected only from repeated experiments) were results

pooled from three experiments (for details, see supplementary table 2, available as supplementary data at Rheumatology

Online). Statistical differences between groups were determined by the non-parametric Mann�Whitney test, and the

P-values indicated in the graphs.
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To determine whether certain pathogenic autoantibody

subclasses were involved in the disease induction, isoty-

pic analysis of the autoantibodies present in the affected

kidneys was also carried out. In agreement with our

previous findings in MRL mice [4], high frequencies and

intensity of the IgG2ab (C57BL/6 allotype) and IgG2b-

containing IC deposits, in addition to those of the IgG1

isotype, were detected but only in the glomeruli of

FIG. 2 Renal IC deposition: kidney tissue samples were from mice of the different treatment groups described in Fig. 1.

Immunostaining for mouse IgG (A) and C3 (B) on frozen kidney sections revealed severe glomerular deposits but only in

DC/necF/T-treated IL-10�/� mice. The scattered dot plots compare the relative levels of renal IgG and C3 deposits, as

quantified by the IF method (see Materials and methods section). Each symbol represents a single mouse and the

horizontal bars are the mean values for each of the four treatment groups of each mouse strain. In these experiments, the

donor cells and recipient mice were of the same strain, i.e. W/T and IL-10�/� mice, respectively. Original magnification

�20 (A). The quantitative data (dot plots) shown in (A) and in (B) were results pooled from three or two repeated

experiments, respectively (for details see supplementary tables 3 and 4, available as supplementary data at

Rheumatology Online). Statistical differences between groups are determined by the non-parametric Mann�Whitney test,

and the P-values indicated in the graphs. The results were also reanalysed and reconfirmed by the non-parametric

one-way ANOVA test to be highly significant among all of the experimental groups (P< 0.0001); or among the four

differently treated IL-10�/� (P< 0.01), but not W/T control (P> 0.05), groups of the same strain.
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DC/NecF/T-treated IL-10�/� mice (Fig. 3). This was in con-

trast to what was observed in the DC/NecH/S-treated group,

being solely of the IgG1 subclass (Fig. 3, DC/NecH/S). Due to

its long half life, high affinity towards complement binding

and activation of certain Fcg receptors, FcgIV in particular

[34], the IgG2 subclass is believed to be the most patho-

genic autoantibody isotype [35]. The results confirm there-

fore again the importance of Th1-mediated responses

in the lupus disease induction [4], and that IL-10 plays

an essential protective role in preventing the pathogenic

nephrophilic autoantibody responses in the mice.

A dominant role of host-derived IL-10 in controlling
the pathogenic Th1 type of nephrophilic autoantibody
response

The above data point, therefore, to an essential role of

IL-10 in controlling DC/nec-induced renal disease devel-

opment. A further important question is about the source

FIG. 3 Characterization of renal reactive autoantibodies—isotypic analysis of the renal ICs. The antibody isotypes of renal

Ig deposits in the DC/necF/T- and DC/necH/S-treated IL-10�/� mice were assessed by immunostaining using

FITC-conjugated antibodies specific for mouse IgG1, IgG2ab (C57/BL6 allotype specific Abs) and IgG2b, respectively.

Photomicrographs representative of each of the two treatment groups (DC/necF/T, DC/necH/S) are shown. The intensity of

the staining was quantified (AFU, dot plots). Each symbol represents a single mouse, the horizontal bar is the mean value

for each group, and the data shown were results pooled from two repeated experiments (for details see supplementary

table 5, available as supplementary data at Rheumatology Online). Control group: PBS-treated mice. Original magnifi-

cation: �20; statistical differences between groups were determined by the non-parametric Mann�Whitney test, and the

P-values indicated in the graphs.
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of IL-10, specifically refering to the role of DC-derived vs

host-derived IL-10, in the mechanism underlying disease

resistance. To verify this, W/T or IL-10�/� DCs pulsed with

NecF/T were respectively and reciprocally injected into

both W/T and IL-10�/� mice. As shown in Fig. 4, substan-

tial glomerular IC deposits were evident in both groups of

the IL-10�/� recipent mice injected with either W/T or

IL-10�/� DC/necF/T. The frequencies of glomeruli positive

for IgG (Fig. 4A), IgG1 (Fig. 4B), IgG2a (Fig. 4C) and IgG2b

(Fig. 4D) were all significantly higher in the DC/necFT-trea-

ted IL-10�/�mice as compared with the PBS-treated con-

trol group. In the W/T recipient mouse groups however,

although higher levels of IgG- and IgG1-positive glomeruli

were also evident especially in the IL-10�/� DC/necF/T-

treated group (Fig. 4A and B), only background levels of

IgG2a- and IgG2b-positive glomeruli were detectable in

the DC/necF/T-treated groups similar to those observed

in the PBS-treated control mice (Fig. 4C and D). These

further findings, therefore, indicated that host-derived en-

dogenous IL-10 was primarily and overwhelmingly re-

sponsible for protection against the disease, possibly by

affecting different stages of disease induction and devel-

opment in our model. One possibility is that the injected

DC could have been taken up by host DC to prime auto-

reactive T cells. However, considering the relatively very

small number of DCs adoptively transferred per mouse

against the number of host cells, which could potentially

produce the cytokine (i.e. endogenous IL-10), it was not

surprising to see that the differences between mice in-

jected with W/TDC/nec and IL-10�/�DC/nec were small.

Nevertheless, the level of IgG deposits did appear rela-

tively higher in the IL-10�/�DC/nec-treated, as compared

with the W/TDC/nec-treated, recipient mice of the same

strain, indicating that the lack of DC-derived IL-10 could

have also contributed to the disease induction possibly

during the initiation phase.

Discussion

Based on and continued from our previous work [4], the

present study aimed to understand the immunological and

molecular mechanisms underlying resistance vs suscepti-

bility to lupus disease induction by DCs and dying cells.

We have previously demonstrated how injection of DCs

loaded with syngeneic necrotic cells could induce strong

autoantibody responses leading to the development of a

lupus-like disease in the susceptible MRL mouse strain.

Intriguingly, similar treatment failed to induce disease ex-

pression in the C57BL/6 mouse strain despite high levels

of circulating autoantibodies. A potent feedback regula-

tory mechanism, which could prevent the induction of

pathogenic types of autoantibodies, appeared to be re-

sponsible for protecting these mice from the DC/nec-

induced tissue pathology [4]. We demonstrated further

here that, in the absence of IL-10, even mice with the

resistant background could be rendered susceptible to

the disease induction. Although full-blown lupus disease

was not observed, these mice developed typical lupus-

like IC-mediated renal end-organ damage, pointing to an

essential protective role of IL-10 in the regulatory

mechanism.

The key issues being addressed here are about the

precise role of IL-10 in lupus pathogenesis, and how the

present study in animal models may advance our under-

standing of the human disease. Although it is a general

consensus that IL-10 is involved in lupus pathogenesis,

with the IL-10 gene being in one of the lupus-susceptible

loci identified on human chromosome 1 [36], the conclu-

sions drawn from many previous studies have been con-

flicting as to whether IL-10 is playing a disease-protective

or promoting role [21, 22, 24�30]. Serum IL-10 level is

evidently elevated in SLE patients, which also correlates

with disease activity [21, 22], but the question is about the

true causal relationship. In mice, while some earlier work

seemed to suggest a disease-promoting activity of IL-10

in the NZB/W mice [28], more recent findings including

ours pointed to a potentially protective role of this very

cytokine in MRL mouse strains [4, 29]. It is possible that

the disease mechanisms, hence the roles of IL-10, may be

very different in the two spontaneous lupus mouse

models. However, the present study showing disease in-

duction in mice with an otherwise non-autoimmune back-

ground (C57BL/6), yet deficient in their IL-10 gene,

appears to suggest otherwise.

An alternative explanation is that IL-10 may play differ-

ent roles depending on the stage of disease development.

The cytokine is known to be functionally pleiotropic. While

it suppresses Th1-mediated inflammatory responses, it

can also promote B-cell growth and mediate antibody

isotype switching (IgG1, IgG3, IgA1) [17]. The present

study, by using IL-10-deficient mice on the resistant back-

ground, allowed us to elucidate the role of IL-10 particu-

larly in the disease initiation phase. The findings are largely

in agreement with what has been previously reported in

lupus-prone MRL/lpr IL-10�/� mice [29], that IL-10 is pro-

tective at the early stage of disease development.

However, the effects may be very different from those

observed in lupus patients, who are understandably al-

ready in the established phase of clinical disease. Since

IL-10 is a key cytokine that limits tissue injury during in-

flammatory responses [37], high levels of IL-10 detected in

the SLE patients may be the result of tissue inflammation

or a bystander product of chronic end-organ damage.

Consequently, overt production of IL-10 may favour dis-

ease development by promoting autoreactive B-cell

hyperactivity during the clinical stage of SLE [22, 23].

IL-10 could therefore have potentially conflicting dual ef-

fects on blocking disease induction vs late stage disease

perpetuation.

Cytokines are, however, known to operate in a very

complex regulatory network. The elevation of IL-10 ex-

pression, for example, was also found to be associated

with increased IFN-g expression in SLE patients [23, 38],

and in NZB/W F1 lupus-prone mice [39]. In agreement

with our previous findings in MRL mouse strains [4], the

presence and deposition of certain pathogenic isotypes of

the autoantibodies, i.e. IgG2a and IgG2b, which require

IFN-g for the isotype switch, was found to be closely
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FIG. 4 A dominant role of host-derived IL-10 in controlling the pathogenic Th1 type of nephrophilic autoantibody

responses. To further assess the roles of host vs DC-derived IL-10 on renal disease, recipient mice of the two mouse

strains were injected with donor cells (DC/necF/T) from either W/T or IL-10�/� mice respectively and reciprocally. The

animals were sacrificed 4 months after the first injection and kidney sections were stained for mouse IgG (A), IgG1 (B),

IgG2ab (C) and IgG2b (D), and similarly quantified as described in Figs 2 and 3. The results shown are quantitative data

(dot plots) pooled from three repeated experiments (for details see supplementary Table 6, available as supplementary

data at Rheumatology Online). Statistical differences between groups were determined by the non-parametric

Mann�Whitney test, and the P-values of groups having statistical significance are indicated in the graphs.
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associated with the development of glomerular C3 depos-

ition and renal end-organ damage in DC/necF/T-treated

IL-10�/�C57BL/6 mice. The low levels of IgG deposits

detected in the kidneys of non-diseased IL-10�/� mice

(e.g. DC/necH/S-treated group) could also be well ex-

plained by the presence of IgG1, yet lacking the more

pathogenic IgG2a or IgG2b, isotype (Fig. 3), which also

confirmed our previous findings in W/T mice [4].

Based on our observations, we conclude that IL-10 may

protect against disease induction and development in dif-

ferent stages of the disease development. We showed

here in vivo evidence that the endogenous host-derived

IL-10 was most crucial (Fig. 4), whose presence could

understandably have significant protective effects on

different stages of disease development. By comparing

directly DCs generated from W/T and IL-10�/� mice, how-

ever, we also tried to understand whether and how the

DC-derived IL-10 could contribute to the protective mech-

anism particularly during the disease initiation phase. The

pathogenic potential of NecF/T, in contrast to NecH/S,

could be explained by the extent of necrotic cell death

and the release of certain dying cell-derived soluble fac-

tors (Ling GS et al., data not published). Importantly, we

demonstrated here that in the absence of IL-10, the

NecF/T-conditioned DCs could act as a potent inducer of

high levels of the pathogenic IgG2a/2b responses and

deposits, which are a good marker of Th1 response, in

the DC/necF/T-treated IL-10�/� mice (Figs 3, 4C and D).

In contrast, the NecH/S-conditioned DCs induced a Th2

type of response against self-Ags, as illustrated by

IgG1-only deposition in the kidneys. Such a response, al-

though sustained well in the IL-10 deficient mice (Figs 3

and 4B), was not pathogenic enough to induce local in-

flammation (Fig. 1A and B). These findings are particularly

important, because B-cell isotype switching, which takes

place in the secondary lymphoid organs, is known to be

T-cell dependent. Further studies should also be carried

out in order to understand how local tissue-derived vs

systemic IL-10 may be involved, or differentially involved,

in controlling local pro-inflammatory responses respon-

sible for the end-organ damage observed. Since IL-10 is

best known for its potent immunosuppressive effects on

Th1 responses, the enhanced IL-10 production and IL-10

promoter activity previously observed either in lupus

patients or animal models may simply reflect a desperate

but failed attempt of the immune system to down-regulate

pathogenic Th1 responses. Clarification of such a causal

relationship is thus vital in the rational design of thera-

peutic approaches for patients.

Lupus incidence requires complex interplay of multiple

genetic and environmental factors [40]. Genetic back-

ground is also a crucial determinant of the severity and

disease phenotype in murine lupus. For example, the MRL

background contains the susceptibility loci necessary for

full disease penetrance. Therefore, MRL mice homozy-

gous for the lpr mutation of the Fas gene (MRL-lpr/lpr)

or treated with DC/nec developed full-blown clinical

lupus disease. In contrast, the same Fas mutation in

mice with the the C57BL/6 background (B6/lpr), or being

subjected to DC/nec insults, failed to develop clinical

lupus disease [4, 41]. This variation in disease penetrance

suggests that the C57BL/6 background contains

lupus-resistance loci, which protect the mice from devas-

tating organ injury, even when the peripheral tolerance

mechanisms are disrupted. Although our data clearly

demonstrate that IL-10 prevented the induction of lupus-

like disease in C57BL/6 mice by dampening Th1 re-

sponses, full-blown expression of SLE was not observed

in the DC/nec-treated IL-10�/�C57BL/6 mice, and none of

the animals showed renal failure or lupus-related early

mortality. Therefore, other intrinsic factor(s) in the

C57BL/6 background that control disease development

may also exist, which require further elucidation. The

direct relevance of our findings to human SLE, and to

other lupus mouse models, requires of course further stu-

dies. Nevertheless, the present study has provided evi-

dence indicating an essential protective role of IL-10

against the induction and development of lupus disease,

in mice with a non-autoimmune background in particular.

Rheumatology key messages

. IL-10 is an essential protective factor in SLE.

. Mice deficient in IL-10 are more susceptible to
lupus disease induction.

. IL-10 prevents end-organ damage by down-
regulating pathogenic Th1 responses.
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