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We present a new mechanistic model for predicting Septoria tritici blotch

(STB) disease, parameterized with experimentally derived data for tempera-

ture- and wetness-dependent germination, growth and death of the causal

agent, Zymoseptoria tritici. The output of this model (A) was compared

with observed disease data for UK wheat over the period 2002–2016. In

addition, we compared the output of a second model (B), in which exper-

imentally derived parameters were replaced by a modified version of a

published Z. tritici thermal performance equation, with the same observed

disease data. Neither model predicted observed annual disease, but model

A was able to differentiate UK regions with differing average disease risks

over the entire period. The greatest limitations of both models are: broad

spatial resolution of the climate data, and lack of host parameters. Model

B is further limited by its lack of explicitly defined pathogen death, leading

to a cumulative overestimation of disease over the course of the growing

season. Comparison of models A and B demonstrates the importance of

accounting for the temperature-dependency of pathogen processes impor-

tant in the initiation and progression of disease. However, effective

modelling of STB will probably require similar experimentally derived par-

ameters for host and environmental factors, completing the disease triangle.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.

1. Introduction
Crop plants are threatened by a plethora of pathogens [1]. Despite fungicide

application and deployment of disease-resistant cultivars, such pathogens

destroy around one-quarter of food production worldwide [2]. Wheat is the

most important global cereal crop [3]; in the UK alone, over 12 million tonnes

of wheat were harvested in 2013–2014 [4]. However, UK wheat yields are reduced

up to 10% by the fungal pathogen Zymoseptoria tritici, the causal agent of Septoria

tritici blotch (STB) [4], despite a spend of around £145 million (2014) on fungicides

for its control [4,5].

Wind-dispersed ascospores are the primary inoculum of Z. tritici [6]. In moist

conditions, spores germinate and hyphae grow randomly across the leaf, before

entering via stomata [7–9]. Penetration and apoplast colonization precede an expo-

nential increase in fungal biomass via necrotrophic growth in planta [7]. Pycnidia

(asexual fruiting-bodies) then form and exude pycnidiospores, which are dissemi-

nated by rain-splash [9,10]. This enables polycyclic infection throughout the

growing season [11]. Successful completion of the Z. tritici life cycle is dependent

on complex, interacting factors, including temperature, moisture and light [12–18].
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Figure 1. Schematic of models A and B. Models A0, A1 and A2 are described by experimentally derived parameters for the temperature- and leaf wetness-driven
transition probabilities of spore germination (T1, W1), spore death (T2, W2), and hyphal growth (T3, W3). Model B1 is described by the temperature- and leaf
wetness-driven transition probabilities between spores landing on the leaf surface and pycnidiation (T4, W4); model B2 is only described by T4 [29]. (Online version
in colour.)
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Both correlative and mechanistic attempts have been

made to model STB disease risk and to develop disease fore-

casting tools based on weather data [19,20]. The correlative

approach involves searching for relationships between

disease severity and weather data [21–23]. Using this

approach, ‘very severe’ or ‘severe’ STB epidemics were

found to follow, respectively, 40 or 34 days of rain and

warmth in late spring. This is in line with the observation

that rainfall is crucial for temperature-dependent polycyclic

disease progression [22]. A predictive model, based on accu-

mulated rainfall and minimum temperatures during key

stages of wheat growth, was moderately successful at predict-

ing the binary presence/absence of a ‘damaging epidemic’:

63% of positive predictions and 73% of negative predictions

matched epidemic observations overall. However, these

numbers were subject to change depending on the STB resist-

ance of the wheat cultivar, with negative predictions no

better than random (50%) for susceptible cultivars [23]. This

demonstrates the main weakness of correlative models: they

do not account for the biology of the pathogen or host. By

contrast, mechanistic models include host and/or pathogen

parameters, such as temperature responses [24–27]. Two cli-

mate-focused, mechanistic models exist for STB [24,25]: both

rely on pathogen parameters from unpublished data and rela-

tively simple descriptions of pathogen development. For

example, Audsley et al. [24] modelled the overall rate of

lesion development as a function of temperature. Ideally,

however, mechanistic models should account for complex-

ities in pathogen temperature responses, such as variation

in pathogen temperature responses during pathogen devel-

opment or disease progression. The recent mechanistic
model for Hemileia vastatrix (coffee rust) [19], in which germi-

nation and appressorium formation occur with different

temperature optima [28], exemplifies this, but such detailed

mechanistic models are yet to be created for Z. tritici.
Here, we develop a new mechanistic model for STB (model

A). We present experimentally derived parameters for the

temperature- and leaf wetness-driven transition probabilities

of (1) germination, (2) hyphal growth and (3) spore death

(figure 1, T1–T3 and W1–W3; electronic supplementary

material, figure S1). This model is thus based upon discrete

probabilistic events during disease development. We modelled

infection risk by running model A with a high-resolution cli-

mate dataset (1990–2016) [30]. In order to determine what

value the experimentally derived parameters used in model

A provided, we compared the performance of model A with

a second version of this model (B) in which the experimentally

parameterized, discrete, probabilistic events of disease devel-

opment in model A were replaced by a thermal performance

equation for Z. tritici developed by Bernard et al. [29]. This

thermal performance equation defines a relationship between

temperature and the latent period (LP) of STB disease [29].

Therefore, in model B, disease severity is determined by a

direct, temperature-driven probability that spores landing on

the leaf lead to pycnidiation (figure 1, T4; electronic sup-

plementary material, figure S2). We compared the output of

models A and B with observed STB data.
2. Material and methods
For details of Z. tritici strains and experimental conditions,

preparation of leaf wax slides, calculation of Z. tritici



Table 1. Model restrictions and estimates for temperature parameters describing germination and growth for models A0, A1 and A2. Parameter estimation for
germination (models A0, A1 and A2) and growth (A1) were restricted during brute force fitting of 4-parameter beta curves to experimental data. For A1/A2
model outputs (shaded columns), see electronic supplementary material, figures S3 and S4.

germination growth (stomatal penetration)

models A0, A1 and A2 model A1 model A0 model A2

parameter restriction estimate restriction estimate estimatea estimateb

minimum temperature (Tmin) 25 to 108C 9.928C 25 to 158C 24.528C 210.358C 0.748C

optimum temperature (Topt) 12 to (Tmax20.018C) 19.108C 18 to (Tmax20.018C) 23.008C 17.178C 16.148C

maximum temperature (Tmax) 25 to 358C 32.208C 25 to 358C 25.608C 19.778C 29.348C

scaling factor 0 – 0.5 0.09 0 – 10 8.57 8.57 8.57
aParameter estimates calculated as model A1 parameter estimates, minus 5.838C. This is to reflect differences between Z. tritici in vitro growth and area under
disease progress curve (AUDPC), see [32].
bParameter estimates are calculated as the mean of 18 Z. tritici isolates, taken directly from [32], minus 4.1568C. This is to reflect differences between Z. tritici
in vitro growth and AUDPC, see [32].
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temperature-dependent in vitro growth and germination rates, and

Z. tritici temperature- and wetness-dependent thermal death rates

(see electronic supplementary material; Material and methods).

(a) Infection risk model parameterization
To parameterize model A, cardinal (minimum (Tmin), maximum

(Tmax) and optimal (Topt)) temperatures (CT) for germination and

growth were estimated by brute force fitting (an exploration of

parameter space in which 10 million possible parameter combi-

nations were considered and those that produced the fit with

the smallest residual sums of squares selected) of the experimen-

tal data to a four parameter beta function (Tmin, Tmax, Topt and

scaling factor), after Yan & Hunt [31]. For growth, CT estimates

were also shifted according to the relationship described in

Boixel et al. [32], between the optimal temperature for growth

in vitro and that for disease progression in leaves. This shift

was used because, while we measured growth in vitro, it is the

process of leaf infection that is modelled. Boixel et al. [32] also

showed that the optimal in vitro growth temperature for

IPO323 was 5.58C higher than that for recently collected French

field isolates of Z. tritici. To account for this, we used a third

set of CTs for growth, those reported for field isolates—again,

shifted for the difference between in vitro growth and leaf infec-

tion. CT parameter restrictions, estimates and shifted estimates

are given in table 1. Hereafter, ‘model A0’ refers to the model

using the growth CT parameters shifted to give optimal infection

temperatures. Unshifted CT parameters are used in model A1,

and shifted field isolate parameters in model A2. The results of

models A1 and A2 are presented as supplementary results

(electronic supplementary material, figures S3 and S4). CT par-

ameters are assumed not to differ between ascospores and

pycnidiospores in models A0, A1 and A2.

Cumulative germination and growth on the leaf were mod-

elled using a cumulative Weibull distribution [19]. Growth is

therefore considered as an event that has, as its end point,

stomatal penetration. The Weibull parameters used for germina-

tion and growth were a ¼ 58.5, g ¼ 1.3, and a ¼ 189, g ¼ 2.2.

Weibull parameters were chosen based on iterative fitting to

available data, with the a and g that resulted in the smallest

residual sum of squares selected. Spore germination data were

extracted from Fones et al. [7]. Only the first 5 days post-inocu-

lation (dpi) was used, as this captured the majority of spore

germination. The data were rescaled between 0 and 1, where
the greatest percentage germination at day 5 was set to 1; see

electronic supplementary material, figure S5. Growth (stomatal

penetration) data for the first 0–10 dpi period was extracted

from Fones et al. [7], with the additional assumptions that (1)

the first 48 h of data reflect spore germination, and so were

excluded from the dataset, and (2) at 8 dpi (10 dpi raw data)

the mean number of germinated individuals penetrating stomata

was 66% of the total. The data were then rescaled between 0 and

1; see the electronic supplementary material, figure S5. Such

assumptions gave 90% penetration saturation at 11.5 days and

99% penetration saturation at 15.8 days under optimal con-

ditions. Germination and penetration rates were reduced at

sub-optimal temperatures according to their beta functions

(figure 2a–c).

In addition, model A included parameters for temperature-

dependent spore death under both wet and dry conditions. The

per-hour increase in proportional cell death was not influenced

by temperature under wet conditions (linear regression,

slope ¼ 20.00178, s.e. ¼ 0.069, t ¼ 20.026, d.f. ¼ 14; figure 2c,

blue) but was positively related to temperature under dry con-

ditions (linear regression, slope¼ 0.169, s.e. ¼ 0.092, t ¼ 1.830,

d.f. ¼ 14; figure 2c, red). Hence, we parameterize model A with

zero spore death under wet conditions (irrespective of tempera-

ture) and predicted temperature-dependent spore death under

dry conditions linearly, with a slope of 0.169. In addition, we

found that the proportion of dead cells was greater by 0.3612

(s.d. ¼ 0.028, d.f.¼ 2) in freshly prepared dry slides than in freshly

prepared wet slides (a difference in wet and dry ‘baseline’ values;

see electronic supplementary material; Material and methods), a

difference we attribute to the stress of drying per se. The model there-

fore includes this additional spore death at the beginning of each dry

spell in the climate data. We note that the linear fit for the proportion

of dead cells under dry conditions generates negative predictions at

very low temperatures, outside of the experimental data space.

These temperatures (less than approx. 288C), however, represent

very rare events in our climate dataset (0.0106% of hours from 1

January 1990 to 31 December 2016, excluding August and

September). Hence, negative spore death predictions were forced

to zero. Model B was parameterized using a thermal perfor-

mance curve of STB LP from Bernard et al. [29] (see electronic

supplementary material; Material and methods; figure 3).

The thermal performance curve (equation (2.1)) for Z. tritici
used in model B [29] describes a temperature-dependent LP for

STB disease development, where the LP is defined as the time
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elapsed from inoculation until 37% of maximum sporulation (by

area) had developed. Parameters for the thermal performance

curve were set as the pooled estimates of three strains of Z. tritici
as reported by Bernard et al. [29]: LPmin ¼ 691 h, Curv ¼

20.4 h8C22, Topt ¼ 18.48C. (Note: Bernard et al. [29] define T as

mean leaf temperature. Here, we assumed equivalency between

mean leaf temperature and mean canopy temperature, as only

the latter is available in our climate data.) From this thermal

performance curve, we calculated relative rates for tempera-

ture-dependent LP. Similar to model A, we then modelled

disease development risk using a cumulative Weibull distri-

bution. For model B, because Bernard et al. [29] do not provide

direct data for sporulation dynamics over time at Topt, we were

unable to estimate a and g directly. Instead, we first extracted

data from Bernard et al. [29] for a Z. tritici leaf chlorosis/necrosis pro-

gression curve under optimal leaf temperature class (16.6–18.78C)

using DataThief III [33]. We approximated sporulation dynamics

at Topt from this curve. However, we shifted the sporulation

curve by 94 h. This ensures consistency with equation (2.1),

where 37% of maximum sporulation occurred under Topt at

LPmin (691 h) [29], and accounts for the likelihood of chlorosis

occurring before tissue necrosis/pycnidia development [34].

We hence estimated the Weibull parameters as a ¼ 822 and

g ¼ 4.5; see electronic supplementary material, figure S5. Weibull

parameters were chosen based on iterative fitting to available

data, with the a and g that resulted in the smallest residual
sum of squares selected. The LP is assumed not to differ between

ascospores and pycnidiospores in model B. The thermal perform-

ance curve of Z. triticis is given by

TPC(T) ¼ 1

LPmin þ Curv� (T � Topt)
2

, ð2:1Þ

LP is latent period (hours post-inoculation, hpi); LPmin, mini-

mum latent period at Topt (hpi); T, mean canopy temperature

(8C); Topt, optimal mean leaf temperature (8C); hpi, hours post-

inoculation. Note: originally, LPmin was in days post-inoculation

(dpi) (28.8) and Curv was in dpi 8C22 (0.85) [29]. In model B,

LPmin is in hpi (691) and Curv is in hpi 8C22 (20.4).
(b) Model execution
We defined the period when infection is possible as 00.00 on 1

October to 23.00 on 31 July: from seed sowing to completion of

grain filling for UK winter wheat (Zadok’s growth stage g66,

https://cereals.ahdb.org.uk). We downloaded historical weather

estimates (canopy temperature (8C), canopy surface water con-

tent (g m22), and total precipitation (mm)) for these months in

the major wheat-growing regions of the UK (1.978 W to 1.978 E,

50.0 to 55.08 N) from 1990 to 2016, inclusive, at 3-hourly intervals

and 0.56258 spatial resolution, from the Japanese 55-year reanaly-

sis (JRA55) via the Research Data Archive of CISL (NARC)

https://cereals.ahdb.org.uk
https://cereals.ahdb.org.uk
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(https://rda.ucar.edu/datasets/ds628.0/) [30]. Canopy tempera-

ture and surface water content data were linearly interpolated,

and total precipitation data divided by 3, to give hourly estimates

for use in models A and B.

In models A and B, we calculated relative hourly ascospore

cohort size using the ascospore influx rate equation in Kitchen

et al. [35]: X(t) ¼ ht2e2lt. In this equation, h is the ascospore

influx coefficient (units ¼ T23) and l is the ascospore influx

decay rate (dimensionless) (electronic supplementary material,

figure S6). While this equation expresses ascospore deposition

as a function of degree-days, our models run in hours, where t
is in hours (units ¼T). We chose the value of the parameter l

(l ¼ 0.00159) such that peak ascospore delivery occurs in late

November, in line with spore-trapping data [36,37] and the role

of ascospores as primary inoculum [38], maintaining the overall

shape of the curve used by Kitchen et al. [35]. This decision carries

two caveats. Firstly, that mapping degree-days to time obscures

the second recorded peak of ascospore production around the

time of harvest. Our model, however, is halted at the end of

grain filling, so this second ascospore peak occurs outside of

the times modelled and can be disregarded. Secondly, directly

converting the degree-day curve into hours means that our

models assume ascospore production to be independent of the

weather parameters that are accounted for by the use of

degree-days. This caveat is considered in the Discussion. The

average temperature at the start of the model (October) is

11.258C, giving an LP of approximately 71 days (1704 h)

(equation (2.1); [29]). Hence, in our models pycnidiospores may

arrive from 1 December, allowing two months for sporulating

pycnidia to develop from ascospores that arrived at the begin-

ning of the growing season. Further, pycnidiospores, since
these are rain-splash dispersed, only arrive during precipitation.

Because of the polycyclic nature of Z. tritici infection, we

assumed that pycnidiospores were available during every pre-

cipitation event after 1 December. We did not attempt to model

the dependency between infection levels and pycnidiospore

cohort size, nor the relative size of each pycnidiospore cohort

compared with the size of ascospore cohorts. This is because,

to our knowledge, no data exist concerning the number of

pycnidiospores produced per ascospore or per pycnidiospore

infection, nor concerning the dependence of this on weather

during infection and dispersal. Neither is it known whether Z. tri-
tici exhibits density-dependent germination. The pycnidiospore

cohort size was thus set arbitrarily to the same size as the largest

possible ascospore cohort size. In model A, we assumed that ger-

mination and growth take place only if the canopy surface water

content exceeds zero. An example spore germination trajectory is

shown in electronic supplementary material, figure S7. In model

B (equation (2.1)), surface and apoplastic growth cannot be separ-

ated; thus, the transition between spores and pycnidia in model B

could be considered either canopy surface water-dependent, as for

surface growth prior to penetration [7], or -independent, as for

apoplastic colonization. Model B was thus run with and without

this dependency, hereafter referred to as model B1 and B2, respect-

ively. In model A, the total relative number of spores germinating

per hour is the sum of all germinating cohorts of pycnidiospores/

ascospores; the relative number of spores growing and thence

penetrating stomata per hour is the sum of all growing cohorts

of pycnidiospores/ascospores, and indicates relative infection

risk. In model B, STB disease is indicated by the sum of all

sporulating cohorts of pycnidiospores/ascospores.

(c) Comparison of model output with observed STB
disease data

Observed STB disease data (% field area affected by STB) from

across the UK (2002–2016) were downloaded from the Agricul-

ture and Horticulture Development Board (AHDB—available

upon request, https://cereals.ahdb.org.uk). Eighty sites fell

within the area included in the model and each provided at

least 1 year’s observed disease data (electronic supplementary

material, figure S8). Wheat plants were not treated with fungi-

cide at any location. Approximate latitude and longitude

values were determined for each site. Where the site was at

county level, the approximate centroid point of the county was

used. To compare observed STB disease data with model predic-

tions of percentage infection/STB disease, site locations were

rescaled to the spatial scale of the climate data used in models

A and B (0.56258 � 0.56258 resolution, equating to approx.

2000 km2). Correlation coefficients were calculated between

mean observed percentage STB disease in each location and the

infection/disease predictions from models A0, A1, A2, B1 and

B2. We also calculated correlation coefficients between the tem-

poral mean of the observed percentage STB disease in each

pixel and model predictions from models A0, A1, A2, B1 and B2.
3. Results
In models A0–A2, ascospores largely infected wheat pri-

marily at the beginning of the growing season, and

pycnidiospores later in the growing season (figure 4a; elec-

tronic supplementary material, figure S4a, b). By contrast,

in model B1 the trend of successful infection by both ascos-

pores and pycnidiospores was largely positive across the

growing season (figure 4b). In model B2, pycnidiospores fol-

lowed a similar trend to model B1, but the majority of

ascospores completed infection earlier in the growing

https://rda.ucar.edu/datasets/ds628.0/
https://rda.ucar.edu/datasets/ds628.0/
https://cereals.ahdb.org.uk
https://cereals.ahdb.org.uk
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hour of the growing season, as the mean of all pixels for all growing seasons in the climate dataset (winter 1990/summer 1991 to winter 2015/summer 2016).
Green and blue lines represent (sexual) ascospores and (asexual) pycnidiospores, respectively.
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season (figure 4c). Of note, neither model B1 nor B2 includes

an explicit, wetness- or temperature-dependent cell death

function, since this is assumed to be implicit in the length

of the LP described by equation (2.1). However, this means

that all spores in the model can overwinter and cause disease

once favourable conditions return. By contrast, model A

removes spores during all dry periods in a temperature-

dependent manner. The size of the spore cohorts in model

A thus declines in the absence of successful infection.

We compared model predictions of infection/STB disease

with observed disease data. Infection/STB disease predic-

tions from models A and B did not correlate significantly

with percentage observed disease: (A0: r ¼ 0.065, p . 0.05;

A1 r ¼ 0.089, p . 0.05; A2, r ¼ 0.058, p . 0.05) (B1: r ¼
0.065, p . 0.05; B2: r ¼ 0.043, p . 0.05; figure 5a,d,g; electronic

supplementary material, figure S3a,d). However, when aver-

aged for each pixel across the temporal scale of observations

(2002–2016), infection risk predictions from models A0, A1

and A2 correlated significantly with temporal mean pixel

percentage observed disease (A0: r ¼ 0.623, p , 0.005,

figure 5b,c; A1: r ¼ 0.521, p , 0.05; A2: r ¼ 0.646, p , 0.005,

electronic supplementary material, figure S3b,d), while

models B1 and B2 did not (B1: r ¼ 20.261, p . 0.05; B2:

r ¼ 20.236, p . 0.05; figure 5e,f,h,i). Models A1 and A2 also

showed no significant correlation between predicted infection

risk and observed disease; A2 performed slightly better than

model A0 with respect to predictions of temporal mean dis-

ease, but this was not significant (electronic supplementary

material, figure S3).
4. Discussion
We present a new mechanistic model (A) for predicting

weather-dependent Septoria tritici blotch disease. This model

is parameterized with experimentally derived data, and

predicts germination and growth of Z. tritici on the wheat

leaf to estimate infection/STB disease. We compared model

A’s predictions with observed disease data and did the same

for the predictions of a similar model (B) in which the exper-

imentally parameterized portion of model A was replaced

with a modified thermal performance disease equation from

Bernard et al. [29]. In addition, we compared the temporally

pooled results of each model with temporally pooled disease

observations, to determine whether either model can identify
areas of the UK where risk from STB disease has been

particularly high or low over the modelled period.

Neither model A nor B showed significant correlation

between predicted risk and observed disease in a given

year (figure 5a,d,g). Moreover, model B showed no improve-

ment when leaf wetness data were incorporated (figure 5g).

Model A, however, successfully distinguished between

areas with differences in disease risk over the whole mod-

elled time period, while model B did not (figure 5b,e,h).

Possible explanations for the failures in prediction by either

model can be divided into limitations associated with the

observed disease and climate data, and limitations of the

model itself.

The observed disease data relate to 179 observations from

80 farms, and were averaged across the 22 pixels of approxi-

mately 0.58 � 0.58 for which climate data were available to

drive the models [30]. Disease observations therefore include

between-farm spatial variation, which is not captured by the

models presented here. Spatial heterogeneity in disease sever-

ity may also occur even within a field owing to microclimate

effects within the canopy, including differences between air

temperature and leaf temperature [29]. It can be seen in elec-

tronic supplementary material, figure S9 that the per-pixel,

observed disease data show a strong correlation between

the mean and standard deviation. This indicates that in

pixels where disease is common, there is more variation

than can be explained by accounting for the differences

between pixels. Thus, variations in climate between pixels

may not be sufficient to capture all of the relevant within-

pixel variability in disease. To overcome this, higher

resolution data for climate-derived parameters, such as

temperature, rainfall and leaf wetness, would be required.

However, to capture very fine scale, even within-field vari-

ation, would require specialized recording equipment

within wheat canopies—in other words, data collection

beyond the scope of disease risk model development. Further,

the observed disease data represent the percentage field area

affected by STB, but not lesion area or pycnidiation density.

By contrast, both models give infection/STB disease based

on the percentage of spores landing on the leaf that progress

to cause disease. It has been shown that, in the absence of

other factors such as disease saturation, one spore is sufficient

inoculum to form one lesion [39], and this is reflected in the

field by the frequent dominance of a single genotype within

lesions [40]. Therefore, the model output represents the
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percentage of spores progressing to lesions. There may, how-

ever, be heterogeneity in lesion formation, giving variable

observed disease outcomes from the same percentage of infect-

ing spores. Temporal heterogeneity is likely to be of particular

importance in model A, which shows large variation in num-

bers of infections occurring at different points during the

growing season (figure 4a). Such limitations in observed dis-

ease data could be overcome only with an intensive research

effort to score lesions in the field.

For model A, it is clear that the largest errors in annual

disease risk predictions occur where observed disease is

very high and predicted risk is very low. This pattern

cannot be explained by the limitations of the observed data,

which apply to all risk predictions, but is likely due to the

limitations of model A itself. The most obvious limitation of

model A is that, in contrast to previous models (e.g.

[24,25]), model A does not contain any host growth par-

ameters nor data concerning the resistance status of the

wheat cultivars planted. This omission means that
unexpectedly high disease may occur where a variety of

wheat with low STB resistance has been planted, or where

the constantly evolving pathogen breaks host resistance in a

particular wheat cultivar [41,42]. Previous models (e.g.

[24,25]) specifically consider wheat growth stage as a proxy

for leaf availability for infection and lesion development,

while model A assumes that if a spore can grow, it can

cause a lesion. However, saturation of lesion formation fol-

lowing leaf inoculation with increasing numbers of spores

has been demonstrated [39,43]. Depending on disease pro-

gression and the timing of disease observation, this may

cause model A to over- or underestimate disease risk. Other

environmental factors that may be of relevance to disease

progression, such as agronomic factors and atmospheric com-

position, have not been considered in this work. These may

be required for a fully predictive model [44]. It is important

to note that by converting the degree-day curve for ascospore

delivery [35] into hours, model A fails to account for the

dependency of ascospore production and delivery upon the
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climatic variables that relate degree-days to time. Despite this,

it is generally accepted that ascospore deposition on winter

wheat in the Northern Hemisphere peaks in late autumn

and tails off throughout the rest of the period of wheat

cultivation covered by model A [35–37]. Further, it must be

noted that, in the absence of data allowing us to model the

weather-dependent rate of pycnidiospore production per

infection event (either asco- or pycnidiospore initiated), we

have arbitrarily designated the size of every pycnidiospore

cohort as equal to the largest possible ascospore cohort

size. This may be either an over- or underestimate at different

times within the growing season. In theory, it is possible for

every infection to generate multiple pycnidia, each holding at

least 300 pycnidiospores [4], making a large underestimate

theoretically possible. However, this underestimate is likely

offset by infection saturation of leaves [39], density-dependent

germination rates and loss of spores from the system (e.g.

by rain-splash onto non-wheat surfaces) for which no data

exist at present. These limitations apply equally to model B.

A second limitation of models A and B is that they

assume a stable Z. tritici population whose responses to

temperature and other parameters are the same as those of

the experimental strains used. For model A, this is IPO323

(except for growth parameters in A2), while model B uses

pooled data from three French field isolates [29]. In reality,

multiple strains of Z. tritici co-infect in the field [40,41] and

these may vary in their rate of progression through the dis-

ease cycle, lesion size and lesion clustering [45], all of

which may affect observed percentage diseased leaves. Zymo-
septoria tritici strains can also compete or co-operate on and in

the leaf [46]. Strain IPO323 has not been compared with, and

may not be representative of, UK field isolates from the mod-

elled years. Our in vitro experiments showed cardinal

temperatures (CTs) for Z. tritici strain IPO323 of 19.1 and

23.08C for germination and growth, respectively. We note

that these temperature optima are both high in comparison

with UK daily mean temperatures (electronic supplementary

material, figure S10), as well as being higher than the optimal

temperature of equation (2.1) [29], which together may

explain some cases of under-prediction by model A1. Further

to this, recent work by Boixel et al. [32] investigated the CTs

for growth in IPO323 and a collection of French Z. tritici field

isolates. We noted that this work demonstrated that IPO323

was a clear outlier compared with the field isolates, showing

an elevated (þ5.58C) optimal temperature. To investigate the

importance of these findings for model A, we reran model

A0, using the average CTs reported for the French field iso-

lates [32] (model A2, electronic supplementary material,

figure S3). This change neither altered the overall outcome

of the comparison between observed and modelled disease

(A0, r ¼ 0.065 versus A2, r ¼ 0.058), nor significantly

improved the fit of the temporally pooled data (A0, r ¼
0.623 versus A2, r ¼ 0.646). This result suggests that the dis-

parity between optimal growth temperatures for IPO323

and the field isolates does not account for a significant part

of the error in model A0—although data from UK field iso-

lates are still lacking. Further, models A0–A2 are

parameterized by the same IPO323 thermal death estimates

(figure 2c); exploration of temperature-dependent death for

additional field isolates under wet/dry conditions would

clarify whether this contributed to error in model

A. Finally, Suffert & Thompson [47] show that LP varies

between populations and subpopulations of Z. tritici,
pycnidiospores and ascospores, and is influenced by wheat

growth stage. Although such sources of variability were not

accounted for in our models, should appropriate data

become available it would be interesting to test their effect

upon the utility of each model.

Model B has two further limitations, which likely contrib-

ute to its failure to predict not only annual disease risk, but

also time-averaged risk per pixel, where model A performs

well. Firstly, equation (2.1) [29], which underpins model B,

is parameterized using an experimentally derived thermal

performance curve for Z. tritici, but the underlying exper-

imental data are restricted to the range 10–228C. As this

does not cover the entire range of conditions experienced

during the UK wheat-growing season, we were obliged to

extrapolate this curve for model B. By contrast, the data

that we have collected to parameterize model A span 0–

308C and require a much smaller degree of extrapolation

(figure 2a,b). Secondly, the equation in model B has no

scope for incorporating the death of spores over time. Thus,

any spore that arrives on the leaf under unfavourable con-

ditions simply remains in the model until it is able to grow

and infect. Further, Bernard et al. [29] show a reduction in

maximum disease at sub-optimal temperatures. Equation

(2.1) does not account for this reduction and there are no

data available with which to explicitly apply this reduction

to predicted disease under changing temperature conditions.

These limitations account for the stark differences between

model A and models B1 and B2 seen in figures 4 and 5: in

model A, spores die rapidly in dry periods and are removed

from the model, whereas in B1 they are merely paused and in

B2 suffer no effect. Model A shows successful infections only

under permissive temperature and wetness, giving peaks of

infection in autumn and in spring/summer (figure 4a).

Both iterations of model B show rapid disease saturation

(figure 4b,c), with very high percentages of spores completing

infection (around 75%, when conditions are optimal, com-

pared with 0.2% in model A0; figure 5a,d,g). Fones & Gurr

[4] estimated that up to 1011 Z. tritici pycnidiospores can be

produced per hectare of 5 � 106 leaves. If 75% of spores

lead to lesions, as in model B, we would therefore see up to

15 000 lesions per leaf under optimal conditions. By contrast,

the approximate 0.2% success rate of model A under optimal

conditions would give around 40 lesions per leaf. Each lesion

may contain hundreds of pycnidia. These calculations indi-

cate that a large overall overestimate of disease pressure is

inherent to model B, likely as a result of the lack of tempera-

ture-dependent spore death during periods when weather

prevents infection. This demonstrates the value of the exper-

imentally derived data concerning temperature-dependent

death that we incorporated into model A.

This demonstration, along with the comparative success

of model A over model B, clearly shows that the use of exper-

imentally derived parameters for biological processes in this

mechanistic model leads to improved applicability

(figure 5b). Such experimentally derived parameterization

could be used for other crop pathogen models, where CTs,

growth and death rates can be determined in vitro. For

many plant pathogens, relationships between climate par-

ameters and disease are simpler [2,20]. The need to describe

additional epiphytic persistence and growth for Z. tritici,
however, makes this pathogen particularly amenable to our

experimentally parameterized, mechanistic approach. Other

plant pathogens that persist epiphytically include many
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important bacteria (e.g. Pseudomonas syringae [48]). Our

approach may also be useful for certain climate-responsive

animal pathogens. White-nose syndrome in bats, for example,

is caused by the fungus Pseudogymnoascus destructans, which

is sensitive to both temperature and humidity in bat hiberna-

cula [42,49]. Further, insect-vectored diseases such as malaria

and dengue fever are susceptible to mechanistic modelling

of their response to climate change, with experimental

parameters applying to the vectors as well as to the dis-

ease-causing organisms. Malaria rates have been shown to

be related to temperature and to require a threshold level of

rainfall, as these factors influence the mosquito vectors

[50,51], while dengue fever rates are related to temperature

through the effect of warmth on viral replication rates [50].

The use of mechanistic models in human disease spread

modelling has been increasing rapidly [51]. Interestingly,

the use of unimodal response distributions to determine

CTs for processes such as growth and germination, as we

have done here, though common in plant disease models, is

relatively new in the areas of animal and human disease

modelling—for instance, this approach was first applied to

malaria models in 2013 [51–53].

Despite the demonstrable advantages of the mechanistic

model, model A cannot predict annual disease risk from

STB (figure 5a). This indicates that at least a portion of the

intractability of STB to disease modelling, hypothesized to

be due to the effect of poorly understood, complex interactions

between multiple factors such as light, temperature and

humidity [18,54], remains. We propose that a mechanistic

model based on a thorough understanding of the pathogen’s

infection biology should eventually be incorporated, along-

side agricultural parameters such a frequency of fungicide

applications, into a wider model that includes host parameters

(e.g. that developed by Robert et al. [27]). We note that, while
the disease observations used here relate to fungicide-free

wheat growth, fungicide use and subsequent evolution of

fungicide resistance in the pathogen is an important consider-

ation in disease management. Thus, fungicide usage and

pathogen responses must be considered alongside other

pathogen features such as variation in CTs [53,55] and infec-

tion biology [46], as well as host features such as resistance

status, in any comprehensive, mechanistic STB model. Only

a mechanistic model that considers all aspects of the disease

triangle—host, pathogen and environment—is ever likely to

achieve significant predictive power for STB.
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