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Abstract: Modeling the information of social contagion processes has recently attracted a substantial
amount of interest from researchers due to its wide applicability in network science, multi-agent-
systems, information science, and marketing. Unlike in biological spreading, the existence of a
reinforcement effect in social contagion necessitates considering the complexity of individuals in the
systems. Although many studies acknowledged the heterogeneity of the individuals in their adoption
of information, there are no studies that take into account the individuals’ uncertainty during their
adoption decision-making. This resulted in less than optimal modeling of social contagion dynamics
in the existence of phase transition in the final adoption size versus transmission probability. We
employed the Inverse Born Problem (IBP) to represent probabilistic entities as complex probability
amplitudes in edge-based compartmental theory, and demonstrated that our novel approach per-
forms better in the prediction of social contagion dynamics through extensive simulations on random
regular networks.

Keywords: complex networks; heterogeneous adoption thresholds; information diffusion; phase
transitions; quantum-like social contagion; technology adoption

1. Introduction

Understanding and better modeling contagion dynamics in complex networks play a
crucial role in shedding light on the spreading mechanisms of viral diseases, microfinance
activities, information, harmful emotions, and technology adoptions. It not only gives us
an opportunity to design more efficient anti-pathogen strategies during infectious disease
outbreaks but also grants theoretical foundations to predict collective behaviors, and even
mitigate the propagation of false information in social systems. Researchers have classified
these spreading dynamics in different disciplines into two main categories: (i) biological,
or (ii) social contagion. Despite the analogy between these spreading mechanisms, infor-
mation (or behavioral) spreading has been found to have a distinct inherent characteristic,
which is called social reinforcement effect [1–3], compared to biological spreading. The
importance of the reinforcement effect in social contagion is that the simple contagion
mechanism in epidemic spreading, which assumes that even one single activated source
might be sufficient for the transmission, is transformed into a more complex contagion
mechanism. This complexity in contagion dynamics is generally described by Markovian
processes; these approaches are called threshold-driven, where the adoption occurs only
in the existence of a certain fraction of neighbors who have already adopted, contrary to
biological spreading. This significant effect in social contagion emphasizes the importance
of network topology on the final adoption size and triggers discontinuous phase transitions
in the final spreading size versus transmission probability. We can argue that possession
of more complex dynamics than the largely examined epidemic contagion, and at the
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same time relating different disciplines such as marketing and information science, make
understanding social contagion dynamics a substantial and unaccomplished task.

The pioneering study of Granovetter [4], in which a mathematical approach for social
contagion is firstly introduced, proposed a linear threshold model based on the assumption
that individuals’ behavior in a network can be affected by their neighbors’ actions. In this
receiver-centric model, individuals adopt a behavior only if its certain fraction of neighbors
have already adopted the behavior. Later, Goldenberg’s pioneering study [5] of diffusion
in marketing became another well-known technique in social contagion studies. In this
sender-centric model called the independent cascade model, each adopted node has a single
chance to influence one of its susceptible neighbors. Recently, inspired by epidemic models,
one of the most commonly used methods in the literature of social contagion studies is
the message passing approach [6], in which individuals within the target population (or
network) are divided into mutually exclusive compartments based on their current status
and their future status at any time can be predicted based on the predefined rate of contact
between compartments and their certain transition rates. As opposed to the conventional
compartmental models, the reinforcement effect is also included with the existence of a
threshold value for individuals to adopt the behavior. Therefore, the message passing
approach is considered a non-Markovian process, which makes it more realistic in the
application of real-world complex contagions.

The most challenging task in employing any of these approaches in social contagion
analyses is to model the complexity of individuals. This complexity arises due to either
the heterogeneity of the individuals in their adoption threshold or the uncertainty in their
decision-making process during adoption. Although earlier studies employed a simplistic
threshold model, i.e., uniform threshold distribution in social contagion studies, to address
the former challenge, recent studies utilized more complex threshold distributions such as
binary [3], tent-like function [7], truncated normal distribution function [8] or sigmoid func-
tion [9]. To the best of our knowledge, the uncertainty in their decision-making process has
not been addressed yet in social contagion analyses despite its theoretical and experimental
evidence in behavioral economics, decision science, cognitive science, or multi-agent sys-
tems. Although the whole process in social contagion studies is based on the assumption
that individuals are perfectly rational and do follow the rules of classical probability theory
and logic while taking an action during the process, it is well-known that only bounded
rationality can exist [10] and individuals do not obey the classical probability rules [11–14].
It is mainly due to agent interactions through information exchange that can influence
individuals’ emotions, change subconscious feelings, and trigger subjective biases [10,15].
Furthermore, the impacts of such behavioral effects become more significant when indi-
viduals make their decision under uncertainty [13]. To address this complexity in human
decision-making and explain the corresponding irrationality and existing paradoxes and
fallacies, researchers developed numerous quantum-like approaches [13,16–20]. Although
classical approaches argue that human inference deterministically jumps between definite
states across time, the main assumption behind quantum-like approaches is that competi-
tive beliefs exist in the human mind at the same time. They form a composite entangled
prospect for the decision-maker. Because behavior spreading in a social contagion is fueled
with the successful transmission of behavior (or information) among two entangled binary
prospects (adopting/not adopting) of decision-makers in a network, the utilization of these
approaches in social contagion analyses may provide more realistic insights.
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Social contagion is a prominent research area due to its wide applicability to different
disciplines; therefore, it is highly studied in the existence of restricted contact [21], hetero-
geneous adoption threshold [3], local trend imitation [7], heterogeneous credibility [22]
and with memory of non-redundant information [23]. All of these studies showed that
these models are very effective in predicting social contagion dynamics within defined
scenarios, except when transmission rates are close to the critical transmission probabilities.
Because the phase transitions in the final adoption size pattern are commonly observed
in the existence of individuals with a heterogeneous adoption threshold in the system,
this phenomena demonstrates that classical approaches fall short in the modeling of social
contagion dynamics in many cases. To address this problem, we believe that quantum-like
approaches and interference effects leverage the extant social contagion analyses and better
model its nonlinear dynamics even on critical transmission probabilities. To integrate a
quantum-like approach, we employ the Inverse Born Problem (IBP), which argues that
probabilistic entities can be represented by using complex probability amplitudes.

The rest of the paper is as follows: First, we explain the general social contagion
mechanism that is used in this study and a methodology for the application of quantum-
like edge-based compartmental theory. In the results section, we provide theoretical results
of social contagion dynamics and numerical simulations on random regular networks with
varying parameters.

2. Materials and Methods

In the context of network theory, a complex network, G〈V, E〉, is defined as the set
of vertices (nodes) (V = {v1, v2, ..., vn |n ∈ N}) and edges between them (Evi ,vj = (vi, vj)
where (i, j ∈ N; i 6= j). To exemplify the social contagion mechanism in this study, we
integrate a quantum-like point of view to the classical message-passing approach [6], which
generalizes the well-known susceptible-adopted-recovered (SAR) model, to fully describe
the mechanisms of information (or behavior) spreading on a complex network with N
nodes and a degree distribution P(k). In this model, each individual in a network falls into
one of three states: susceptible, adopted and recovered. An individual in a susceptible state (S)
does not adopt the information yet. An adopted individual (A) adopts the information and
tries to transmit it to each of its susceptible neighbors with a probability λ at each time step.
After each successful transmission, the susceptible individual, who receives information
from his adopted neighbor, updates his cumulative units of information, i.e., m ⇒ m + 1.
It should be noted that non-redundant, thus non-Markovian, information transmission is
considered to focus on a more legit scenario, i.e., information can be transmitted only once
from an adopted individual to a specific susceptible individual, who records each successful
transmission at each time step. A susceptible individual becomes adopted if its cumulative
units of information exceeds its threshold. Simultaneously, each adopted individual may
lose his interest in the information and becomes recovered with a probability γ. Because
recovered individuals will not further participate in information spreading, a steady-state
is reached if all individuals in the network become recovered or there is no chance for
individuals to change their current states. We initialize the social contagion model with
a small fraction of individuals (ρ0) assigned as adopted and the rest as susceptible in the
network. In the rest of this study, S(t), A(t), and R(t) represent the fractions of susceptible,
adopted, and recovered individuals at the time step t, respectively.

2.1. Preliminaries

Quantum approaches can facilitate modeling continuous state systems due to their
more advanced representation compared to classical approaches. The classical approach
uses set-theoretic representation and its sample space is defined as a set of possible events,
for example, {m1, m2}. On the other hand, the quantum approach uses vector space
representation, and its sample space is a plane space spanned by the orthogonal basis
vectors, for example, |m1〉 and |m2〉. A detailed explanation of differences between classical
and quantum approaches and their applications is given in [16,17]. For more detailed
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information about the utilization of IBP in the quantum-like approach, please refer to
Khrennikov’s quantum-like representation algorithm [24,25].

Because we aim to employ the quantum calculus of probability for our analysis, we
draw from Born’s rule, which relates classical probability density function and a quantum
probability amplitude by using wave function, and represent a classical probability as a
squared magnitude of the complex amplitude (wave function). Therefore, the relation
between a classical probability density function and a quantum probability amplitude is
given by:

Pr(A) = |eiθA ψA|
2

(1)

Here, the exponential term (eiθA ) is called the global phase factor of the quantum
probability amplitude. The classical probability (Pr(A)) is related with a quantum prob-
ability amplitude (eiθA ψA), which corresponds to the amplitude of a wave function, and
this relation to the classical probability is obtained by multiplying this amplitude with its
complex conjugate, i.e., |eiθA ψA|

2
= eiθA ψAe−iθA ψ∗A. Although the result of an individual

event probability in the classical probability theory converges to that in the quantum
approach, the computation of the union of mutually exclusive events differ in these two
methods. The quantum-like approach yields an extra term, "interference effect", which does
not exist in classical probability theory. To illustrate, suppose that we aim to obtain the
union of three mutually exclusive events by using a classical probability formula, which is
given by:

Pr(A ∪ B ∪ C) = Pr(A) + Pr(B) + Pr(C) (2)

The quantum counterpart of the classical probability of the union of three mutually
exclusive events is obtained by using Born’s rule in Equation (1):

Pr(A ∪ B ∪ C) = |eiθA ψA + eiθB ψB + eiθC ψC|2

= eiθA ψA.e−iθA ψA + eiθA ψA.e−iθB ψB + eiθA ψA.e−iθC ψC

+ eiθB ψB.e−iθA ψA + eiθB ψB.e−iθB ψB + eiθB ψB.e−iθC ψC

+ eiθC ψC.e−iθA ψA + eiθC ψC.e−iθB ψB + eiθC ψC.e−iθC ψC

(3)

Knowing that,

cos(θ1 − θ2) =
eθ1−θ2 + e−θ1+θ2

2
(4)

Equation (3) reduces to:

Pr(A ∪ B ∪ C) = |ψA|2 + |ψB|2 + |ψC|2 + 2
(
|ψA||ψB|cos(θA − θB)

+ |ψA||ψC|cos(θA − θC) + |ψB||ψC|cos(θB − θC)
) (5)

The additional terms in Equation (5) compared to Equation (2) are called "interference
terms", which does not exist in classical probability theory [19,24–26].

2.2. Edge-Based Compartmental Theory

Inspired by numerous studies [3,7,22], we employ an edge-based compartmental
theory to understand the dynamics of the quantum social contagion approach. Suppose
that u, (u ∈ V) is an individual who is in a susceptible state, i.e., he can receive information
from his neighbors but cannot transfer since he has not adopted information yet. Let
v, (v ∈ V) be a randomly chosen neighbor of u (Eu,v 6= 0). If we define θ(t) as the
probability that the individual v has not transmitted information to an individual u by time
t, the probability that individual u with degree ku has received m pieces information from
his distinct neighbors by time t will be binomially distributed and expressed as:

τm(ku, t) =
(

ku

m

)
θ(t)(ku−m)(1− θ(t))m (6)
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The quantum counterpart of this step is intuitively the same, because the binomial
distribution property holds true (please refer to Appendix A.1 for the mathematical proof).
If the individual u could receive enough pieces of information from his distinct neighbors
to exceed his threshold (φu), i.e., m ≥ φu, he will adopt the information and try to transmit
it to his susceptible neighbors in the next time step. Otherwise, he will keep his susceptible
state in the next time step. Thus, the probability of individual u with degree ku being
susceptible is:

su(ku, t) = ∑
φu

F(φu)
φu−1

∑
m=0

τm(ku, t) (7)

where F(φu) denotes the information adoption threshold function. The quantum-like
social contagion is a novel approach, and it introduces a complexity via its additional
interference terms. Because the heterogeneity of individuals in information adoption is
significant, we assume that F(φu) can be represented as a binomial distribution. In other
words, individuals may have either a relatively lower threshold (TA = 1) with probability
p, or a relatively higher threshold (TB > 1) with probability 1− p. Thus;

F(φu) =

{
TA, with probability p
TB, with probability 1−p

(8)

We obtain the fraction of susceptible individuals at time t by combining
Equations (7) and (8) with the degree distribution of the network as:

S(t) = ∑
ku

P(ku)su(ku, t)

= ∑
ku

P(ku)

[
pθ(t)ku + (1− p)

TB−1

∑
m=0

(
ku

m

)
θ(t)(ku−m)(1− θ(t))m

] (9)

We can follow a similar strategy to calculate the probability of individual v with
degree kv being a susceptible state. Being in a susceptible state, the individual u is unable to
transmit the information to its neighbor v. Thus, the individual v can receive information
from his kv − 1 distinct neighbors. Taking all possible values of receiving m pieces of
cumulative information and φv into consideration, we obtain:

sv(kv, t) = pθ(t)(kv−1) + (1− p)
TB−1

∑
m=0

(
kv

m

)
θ(t)(kv−m−1)(1− θ(t))m (10)

Recall that the transfer between states of individuals occurs not only between sus-
ceptible and adopted states but also adopted and recovered states. Adopted individuals
may lose their interest in the transmission process and move into the recovered state
with a predefined probability. Thus, the following set of ordinary differential equations
(ODEs) define the time dependence of the individuals in each compartment in the system
described above.

dA(t)
dt

= −dS(t)
dt
− γA(t)

dR(t)
dt

= γA(t)
(11)

By computing θ(t), we can solve the equations for S(t), and also A(t) and R(t), and
investigate the system dynamics. In edge-based compartmental theory, we have not made
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any assumption about the state of individual v; therefore, θ(t) may consist of three possible
outcomes that are mutually exclusive in the classical approach:

θ(t) = ξS(t) + ξA(t) + ξR(t) (12)

where ξS(t) (ξA(t), ξR(t)) represents the probability that a neighbor v is in a susceptible
(adopted, recovered) state and has not transmitted the information to individual u by
time t.

To employ quantum probability rules, we can use Born’s rule in Equation (1) and
write the counterpart of Equation (12) as follows as in Equation (5):

θ(t) = |eiθψξS(t) + eiθψξA(t) + eiθψξR(t) |
2

= |ψξS(t)|
2 + |ψξA(t)|

2 + |ψξR(t)|
2 + 2

[
|ψξS(t)||ψξA(t)|cos(θξS(t) − θξA(t))

+ |ψξS(t)||ψξR(t)|cos(θξS(t) − θξR(t)) + |ψξA(t)||ψξR(t)|cos(θξA(t) − θξR(t))

] (13)

Here, the amplitude |ψξS(t)|
2 refers to P(ξS(t)), |ψξA(t)|

2 to P(ξA(t)) and |ψξR(t)|
2 to

P(ξR(t)). The angle θξS(t) − θξA(t) corresponds to the phase of the inner product between
|ξS(t)| and |ξA(t)|. Note that there is no direct transition from the susceptible state to
recovered state, so cos(θξS(t) − θξR(t)) will be equal to 0. By recalling inverse Born’s rule
again, we can finalize the relation above as:

θ(t) = ξS(t) + ξA(t) + ξR(t)

+
√

ξS(t)ξA(t)cos(θξS(t) − θξA(t)) +
√

ξA(t)ξR(t)cos(θξA(t) − θξR(t))
(14)

Herein, the additional terms are called interference terms that do not exist in clas-
sical probability theory. From this point, we will call

√
ξS(t)ξA(t)cos(θξS(t) − θξA(t)) SA

interference term and
√

ξA(t)ξR(t)cos(θξA(t) − θξR(t)) as AR interference term for the sake
of simplicity.

Later, we draw from statistical network science to make the connection between these
two individuals u and v. In the case of the existence of an uncorrelated network, the
probability of an edge connecting individual v with a degree kv to one of its neighbors,
for example, individual u with degree ku, is equal to kvP(kv)/〈k〉, where 〈k〉 is the mean
degree. Thus, it can be obtained that:

ξS(t) =
∑kv kvP(kv)sv(kv, t)

〈k〉
(15)

θ(t) is a time-dependent variable, and it will not accomplish its definition after any
successful transmission. Therefore, we need to consider its time-dependence to fully un-
derstand the systems’ dynamics from the beginning till the steady-state. If we suppose that
an adopted individual transmits behavioral information with probability λ, the decrease in
θ(t) can be written as:

dθ(t)
dt

= −λξA(t) (16)

At time t, the behavioral information is not transmitted with probability 1− λ and the
adopted individuals move into a recovered state with probability γ, simultaneously. Then;

dξR(t)
dt

= γ(1− λ)ξA(t) (17)



Entropy 2021, 23, 538 7 of 13

Substituting Equation (16) into (17) and integrating it with the initial conditions of
θ(0) = 1 and ξR(0) = 0, we can obtain:

ξR(t) =
γ(1− λ)[1− θ(t)]

λ
(18)

Finally, we obtain ξA(t) inserting Equations (15) and (18) into (13) by using a compu-
tational knowledge engine. Substituting the resulting equation of ξA(t) into Equation (16),
we derive the time evolution of θ(t). For further details, please refer to Appendix A.2.
Furthermore, the dynamics of quantum social contagion can be described with the ODE
equations in Equation (11). When t → ∞, we find the final adoption size R(∞) once the
degree distribution is known.

3. Results

In this study, our main goal is to compare and contrast the dynamics and performances
of classical social contagion along with its quantum counterpart. The differences in these
two approaches stem from the definition of θ(t) in Equations (12) and (14); therefore, we
first investigated the graphical solution of the fixed point equation dθ(t)/dt at steady-state,
i.e., t→ ∞ with different threshold values on random regular networks in Figure 1.
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Figure 1. The graphical solution of the fixed point of equation dθ(t)/dt at steady-state when (a) Tb = 2 and (b) Tb = 4 on
random regular networks (〈k〉 = 10 and p = 0.3). The physically meaningful solutions of θ(t) for each possible λ values are
shown when (c) Tb = 2 and (d) Tb = 4. Subplots (a1, b1,c1,d1) show the relative solutions when cos(θξS(t) − θξA(t)) = 0.2,
while subplots (a2,b2,c2,d2) do when cos(θξA(t) − θξR(t)) = 0.2.

Figure 1a shows the graphical solution of a fixed point of equation dθ(t)/dt when
Tb = 2. Results show that there is only one nontrivial solution when λ is small; however,
at moderate λ values there are cases in which two nontrivial solutions are observed.
In such a case, only the maximum solution is physically meaningful. In Figure 1c, we
plotted the physically meaningful solutions of θ(t) for each possible λ values by using
the classical approach. The solution for θ(∞) shows a discontinuous change and jump
to another point at critical transmission probability (λI

c = 0.262). Therefore, R(∞) grows
discontinuously with the increasing λ. The quantum approach, on the other hand, yields
two interference terms: SA (cos(θξS(t) − θξA(t))) and AR (cos(θξS(t) − θξA(t))) interference
terms. Figure 1a(a1,a2) shows the graphical solution of fixed point of equation dθ(t)/dt at
steady-state when Tb = 2 and only SA (AR) interference is observed. The change in θ(∞)
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with respect to λ in the existence of SA (AR) interference is also plotted in Figure 1c(c1,c2).
Results show that the SA interference term makes the pattern continuous, i.e., R(∞)
increases continuously with the increasing λ. In the existence of the AR interference term,
on the other hand, the same discontinuous change pattern is observed as in classical social
contagion, however, at lower critical transmission probability (λI

c = 0.238).
For the case of Tb = 4 (Figure 1b), θ(∞) decreases continuously and a continuous

phase transition is observed at the first critical transmission probability (λI
c = 0.335),

then another discontinuous change occurs at the second critical transmission probability
(λI I

c = 0.535) in the classical approach (Figure 1d). This means that R(∞) first increases
continuously and then a discontinuous pattern is observed, which is called a hybrid phase
transition. W. Wang et al. [3] explain this situation as follows: In the existence of more than
one critical transmission probability, two different types of information adoption occur:
(i) local adoption in which the information is adopted by a small fraction of individuals,
(ii) global adoption in which the information is adopted by a finite fraction of individuals.
When λ < λI

c, individuals adopt information locally, while a global adoption is observed
when λ > λI I

c . In the case of λI
c < λ < λI I

c , individuals who have lower thresholds
adopt behavior globally while individuals who have higher thresholds adopt behavior
locally. In the quantum social contagion model, the SA interference term makes R(∞)
growth continuous with increasing λ, while the AR term displays same pattern as in the
classical approach with lower the critical transmission probabilities, i.e., (λI

c = 0.306 and
λI I

c = 0.515).
Figure 2 shows R(∞) versus λ by using the classical approach and varying strength

of SA and AR interference terms in Equation (14) when Tb = 2 and Tb = 4. As we
mentioned, classical approaches show a hybrid phase transition in both cases. This hybrid
phase transition pattern is also observed when only AR interference exists; however, a
second-order (continuous) phase transition is observed in the existence of SA interference.
We observed the similar pattern until Tb ≥ 6 only, because after this level the fraction of
individuals who have a lower adoption threshold were not enough to persuade individuals
who have higher adoption threshold in the system. Furthermore, the phase transition
becomes continuous even in the classical approach also when Tb = 1, because the model
reduces to the traditional SAR model [1]. The mini subplots on the left-top corner of each
figure shows same dynamics when the mean-degree (〈k〉) of RNN is increased, and same
conclusions are observed. Therefore, we can conclude that our results are robust to the
changes in 〈k〉 of RNNs.
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Figure 2. The final information adoption size R(∞) versus λ with classical (black solid line), various
cos(θξS(t) − θξA(t)) = 0.2 and 0.4 (red dash and solid lines) and cos(θξA(t) − θξR(t)) = 0.2 and 0.4 (blue
dash and solid lines) when (a) Tb = 2 and (b) Tb = 4 on random regular networks (〈k〉 = 10 and
p = 0.3). Subplots show the same simulations when 〈k〉 = 15.

For the comparison of performances of classical and quantum approaches in this study,
extensive numerical simulations are performed on uncorrelated random regular networks
(RRNs) with N = 10, 000, 〈k〉 = 10 and γ = 1.0. Figure 3 shows the fraction of adopted
individuals with varying behavioral information transmission probability (λ) and initial
fraction of adopted individuals (p). The theoretical solutions of R(∞) described in Figure 1
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can be seen at the λp plane more clearly. A first continuous, then a discontinuous increase
in R(∞) shows a hybrid phase transition. This crossover phenomena in the increase of
R(∞) with respect to p separates the λp plane into three different regions: (i) region I
(p ≤ 0.15), only a negligibly small fraction of individuals adopt the information (local
information adoption), (ii) region II with a first-order phase transition (0.15 < p ≤ 0.42),
a definite fraction of individuals adopt the information above λI

c, (iii) region III with a
second order phase transition (p > 0.42), a global adoption is observed above λI

c. On the
other hand, a theoretical analysis by using a classical approach fails to model the spreading
mechanism in region I when p is small, because θ(∞) is observed to be equal to one until
a fixed value; although, it has a gradually decreasing pattern in numerical simulations.
This results in an overestimation of final adoption size in this region. Moreover, a smooth
transition of R(∞) on the λp plane in region II in numerical simulations is also modeled
with a redundant sharp transition in the classical approach.
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Figure 3. The dependence of R(∞) on p and λ on random regular networks with 〈k〉 = 10 and Tb = 4
as a result of (a) numerical simulations, (b) theoretical analysis by using a classical approach.

The squared difference of R(∞) versus λ from 0.01 to 1.00 (0.01 increments) between
results obtained via theoretical analysis and numerical simulations using a quantum-like
approach with varying interference terms are shown in Figure 4. The origin point repre-
sents the squared error when the classical approach is used because both interference terms
are equal to zero (e2

p=0.3 = 4.1707 and e2
p=0.6 = 1.7643). Regardless of the initial fraction of

adopted individuals (p), the minimum errors are observed near to the diagonal of interfer-
ence terms plane, and the minimum value is obtained when cos(θξS(t) − θξA(t)) = 0.15 and
cos(θξA(t) − θξR(t)) = 0.16 (e2

p=0.3 = 4.1229 and e2
p=0.6 = 1.7326). These results demonstrate

that the quantum-like approach in an edge-based compartmental model of a message
passing approach in the modeling of social contagion performs better compared to the
classical method because it can better predict the final adoption size close to the critical
transmission probabilities.
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Figure 4. The dependence of error between R(∞) numerical simulations and theoretical analysis
by using a quantum-like approach on cos(θξS(t) − θξA(t)) and cos(θξA(t) − θξR(t)) interference terms
when (a) p = 0.3, (b) p = 0.6.
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4. Discussion

The spread of ideas, attitudes, or behavioral patterns among a group of individuals is
called social contagion. Although this spread among individuals used to be regarded as a
pathogen in a biological spreading, empirical studies demonstrated that social contagion
is far more complex due to the social, cognitive, and behavioral differences of humans.
The complexity of humans in a social contagion process is addressed by considering the
heterogeneity of their adoption thresholds with the assumption of perfect rationality; how-
ever, numerous empirical studies demonstrate that humans violate the rules of classical
probability while making decisions. In order to improve the modeling of human decision-
making about the adoption of information and/or behavior, we employed a quantum-like
approach in social contagion analysis as well as assigning individuals heterogeneous
adoption thresholds. We believe that our method, so-called quantum contagion, is able
to portray the complexity of individuals and better model a social contagion process. We
integrate an Inverse Born Problem (IBP) to represent classical probabilistic entities as com-
plex probability amplitudes in a quantum-like message-passing approach. An edge-based
compartmental theory is used to quantify the classical and quantum theoretical models,
and a large number of simulations on RRNs are carried out for the comparison of their
performances. In this study, we employed a two-state spreading threshold model in which
individuals have a relatively low threshold (TA = 1) with probability p, and a relatively
high threshold (TB > 1) with probability 1− p. The effect of threshold heterogeneity with
varying network properties has been already investigated in previous studies. These stud-
ies showed that two different types of information adoption occur in the existence of more
than one critical transmission probability: local and global adoption. The local adoption
is observed when λ < λI

c and information is adopted by a small fraction of individuals
who have a lower adoption threshold. Whereas, the global adoption occurs when λ > λI I

c
and information is adopted by a finite fraction of individuals. In the case of λI

c < λ < λI I
c ,

individuals who have lower thresholds adopt behavior globally, while individuals who
have higher thresholds adopt behavior locally. Although edge-based compartmental the-
ory can model social contagion dynamics in most cases, these analyses fall short when
transmission rates are close to these critical transmission probabilities. In the classical social
contagion model, the final adoption size (R(∞)) grows discontinuously with the increasing
behavioral information transmission probability (λ). Numerical investigations carried out
on RRNs show that the quantum social contagion model performs better than the extant
classical social contagion model because it is able to model the dynamics near the critical
transmission probabilities. The quantum social contagion model displays the same hybrid
phase transition pattern; however, both phase transitions are observed at lower critical
transmission probability values. It means that local and global adoption behavior in the
two-state spreading threshold model is observed earlier than the classical approach. The
sharp discontinuous changes in final adoption size near the critical transmission probabili-
ties are also observed as smoother in the quantum approach. Testing our conclusions on
different mean degrees of RNN and with a different initial fraction of adopted individuals
also demonstrates the generalizability and robustness of our conclusions. The optimum SA
and AR interference values remain the same, as the initial fraction of adopted individuals
changes. Thus, we argue that interference in quantum social contagion is not dependent
on the initial fraction of adopted individuals on the network. Future studies may aim
to find a heuristic to predict interference effects in the quantum approach to model so-
cial contagion dynamics without a calibration. Moreover, the effects of varying network
topology on quantum social contagion dynamics remain open for further exploration. We
intend to continue our analyses in these directions. It should be noted that despite the
quantum-like approach in edge-based compartmental theory bringing heterogeneity due
to the entangled structure of complex amplitudes in λ, we assumed that each adopted
node has an equal chance to transmit the behavior to his susceptible neighbors. Thus, we
ignored the influence variety of specific nodes in the spreading mechanism. Researchers
can integrate IBP to other high performance theoretical approaches for epidemic spreading
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such as dynamical message passing and/or edge-based mean-field theory; however, these
techniques yield very complex equations, and the quantum-like approach may exacerbate
its complexity to make this problem even more challenging to resolve [27].
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Appendix A. Mathematical Proofs of Quantum Counterpart of Equations

Appendix A.1. Quantum Counterpart of Equation (6)

Since we have defined θ(t) as the probability that the individual v has not transmitted
information to an individual u by time t, the quantum probability of the same event can be
calculated by using Born’s rule in Equation (1) as follows:

|
√

θ(t)eθ(t)|2 = (
√

θ(t)eθ(t)).(
√

θ(t)e−θ(t)) = θ(t) (A1)

Similarly, the probability of a successful transmission is equal to:

|
√

1− θ(t)e(1−θ(t))|2

= (
√

1− θ(t)e(1−θ(t))).(
√

1− θ(t)e(θ(t)−1)) = 1− θ(t)
(A2)

Therefore, we get exactly the same outcome as in the classical theory.

τm(ku, t) =
(

ku

m

)
θ(t)(ku−m)(1− θ(t))m (A3)

Appendix A.2. Calculation of ξA(t) and Time Evolution of θ(t) in Classical and
Quantum Approach

Inserting Equations (15) and (18) into (12) yields ξA(t) by using the classical approach
and gives the following expression:

ξA(t) = θ(t)− ∑kv kvP(kv)sv(kv, t)
〈k〉 − γ(1− λ)[1− θ(t)]

λ
(A4)

Substituting Equation (A4) into (16) gives us the time evolution of theta(t) as:

dθ(t)
dt

= −λ

[
θ(t)− ∑kv kvP(kv)sv(kv, t)

〈k〉

]
− γ(1− λ)[1− θ(t)] (A5)
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The quantum counterpart of this calculation, however, is more complex due to the
interference terms in Equation (14). In this case, we insert Equations (15) and (18) into (14)
to obtain ξA(t) by using the quantum approach:

θ(t) =
∑kv kvP(kv)sv(kv, t)

〈k〉 + ξA(t) +
γ(1− λ)[1− θ(t)]

λ

+

√
∑kv kvP(kv)sv(kv, t)

〈k〉 ξA(t)cos(θξS(t) − θξA(t))

+

√
ξA(t)

γ(1− λ)[1− θ(t)]
λ

cos(θξA(t) − θξR(t))λ)

(A6)

Solving this quadratic equation for ξA(t) yields four different roots; the physically
meaningful one is as follows:

ξA(t) =
1
2

[
cos2(θξS(t) − θξA(t))

∑kv
kvP(kv)sv(kv, t)
〈k〉

−

√√√√(cos4(θξS(t) − θξA(t))

(
∑kv

kvP(kv)sv(kv, t)
〈k〉

)2

− 4cos3(θξS(t) − θξA(t))cos(θξA(t) − θξR(t))

(
∑kv

kvP(kv)sv(kv, t)
〈k〉

)(3/2)
√(

γ(1− λ)[1− θ(t)]
λ

)
+ 6cos2(θξS(t) − θξA(t))cos2(θξA(t) − θξR(t))

∑kv
kvP(kv)sv(kv, t)
〈k〉

γ(1− λ)[1− θ(t)]
λ

+ 4cos2(θξS(t) − θξA(t))θ(t)
∑kv

kvP(kv)sv(kv, t)
〈k〉

− 4cos2(θξS(t) − θξA(t))

(
∑kv

kvP(kv)sv(kv, t)
〈k〉

)2

− 4cos2(θξS(t) − θξA(t))
∑kv

kvP(kv)sv(kv, t)
〈k〉

γ(1− λ)[1− θ(t)]
λ

− 4cos(θξS(t) − θξA(t))cos3(θξA(t) − θξR(t))

√(
∑kv

kvP(kv)sv(kv, t)
〈k〉

)(
γ(1− λ)[1− θ(t)]

λ

)(3/2)

− 8cos(θξS(t) − θξA(t))cos(θξA(t) − θξR(t))θ(t)

√(
∑kv

kvP(kv)sv(kv, t)
〈k〉

)√(
γ(1− λ)[1− θ(t)]

λ

)

+ 8cos(θξS(t) − θξA(t))cos(θξA(t) − θξR(t))

(
∑kv

kvP(kv)sv(kv, t)
〈k〉

)(3/2)
√(

γ(1− λ)[1− θ(t)]
λ

)

+ 8cos(θξS(t) − θξA(t))cos(θξA(t) − θξR(t))

√(
∑kv

kvP(kv)sv(kv, t)
〈k〉

)(
γ(1− λ)[1− θ(t)]

λ

)(3/2)

+ cos4(θξA(t) − θξR(t))

(
γ(1− λ)[1− θ(t)]

λ

)2

+ 4cos(θξA(t) − θξR(t))θ(t)
(

γ(1− λ)[1− θ(t)]
λ

)
− 4cos2(θξA(t) − θξR(t))

(
∑kv

kvP(kv)sv(kv, t)
〈k〉

)(
γ(1− λ)[1− θ(t)]

λ

)

− 42cos(θξA(t) − θξR(t))

(
γ(1− λ)[1− θ(t)]

λ

)2
)

− 2cos(θξS(t) − θξA(t))cos(θξA(t) − θξR(t))

√(
∑kv

kvP(kv)sv(kv, t)
〈k〉

)√(
γ(1− λ)[1− θ(t)]

λ

)
+ cos2(θξA(t) − θξR(t))

(
γ(1− λ)[1− θ(t)]

λ

)
+ 2θ(t)− 2

(
∑kv

kvP(kv)sv(kv, t)
〈k〉

)
− 2
(

γ(1− λ)[1− θ(t)]
λ

)]

(A7)
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