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ABSTRACT

Protein–protein interactions play a crucial role in all
cellular functions and biological processes and mu-
tations leading to their disruption are enriched in
many diseases. While a number of computational
methods to assess the effects of variants on protein–
protein binding affinity have been proposed, they are
in general limited to the analysis of single point mu-
tations and have been shown to perform poorly on
independent test sets. Here, we present mmCSM-
PPI, a scalable and effective machine learning model
for accurately assessing changes in protein–protein
binding affinity caused by single and multiple mis-
sense mutations. We expanded our well-established
graph-based signatures in order to capture physico-
chemical and geometrical properties of multiple wild-
type residue environments and integrated them with
substitution scores and dynamics terms from nor-
mal mode analysis. mmCSM-PPI was able to achieve
a Pearson’s correlation of up to 0.75 (RMSE = 1.64
kcal/mol) under 10-fold cross-validation and 0.70
(RMSE = 2.06 kcal/mol) on a non-redundant blind
test, outperforming existing methods. Our method
is freely available as a user-friendly and easy-to-use
web server and API at http://biosig.unimelb.edu.au/
mmcsm ppi.

GRAPHICAL ABSTRACT

INTRODUCTION

Protein-protein interactions (PPIs) are a vital mechanism
for regulation and coordination of most biological pro-
cesses within the cell (1,2). Missense mutations are known
to directly contribute to function disruption and are en-
riched at their interacting interface in many diseases (3–
7). The ability to elucidate the underlying mechanisms by
which point mutations affect PPI interactions is therefore
essential for understanding how to modulate these interac-
tions and the development of therapeutics to target them.

Significant efforts in the creation of manually curated
databases compiling experimental data on the effects of mu-
tations on protein stability and PPI binding affinity, most
notably ThermomutDB (8), ProTherm (9), PROXiMATE
(10) and SKEMPI (11,12), have greatly facilitated studies
aiming to understand and predict how missense mutations
affect PPIs. However, these have shown to perform poorly
on independent test sets and are usually limited to predict-
ing effects of single point mutations. Furthermore, to the
best of our knowledge, little effort has been made towards
accessibility of these methods to help integration into other
analysis pipelines.

We have shown previously that representing protein
structure as a graph is a powerful method for extracting
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structural signatures as distance patterns (13). These com-
pile geometrical and physicochemical properties which can
further be mined and applied in a broad range of areas,
such as predicting the effects of single point missense mu-
tations on protein stability (14–18), dynamics (16,17), inter-
actions (15,19–25), genetic diseases (26–38) and drug resis-
tance (39–53).

Here, we introduce mmCSM-PPI, a scalable and effec-
tive predictive model for assessing changes in PPI bind-
ing affinity caused by multiple missense mutations. We ex-
panded our well-established graph-based signatures to al-
low for capturing physicochemical and geometrical prop-
erties of multiple wild-type residue environments, and inte-
grated them with evolutionary scores, dynamics terms from
Normal Mode Analysis (NMA) and non-covalent interac-
tions for an accurate overall prediction (Figure 1).

MATERIALS AND METHODS

Datasets

The data used in this work was derived from SKEMPI2
(12), a manually curated database of experimental data
on thermodynamics and kinetic parameters for wild-type
and mutant protein–protein complexes which have been
mapped to protein structures available on the Protein Data
Bank (54). We were able to retrieve experimental informa-
tion on 1721 multiple mutations, ranging from 2 to 27 point
mutations, across 147 different protein–protein complexes
(Supplementary Table S1). These had been primarily exper-
imentally characterised by surface plasmon resonance and
fluorescence methods (Supplementary Table S2 and Supple-
mentary Figure S1).

Wild-type and mutant binding affinity parameters from
SKEMPI2 were used to calculate the Gibbs free energy of
binding as follows:

�Gbinding = RTln (KD)

where R = 1.9872 cal/K·mol is the ideal gas constant, T
is the temperature (in Kelvin) and KD is the affinity of the
protein–protein complex.

The change in binding affinity upon mutation was
calculated with the formulation previously described in
SKEMPI2 and used in previous works:

��Gbinding = �Gbinding
WT − �Gbinding

MT

With positive values denoting mutations leading to an
increased affinity and negative values denoting decreased
binding affinity, given in kcal/mol. As shown in Supplemen-
tary Figure S2, the majority of entries in our dataset (1126)
comprise double and triple mutants and for this work these
were used as evidenced to train our predictive model. Fur-
thermore, we explored the performance of our method on
low-redundancy sets at complex and binding interface levels
according to the definition used in SKEMPI2. The remain-
ing 595 multiple point mutations (2 neutral, 153 increasing
and 440 decreasing affinity), ranging from 4–27 mutations,
were held out and used as a non-redundant blind test at mu-
tation level for performance comparison.

The distribution of ��Gbinding (Supplementary Figure
S3A) depicts a clear bias towards mutations that decrease
binding affinity (��Gbinding < 0 kcal/mol) in the train-
ing set. To minimize the imbalance nature of the dataset
and how it would affect our predictive model, we also in-
cluded modelled hypothetical reverse mutations in the train-
ing set (55,56). Unlike previous implementations, however,
here we only modelled hypothetical reverse mutations for
entries where –0.5 kcal/mol < ��Gbinding < 0.5 kcal/mol
to minimise uncertainties about the quality and biological
implications of the modelled mutant structure (17). There-
fore, the final training set used in this study includes 1344
entries, 12 neutral (��Gbinding = 0 kcal/mol), 347 increas-
ing (��Gbinding < 0 kcal/mol) and 985 decreasing binding
affinity (��Gbinding > 0 kcal/mol). All datasets used for
training and test are freely available at http://biosig.unimelb.
edu.au/mmcsm ppi/data.

Graph-based signatures

Our graph-based structural signatures framework is a well-
established approach used to represent physicochemical
and geometrical properties of protein structure and small
molecules. In the past decade, our method has been widely
used for assessing the effects of single point mutations
on protein stability (14–16,18), PPI and antibody-antigen
binding affinity (15,19,23,25), and small molecules toxicity
(57–59). More recently, we have successfully expanded the
applicability of our approach to investigate the impact of
multiple point mutations on protein stability (17) and on
antibody-antigen binding affinity (24).

In this work, for each point mutation, our signatures rep-
resent atoms of the wild-type residues as nodes and their
interactions as edges, where their physicochemical prop-
erties are incorporated as labels according to amino acid
residue properties (pharmacophores). The representation
of each wild-type residue environment is then used to ex-
tract distance patterns between atoms characterised by their
properties and compiled in signatures as cumulative distri-
butions. Finally, the cumulative distributions are averaged
based on the number of point mutations (Supplementary
Figure S4).

Modelling multiple mutation effects

Similarly to our previous implementation tackling the ef-
fects of single point mutations on PPI binding affinity
(15,23), here we also incorporate complementary features
to account for the different mechanisms by which multiple
point mutations may affect PPIs. However, in this study, we
calculated the sum and average values of each property in
order to model the effects of multiple mutations. All fea-
tures generated can be broadly classified into 6 different
categories: (i) dynamics, obtained via normal mode anal-
ysis (60), (ii) residue environment properties (61), (iii) con-
servation, obtained by using scores from substitution tables
(62), (iv) non-covalent contacts involving wild-type residues
(63), (v) wild-type inter-residue distance and (vi) predicted
��Gbinding for each single point mutation separately (23). A
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Figure 1. mmCSM-PPI methodology workflow. Experimental data on the effects of multiple missense mutations was collected from SKEMPI2 and
mapped on their respective protein structures on the PDB. These were then used to generate physicochemical and geometrical properties in the form of
graph-based signatures. In addition, six distinct types of complementary features were calculated to account for different mechanisms by which mutations
may affect PPIs: (i) dynamic properties from NMA; (ii) wild-type residues environments; (iii) evolutionary and contact potential scores; (iv) non-covalent
contacts; (v) wild-type inter-residue distances and (vi) the individual ��Gbinding for each point mutation. Feature selection was carried out with a stepwise
greedy approach to avoid the curse of dimensionality and the best performing supervised learning algorithm was fine-tuned using the GridSearch function
from the Scikit-learn Python library.

summary of features for each category is available in Sup-
plementary Table S3.

Machine learning

In this study we evaluated four distinct algorithms avail-
able on the scikit-learn Python library (64) on 10-fold cross-
validation: Extra Trees, Random Forest, Gradient Boosting
and XGBoost. The best performing algorithm used to build
the final model was Extra Trees, based on different corre-
lation coefficients (Pearson, Kendall and Spearman) and
RMSE. Supplementary Table S4 summarises the perfor-
mances of each algorithm. In order to avoid the curse of di-
mensionality and improve performance, we selected our fea-
tures using an incremental stepwise greedy approach. Hy-
perparameter tuning was performed using the Gridsearch
function also available on the scikit-learn library (Supple-
mentary Table S5). Feature importance for the final predic-
tive model is available on Supplementary Table S6. While
two classes of features, graph-based signatures and indi-
vidual mutation effects, were identified as contributing the
most to the final model (as shown in Supplementary Table
S7), their combination allowed for a significant increase in
performance in the final model (P-value < 0.05), indicating
they measure complementary aspects of mutation effects in
PPIs.

WEB SERVER

We have implemented mmCSM-PPI as a user-friendly and
freely available web server (http://biosig.unimelb.edu.au/
mmcsm ppi). The server front end was developed using
Materialize framework version 1.0.0, and the back end
was built using Python via the Flask framework (version
1.0.2). The web server is hosted on a Linux Server running
Apache2.

Input

mmCSM-PPI can be used to either predict the effects of a
list of mutations of interest or perform a systematic evalua-
tion of all double and triple multiple mutations at a protein–
protein interface (Supplementary Figure S5). In both cases,
users are required to upload a file in PDB format or provide
a valid PDB accession code with the structure of a protein–
protein complex. For user-specified variants, mutations can
be provided using a text field or uploaded as a plain text
file with one multiple mutation per line. Each entry must be
separated by a semicolon (;) and each point mutation must
be represented as the chain identifier, blank space, the one-
letter code for the wild-type, residue position and the one-
letter code for the mutant. For the systematic evaluation op-
tion, users must provide a chain identifier from which inter-
faces will be automatically identified and all possible per-
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mutations of double and triple mutations assessed. Exam-
ples and format descriptions are available in both submis-
sion page and help page via the top navigation menu.

An Application Programming Interface (API) to assist
users in integrating our predictive tool into their research
pipelines is also available. Input fields follow the same for-
mat previously described for our web server implementa-
tion. All jobs submitted are labelled with a unique identifier
which is used to query the status of the job. A full descrip-
tion of the API, including examples using curl and Python
are available at http://biosig.unimelb.edu.au/mmcsm ppi/
api.

Output

For both types of submissions, manual input and systematic
evaluation, mmCSM-PPI outputs the predictions for all en-
tries as a downloadable table where the predicted effects of
multiple mutations on ��Gbinding is given in kcal/mol. For
the systematic evaluation option, the server shows the top
100 increasing/decreasing affinity entries. Additionally, in-
dividual predictions for each point mutation are available,
generated using mCSM-PPI2 (23), and are shown alongside
the average distance among the wild-type residues. Finally,
an interactive 3D viewer, built using the NGL viewer (65),
allows for the analysis of non-covalent interactions involv-
ing wild-type residues for each point mutation, calculated
using Arpeggio (63), for a particular entry. Users can alter-
nate the residues and interactions being displayed by select-
ing different entries from the table (Supplementary Figure
S6).

VALIDATION

Performance on cross-validation

We evaluated the performance of mmCSM-PPI across 5 dif-
ferent types of cross-validations on our training set. First,
we randomly selected 80% of the data for training and re-
maining 20% for testing, repeated 100 times (CV1). Our
method achieved Pearson’s, Kendall’s and Spearman’s cor-
relations of 0.87, 0.68 and 0.85 respectively, with small de-
viations across repetitions (� = 0.02), and average RMSE
of 1.41 kcal/mol (� = 0.21). Using an analogous setup, but
varying the proportion of data split for train and test (50%
each set) (CV2), the performance was consistent with the
previous experiment, and the predictive model achieved a
Pearson’s, Kendall’s and Spearman’s correlations of 0.86,
0.66 and 0.84 (� = 0.01 for all coefficients), respectively
(Figure 2A), and RMSE = 1.55 kcal/mol (� = 0.14).

Since the entries in our dataset were not uniformly dis-
tributed across all protein–protein complexes (Supplemen-
tary Table S8), we evaluated the performance of our ap-
proach by randomly sampling up to 10 mutations per pro-
tein complex, repeated 10 times (generating 10 subsets), fol-
lowed by randomly selecting 80% of entries for training and
remaining 20% for testing, also repeated 10 times (CV3).
For this type of cross-validation, our predictive model was
able to achieve Pearson’s, Kendall’s and Spearman’s correla-
tions of 0.83, 0.63 and 0.81, again with small deviations over
the repetitions (� = 0.03) (Figure 2A), and average RMSE
= 1.85 kcal/mol (� = 0.40).

Finally, we assessed the robustness of mmCSM-PPI
on low-redundancy sets at complex (CV4) and interface
(CV5) levels. The former was implemented using leave-
one-complex-out cross-validation, where all mutations for
a particular complex were retained for test and the re-
maining for training the predictive model. Overall, our
predictive model achieved Pearson’s, Kendall’s and Spear-
man’s correlations of 0.76, 0.55 and 0.75 respectively, and
RMSE of 1.59 kcal/mol (Figure 2B). On leave-one-binding-
site-out (CV5), where all mutations for protein–protein
complexes sharing similar binding sites, according to data
on SKEMPI2, were used for testing and the remaining
for training, our method was able to achieve Pearson’s,
Kendall’s and Spearman’s correlations of 0.73, 0.54 and
0.74, respectively (RMSE = 1.40 kcal/mol).

Blind test

While mmCSM-PPI was trained using a subset containing
only double and triple mutants, the performance of our final
model was further evaluated using a non-redundant blind
set at the mutation level of experimentally measured effects
of 595 constructs with at least four point mutations, also
derived from SKEMPI2. Across this dataset, mmCSM-PPI
achieved Pearson’s, Kendall’s and Spearman’s correlation
coefficients of 0.70, 0.48 and 0.64, respectively, and RMSE
of 2.02 kcal/mol, significantly outperforming FoldX (66)
and Discovery Studio (P-value < 0.05, Table 1). After re-
moving 10% of outliers, the performance of our predic-
tive model increased to 0.81, 0.55 and 0.73 for Pearson’s,
Kendall’s and Spearman’s correlations, respectively, and
RMSE of 1.68 kcal/mol (Figure 2C). The majority of out-
liers (∼70%) comprise mutations with extreme effects to PPI
binding affinity (4 kcal/mol < |��Gbinding| < 11 kcal/mol)
and entries with 10 or more point mutations. Reassuringly,
however, our final model demonstrated balanced predictive
performance across both stabilising and destabilising muta-
tions, achieving an overall accuracy of 87% and precisions
of 74% and 89% on mutations that increase and decrease
binding affinity, respectively.

Given the inherent imbalance between increasing and de-
creasing affinity mutations in the dataset, we further as-
sessed the performance of our method on these respective
classes separately. On mutations that decrease binding affin-
ity, mmCSM-PPI achieves Pearson’s, Kendall’s and Spear-
man’s correlations of 0.72, 0.46 and 0.64 respectively, with
an RMSE = 1.67 kcal/mol, outperforming FoldX and Dis-
covery Studio. For mutations that increase binding affinity
all three methods show similar performance (Supplemen-
tary Table S9). Finally, we tested the ability to use the pre-
dicted ��Gbinding values from mmCSM-PPI to differentiate
between mutations that increase from those that decrease
binding affinity (Supplementary Table S10). Overall, our
method has proven to be the most robust when compared
with FoldX and Discovery Studio, achieving an AUC and
MCC of 0.72 and 0.53, respectively, when evaluated on mu-
tations where |��Gbinding| < 1 kcal/mol.

We further evaluated the generalisation capabilities of
our model on another independent test set, non-redundant
at the mutation level. Four hundred and ninety multiple
point mutations were randomly selected across 81 differ-
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Figure 2. mmCSM-PPI performance on cross-validation and non-redundant blind-tests. (A) The performance of mmCSM-PPI on bootstrapped 5-fold
cross validation (CV1), using 50% of the data as a blind test (CV2) and limiting the number of mutations per complex (CV3). The robustness of mmCSM-
PPI was further assessed using low redundancy at the (B) complex level, (C) using all data with three or more mutations as a blind test, and (D) at the
mutation level. Outliers are shown as red crosses.

Table 1. Performance comparison of mmCSM-PPI2 on a non-redundant blind test comprising entries with four or more mutations

Method Pearson Kendall Spearman RMSE (kcal/mol) MCC AUC

mmCSM-PPI 0.70 0.48 0.64 2.02 0.53 0.72
Discovery Studio 0.39* 0.29# 0.41+ 3.07a 0.30 0.66
FoldX 0.39* 0.25# 0.37+ 5.27a 0.22 0.61b

*P-value < 0.05 by Fisher r-to-z transformation test.
#P < 0.05 by transforming tau-to-r followed by Fisher r-to-z transformation.
+P < 0.05 by transforming rho-to-r followed by Fisher r-to-z transformation.
aP < 0.05 by Diebold–Mariano test.
bP < 0.05 by t-test.
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ent PPI as a blind test, with the remaining being used for
training purposes. Across the non-redundant blind test,
mmCSM-PPI achieved Pearson’s, Kendall’s and Spear-
man’s correlations of 0.67, 0.47 and 0.67, respectively
(RMSE = 1.72 kcal/mol), performance consistent with
previous independent tests, highlighting robustness of the
method (Figure 2D).

The performance of mmCSM-PPI was compared to
Discovery Studio and FoldX (Supplementary Table S11),
which demonstrated that our approach significantly out-
performed both in all metric evaluations (Supplementary
Table S11). We also compared the performance of our
method with ZEMu (67), a tool that uses a dynamical
equilibration under a physics-based force field for a lim-
ited residue environment, followed by binding affinity eval-
uation with FoldX. In this case since ZEMu has only re-
ported predictions for multiple mutations on the first ver-
sion of SKEMPI, here we trained a predictive model with
all double and triple mutants except for those available on
the first release of SKEMPI. Therefore, the dataset used to
compare the two methods comprises 272 entries (1 neutral,
52 increasing and 219 decreasing binding affinity) across
24 protein–protein complexes, ranging from 2 to 15 point
mutations. mmCSM-PPI achieved Pearson’s, Kendall’s and
Spearman’s correlations of 0.73, 0.56 and 0.75 (RMSE =
1.72 kcal/mol), respectively, significantly higher (P-value <
0.05) than ZEMu (Pearson’s, Kendall’s and Spearman’s cor-
relations of 0.64, 0.46 and 0.65, respectively, and RMSE =
2.11 kcal/mol). On 90% of the dataset, our method achieves
up to 0.83, 0.65 and 0.84 on Pearson’s, Kendall’s and Spear-
man’s, respectively (RMSE = 1.49 kcal/mol).

CONCLUSION

Here, we present mmCSM-PPI, a web server that inte-
grates our well-established graph-based signatures frame-
work with evolutionary scores, dynamics properties and
non-covalent interactions for accurately predicting changes
in PPI binding affinity caused by multiple point mutations.
Our method has shown to be robust when evaluated across
different types of cross-validations and outperformed exist-
ing tools in a non-redundant blind test set. We anticipate
mmCSM-PPI to be of great value for the study of how mul-
tiple mutations affect PPI binding affinity and to a vari-
ety of applications, ranging from protein functional anal-
ysis, optimisation of binding affinity and understanding the
role of mutations in diseases. In addition, mmCSM-PPI
includes an API to assist users when integrating our pre-
dictions into their research pipelines. Our method is freely
available as a user-friendly and easy-to-use web server at
http://biosig.unimelb.edu.au/mmcsm ppi.

DATA AVAILABILITY

mmCSM-PPI predictive models are freely available either
as a user-friendly web interface and as an API for program-
matic access at http://biosig.unimelb.edu.au/mmcsm ppi.
No login or license is required. All data sets used to
train and validate predicted models are publicly available
for download at http://biosig.unimelb.edu.au/mmcsm ppi/
data.
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