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a b s t r a c t

Sphingosine 1-phosphate type 1 (S1P1) receptors are expressed on lymphocytes and regulate immune
cells trafficking. Sphingosine 1-phosphate and its analogues cause internalization and degradation of
S1P1 receptors, preventing the auto reactivity of immune cells in the target tissues. It has been shown
that S1P1 receptor agonists such as fingolimod can be suitable candidates for treatment of autoimmune
diseases. The current study aimed to generate GRIND-based 3D-QSAR predictive models for agonistic
activities of 2-imino-thiazolidin-4-one derivatives on S1P1 to be used in virtual screening of chemical
libraries. The developed model for the S1P1 receptor agonists showed appropriate power of predictivity
in internal (r2acc 0.93 and SDEC 0.18) and external (r2 0.75 and MAE (95% data), 0.28) validations. The
generated model revealed the importance of variables DRY-N1 and DRY-O in the potency and selectivity
of these compounds towards S1P1 receptor. To propose potential chemical entities with S1P1 agonistic
activity, PubChem chemicals database was searched and the selected compounds were virtually tested
for S1P1 receptor agonistic activity using the generated models, which resulted in four potential com-
pounds with high potency and selectivity towards S1P1 receptor. Moreover, the affinities of the identified
compounds towards S1P1 receptor were evaluated using molecular dynamics simulations. The results
indicated that the binding energies of the compounds were in the range of �39.31 to �46.18 and �3.20
to �9.75 kcal mol�1, calculated by MM-GBSA and MM-PBSA algorithms, respectively. The findings in the
current work may be useful for the identification of potent and selective S1P1 receptor agonists with
potential use in diseases such as multiple sclerosis.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

Sphingosine 1-phosphate (S1P), a bioactive signaling molecule,
is a lysophospholipid (LPL) that involves in different cellular actions
such as vascular growth, development and regulation of immune
cells, morphogenesis, and arrangement of cytoskeleton [1]. S1P is a
lipid with a particular aminoalcohol structure, known as sphingo-
sine which binds to S1P1-5 receptors [2]. These receptors are G
protein-coupled receptors (GPCRs), in which the N-terminal of the
iz University of Medical Sci-
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proteins forms an amphipathic binding pocket by crafting a helical
cap hindering ligands to access the binding pocket [3]. However, it
is believed that LPLs attain their binding sites through the cell
membrane instead of extracellular region [4].

S1P1 receptors are expressed on lymphocytes, regulating im-
mune cells (i.e.B- and T-cells) trafficking. The gradient concentra-
tion of S1P in blood, interstitial fluid, and lymph controls the egress
of lymphocytes [5]. S1P and its analogues cause internalization and
degradation of the receptors by sustain activation of S1P1 receptor,
preventing the auto reactivity of immune cells in the target tissues
[5,6].

Diverse structural moieties have demonstrated S1P1 receptor
agonistic effects which can be potential candidates for being used
in the treatment of autoimmune diseases [7,8]. Fingolimod
(FTY720) is a S1P1 receptor modulator that is approved for
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relapsing forms of multiple sclerosis (MS), an autoimmune disorder
affecting the central nervous system [9,10]. After conversion to the
phosphate form, fingolimod activates S1P1, S1P3, S1P4 and S1P5
receptors. Although the exact roles for S1P4 and S1P5 receptors
remain unclear, the adverse effects of fingolimod are attributed to
the activation of S1P3 receptor [11]. Therefore, in different studies
several selective S1P1 receptor agonists have been synthesized in
order to retain the therapeutic properties of S1P1 receptor agonists
with the minimum side effects [5,12,13].

Nowadays, three-dimensional quantitative structure-activity
relationship (3D-QSAR) methods based on molecular interaction
fields (MIFs) approach are accepted as the standard tools in me-
dicinal chemistry for drug design [14]. However, the most rate
limiting step in 3D-QSAR studies is the obtaining of appropriate
ligand alignment. The Grid-INdependent Descriptors (GRIND)
offered an alternative approach in 3D-QSAR analyses in which the
alignment of ligands is not required. Instead, the products of
interaction energies for each pair of MIFs are used to build the
models [15]. There are several examples of successful application of
alignment-independent 3D-QSAR methods using GRIND de-
scriptors where the results were comparable to GRID based
alignment-dependent studies [16e19].

Bolli et al. have synthesized a series of 2-imino-thiazolidin-4-
one derivatives and investigated their agonistic effects on S1P1
and S1P3 receptors [7]. Among all synthesized derivatives, com-
pound 61 demonstrated the highest S1P1 receptor agonistic activity
with the minimum agonism on S1P3. Therefore, this compound,
currently known as ponesomid, was selected for in vivo studies, in
which it could significantly reduce circulating lymphocytes in rat.
The current study aimed to generate GRIND-based 3D-QSAR pre-
dictive models for agonist activities of these 2-imino-thiazolidin-4-
one derivatives both on S1P1 and S1P3 receptors in order to identify
structural features relevant for the selective activation of S1P1 over
S1P3 receptors. The identified structural features consisted in the
developed 3D-QSARmodel were used for searching PubChem small
molecule database for selecting compounds with selective S1P1
receptor agonistic activity.

2. Methods

2.1. Data set preparation

In the current work, a set of 62 S1P1 receptor agonists, synthe-
sized based on 2-imino-thiazolidin-4-one scaffold, was selected
from literature for 3D-QSAR studies [7](Table 1). All activities
expressed as EC50 were assessed using membrane preparations of
CHO cells expressing recombinant human S1P1 and S1P3 receptors.
These values were converted to pEC50 and used as the dependent
variable in this study. HyperChem software (version 8.0.8) was
employed for generation of the 3D structures of the ligands where
MMþ force field based on Polack-Ribiere algorithm was used for
energy minimization [20]. The structures were further optimized
by semi-empirical approaching AM1 algorithm [21].

2.2. Molecular docking study

The crystal structure of S1P1 and the model structure of S1P3
receptors were used for the docking calculations. The crystal
structure of S1P1 receptor in complex with an antagonist was
retrieved from protein data bank (PDB code: 3V2Y) and the 3D-
structural model of S1P3 was generated using homology modeling
in Swiss Model web server [22] based on S1P1 receptor structure
(PDB code: 3V2W.1.A) as the template. The quality and geometrical
features of the obtained model was checked using PROCHECK and
MolProbity programs [23e25]. Then, the 3D coordinates of the
antagonist in complex with S1P1 receptor were used to dock the
studied ligands into the S1P1 receptor crystal structure using GOLD
program (version 5.0, CCDC, Cambridge, UK) running under LINUX
operating system [26,27].To determine the ligand binding site on
S1P3, the modeled S1P3 receptor structure was aligned on S1P1
receptor-antagonist complex and a new merged complex was built
consisting S1P3 receptor and the antagonist. Finally, the position of
the antagonist in the new complex was used as the guide for
determining the binding site in docking calculations. ChemPLP
scoring function in GOLD program was used for the docking cal-
culations. Docking of the experimentally co-crystallized antagonist
into the binding site of S1P1 receptor resulted in a solution with
0.51 Å RMSD to its experimentally observed position. Therefore, for
all other dockings the same scoring function was used. The best
active conformations for the most active compounds in data set (i.e.
compounds 61 and 14 for S1P1 and S1P3 receptors, respectively)
were selected based on their docking scores. The best conformers
for the rest of compounds were selected based on the maximum
shape similarity to the most active compound (i.e. compounds 61
and 14 for S1P1 and S1P3 receptors, respectively) using Tanimoto
algorithm implemented in Shape-it program [28].

2.3. Generation of GRIND descriptors and 3D-QSAR models

The obtained active conformations were introduced to Pentacle
program for producing GRIND-based descriptors. Initially, the
molecular interaction fields (MIFs) were generated using GRID
based fields [29] by calculating the interaction energies at grid
points called nodes between the compounds atoms and different
probes including hydrophobic (DRY), hydrogen bond donor, HBD
(O), hydrogen bond acceptor, HBA (N1) and shape (TIP) probes.

The process was followed by discarding the nodes with the
energies below the default cut-off values. Then the most favorable
regions were extracted from the produced MIFs using AMANDA
algorithm based on field intensity at a node and the mutual node-
node distances between the selected nodes [30]. Finally, the
encoding of MIFs were processed by the Consistently Large Auto
and Cross Correlation (CLACC) algorithm [31] which resulted in
more consistent variables compared to Maximum Auto- And Cross-
Correlation (MACC) method. The obtained values were then used
for generating correlogram plots in which the product of node-
node energies is represented against the distances between the
nodes. The selected variables were used to build 3D-QSAR models
using partial least square (PLS). The generated models were
checked from the quality point of view by internal cross validation
methods. Fractional factorial design (FFD) methodwas employed to
extract themost relevant variables to the compounds activities. FFD
selection was repeated several times on the models until no
improvement in the statistical parameters (r2, q2and SDEP values)
was observed.

The models were further validated by randomly dividing the
original data set into train (48 and 50 compounds for S1P1 and S1P3
receptors, respectively) and test sets (12 compounds for both of
S1P1 and S1P3 receptors) based on the activities using SPSS (version
11.5). The train set compounds were used for construction of the
predictive models in order to predict test compounds activities. To
identify the outliers, the generated principle component analysis
(PCA) for each compound in the 3D-QSAR models were used to
define the applicability domain by the method of Roy and co-
workers named AD using standardization approach (version 1.0)
[32] where the PCA values were the X variables and the Y variable
was the biological activities of the studied compounds. Validity of
the final models was evaluated using both internal and external
cross-validation methods. For internal validation, leave-one-out
(LOO) and leave-two-out (LTO) methods were used. The



Table 1
Structures and biological activities of S1P1 and S1P3 agonists. The observed vs predicted pEC50 activities for the studied compounds have been represented. The bold values are
attributed to test set compounds.

S1P1 pEC50 S1P3 pEC50

No. R1 R2 R3 R4 R5 exp. pred. exp. pred.

1 Dimethyl amino phenyl H Cl OH 7.21 7.13 6.86 7.33
2 methyl phenyl H Cl OH 6.01 6.12 5.06 5.64
3 ethyl phenyl H Cl OH 6.74 7.1 5.92 5.81
4 n-propyl phenyl H Cl OH 7.18 7.52 6.73 6.51
5 n-butyl phenyl H Cl OH 6.96 7.08 6.58 6.23
6 isopropyl phenyl H Cl OH 7.33 7.13 6.93 6.56
7 tert-butyl phenyl H Cl OH 6.84 6.64 7.02 7.05
8 cyclopropyl phenyl H Cl OH 6.99 7.17 6.95 6.59
9 cyclobutyl phenyl H Cl OH 6.7 6.7 6.9 6.89
10 cyclopentyl phenyl H Cl OH 6.46 6.56 6.52 6.57
11 cyclohexyl phenyl H Cl OH 6.24 6.35 6.51 6.51
12 isopropyl isopropyl H Cl OH 7.24 7.26 6.8 6.52
13 isopropyl n-hexyl H Cl OH 6.55 6.29 6.93 6.79
14 isopropyl cyclohexyl H Cl OH 8 7.76 7.75 6.98
15 isopropyl Ethoxy carbonylethyl H Cl OH 6.32 6.4 6.91 6.82
16 isopropyl allyl H Cl OH 7.26 7.85 6.09 6.33
17 isopropyl 2-methyl-phenyl H Cl OH 7.47 7.16 6.86 6.46
18 isopropyl 3-methyl-phenyl H Cl OH 6.96 7.37 6.7 6.55
19 isopropyl 4-methyl-phenyl H Cl OH 7.11 7.27 7.06 6.96
20 isopropyl 2,6-dimethyl-phenyl H Cl OH 6.82 6.81 6.52 6.35
21 isopropyl 2,3-dimethyl-phenyl H Cl OH 7.15 6.65 6.46 6.33
22 isopropyl 2,4-dimethyl-phenyl H Cl OH 6.75 6.74 6.34 6.74
23 isopropyl 2-ethyl-phenyl H Cl OH 6.91 6.86 6.48 6.57
24 isopropyl 2-chloro-phenyl H Cl OH 7.27 7.27 6.38 6.38
25 isopropyl 3-chloro-phenyl H Cl OH 7.46 7.54 6.89 6.49
26 isopropyl 3-chloro-2-methylphenyl H Cl OH 7.51 7.6 6.61 6.57
27 isopropyl 3-chloro-4-methylphenyl H Cl OH 7.33 7.26 6.85 6.69
28 isopropyl 2-methoxy-phenyl H Cl OH 6.98 7.15 6.37 6.53
29 isopropyl 3-methoxy-phenyl H Cl OH 6.59 6.63 6.29 6.56
30 isopropyl 4-methoxy-phenyl H Cl OH 6.61 6.74 6.9 6.92
31 isopropyl 2,4-dimethoxy-phenyl H Cl OH 6.06 5.83 6.28 6.49
32 isopropyl 3-pyridyl H Cl OH 6.45 6.62 6.65 6.75
33 isopropyl benzyl H Cl OH 6.21 6.68 6.18 6.14
34 isopropyl phenethyl H Cl OH 6.04 5.76 6.74 6.62
35 isopropyl 4-phenyl-butyl H Cl OH 5.75 5.84 6.68 6.66
36 isopropyl phenyl H H H 5.91 6.05 6.5 6.17
37 isopropyl phenyl H H OH 6.92 7.23 7.03 7.04
38 isopropyl phenyl H F OH 6.65 6.56 7.01 7.3
39 isopropyl phenyl H CH3 OH 7.44 7.19 7.31 7.09
40 isopropyl phenyl H OCH3 OH 6.7 6.98 6.48 6.27
41 isopropyl phenyl H H OCH3 6.7 6.4 6.98 6.76
42 isopropyl phenyl H OCH3 OCH3 6.65 6.43 5.86 5.98
43 isopropyl phenyl H H NH(CH3)2 6.83 6.56 6.79 6.96
44 isopropyl phenyl H H Br 5.99 6.13 6.87 7.14
45 isopropyl phenyl H OCH3 H 6.74 6.63 7.46 7.16
46 isopropyl phenyl H OH H 6.13 6.09 6.99 6.9
47 isopropyl phenyl H OH OCH3 6.36 6.45 6.68 6.7
48 isopropyl phenyl CH3 H H 5.2 5.43 5.24 5.74
49 isopropyl phenyl Cl H H e e 5.59 5.71
50 isopropyl phenyl OCH3 H H e e 5.18 5.28
51 isopropyl phenyl H H CH2OH 6.39 6.71 7.07 7.3
52 isopropyl phenyl H H (CH2)2OH 7 6.78 7.23 7.31
53 isopropyl phenyl H H (CH2)3OH 7.01 7.28 7.27 7.63
54 isopropyl phenyl H H O(CH2)2OH 7.03 7.02 6.95 7.44
55 isopropyl phenyl H H O(CH2)3OH 7.24 7.34 7.17 7.48
56 isopropyl phenyl H H O (CH(CH2)(OH)2) 5.07 5.2 5.85 5.98
57 isopropyl phenyl H O(CH2)2OH H 5.85 5.88 6.28 6.47
58 isopropyl phenyl H H O(CH2)3 N(CH3)2) 6.47 6.62 6.95 7.01
59 n-propyl phenyl H Cl OH 7.73 7.82 7.1 7
60 n-propyl 2-methyl-phenyl H Cl O(CH2)2OH 7.96 8.17 6.91 7.04
61 n-propyl 2-methyl-phenyl H Cl (R)-OCH2CH(CH3) 8.05 8.04 6.92 6.91
62 n-propyl 2-methyl-phenyl H Cl (S)eOCH2CH(CH3) 8.02 7.67 6.97 7.04
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predictivity of the models was also assessed by calculating the
standard deviation of the error of prediction (SDEP) and mean
absolute error (MAE) based criteria using External Validation Plus
(version 1.2) package.

2.4. Database search for identification of S1P1 receptor specific
agonists

PubChem database of chemical molecules was searched based
on the 80% structural similarity to the core structure (Fig. 1) derived
from the studied molecules. The search resulted in 1796 com-
pounds from which 90 compounds were discarded based on
applying rule of five criteria implemented in PubChemweb server.
The 3D structures of remained 1706 compounds were retrieved
from PubChem and after docking on S1P1 and S1P3 receptors, their
activities were predicted using the proposed 3D-QSAR models. The
physic-chemical properties of the molecules were calculated using
HyperChem (version, 8.0.8). The profile-profile alignment was
performed using ClustalW program implemented in ClustalX
(version 2.0) [33].

2.5. Molecular dynamic simulations

Energy minimization and binding free energy calculation were
carried out using AMBER suite of programs with AMBER-ff99 force
field (version 14) operating on a Linux-based (Centus 6.8) GPU
work station. The best pose for each of the ligands (61, 400, 452,
798 and 799) obtained by docking calculations was used for MD
simulations. Ligand input files for MD simulations were generated
using Antechamber package which is designed to be used with the
“general AMBER force field (GAFF) [34e36]. In order to prepare
S1P1 receptor-ligand complex in lipid membrane environment,
CHARMM force field available at CHARMM-GUI web-based plat-
form (charmm-gui.org) [37] was employed where the complex was
embedded in a hydrated, pre-equilibrated 1,2-Dioleoyl-sn-glycero-
3-phosphocholine (DOPC) lipid bilayer with 130 DOPC molecules
per complex. The system was neutralized by addition of potassium
and chloride ions to the final concentration of 150mM and then
converted to tleap and Lipid14 readable file using charmmlipi-
d2amber.py script. Subsequently, the produced file was introduced
to tleap programwhere Lipid14 [38] and Amber-ff99SB force fields
implemented in AmberTools 14 were recruited to generate Amber
topology and initial coordinates files.

The generated system was submitted to a short energy mini-
mization process including 5000 steps of steepest descent and
5000 steps of conjugate gradient followed by a 100 ps heating step
from 0 K to 100 K in a NVT and then from 100 K to 303 K in a NPT
ensembles both with 10.0 kcalmol�1 A�2 harmonic restrains
applied to the protein and to the lipids. Then, the system was
equilibrated in the NPT ensemble at 303 K (controlled with Lan-
gevin thermostat) with 1 bar pressure for 2 ns followed by gradu-
ally removing the restraints. Only bond lengths involving hydrogen
atoms were constrained using the SHAKE algorithm.
Fig. 1. The selected core structure from data set compounds for PubChem database
search.
The final production of dynamic simulation was performed for
125 ns by applying the Particle Mesh Ewald (PME) method under
periodic boundary condition where no constraint was applied to
the protein, lipids and the ligand molecules. Binding energies were
calculated for ligandereceptor complexes using molecular me-
chanics Poisson-Boltzmann surface area (MM-PBSA) and the mo-
lecular mechanics generalized Born surface area (MM-GBSA)
algorithms. The interaction energies were calculated excluding
lipid, water molecules and counter ions and presented as the
average value.

3. Results and discussion

The aim of this study is to derive 3D-QSAR models for a set of 62
compounds with 2-imino-thiazolidin-4-one scaffold (Table 1) in
order to identify the structural features essential for the interaction
of the compounds with S1P1 and S1P3 receptors. The obtained re-
sults could be used for identifying new ligands active on S1P1 re-
ceptors in database search and drug design studies. In the current
study, the crystal structure of S1P1 receptor in complex with an
antagonist was used for virtual screening to identify S1P1 agonists.
It has been elucidated that GPCRs adopt active or inactive structure
upon binding to either an agonist or an antagonist, respectively. Up
to now, the structure of S1P1 with an agonist has not been solved
experimentally, therefore, the antagonist-bound S1P1 structurewas
used in the current study. To examine how different might be the
active and inactive forms of S1P1 receptor, the active and inactive
structures of closely related GPCR was investigated. The basic local
alignment tool (BLAST) was employed to search protein data bank
for structurally known homologous GPCRs. The search identified
adenosine A2A receptor bound to an antagonist (PDB code: 3PWH)
as one of the closest homologues of S1P1 receptor (28.67% identity,
85% coverage, and 2� 10�23 E-value). As a matter of fact, the
structure of adenosine A2A receptor could have been used as the
template for homology modeling of S1P1 receptor if there was no
experimental structure for S1P1 itself. There are two other struc-
tures for adenosine A2A receptor co-crystallized with agonist li-
gands (PDB IDs: 3QAK and 2YDO). Assuming agonist and antagonist
bound structures of receptor representing the active and inactive
forms, calculation of the Ca RMSDs between the adenosine A2A
active and inactive forms revealed that they are very similar (RMSD
values of 3QAK and 2YDO active structures against 3PWH inactive
structure are 1.37 and 1.33 Å), which is comparable to the difference
between two active structures (RMSD value of 0.82 Å). The struc-
tures of adenosine A2A receptor in active and inactive forms are
compared in Fig. 2. These observations for the most identical GPCR
with known structure to the S1P1 receptor indicate the viability of
using antagonist-bound S1P1 receptor structure for the purpose of
current study, and it may not be feasible to distinguish fine struc-
tural differences between the active and inactive forms of the re-
ceptor by MD simulations. Moreover, in this study, semi-flexible
docking procedure was utilized for the docking of ligands retrieved
from the database structure similarity search.

3.1. Homology modeling and docking studies

SWISS-MODEL automated homology modeling server was used
to develop the 3D structure for S1P3 receptor. The server was
provided by the sequence of S1P3 and the generated models as well
as the corresponding quality measures were generated. The best
model proposed by SWISS-MODEL was built based on S1P1 re-
ceptor structure (PDB code: 3V2W.1.A) as the template with ~48%
similarity to the target sequence. The RMSD value between the
template and the model was 0.08, calculated by DeepView (version
3.7) program. The quality of the modeled structure was verified

http://charmm-gui.org


Fig. 2. Comparison of conformations of adenosine A2A receptor in its active (PDB IDs:
2YDO and 3QAK) and inactive (PDB ID: 3PWH) states using cylinder representation.
2YDO and 3QAK are colored in green and purple, respectively, while 3PWH is shown as
cyan.
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using different methods as outlined below. PROCHECK and Mol-
Probity programs showed that 100.0% (270/270) of all residues
were in allowed (>99.8%) regions. The QMEAN z-score reported for
the model by SWISS-MODEL server was �3.17. Although this value
demonstrates a moderate quality for the built model, taking into
account that S1P3 belongs to GPCRs family, the model can be
considered acceptable.

The model structure of S1P3 and the experimental structure of
S1P1 receptors were used for the docking studies. The active
conformation for each ligand was obtained by docking the com-
pound into the active site of S1P1 and S1P3 receptors using GOLD
program. To do this, the best active conformation for the most
active compound in each data set (i.e. compounds 61 and 14 for
S1P1 and S1P3 receptors, respectively) was selected based on just
the docking scores (compounds 61 and 14 had docking scores of
64.56 and 60.18 upon docking into S1P1 and S1P3 receptors). Then,
by applying Tanimoto similarity method implemented in Shape-it
program (version 1.0.1), the active conformations of the remain-
ing compounds in the data sets were selected based on the simi-
larity of the generated docking solutions for each compound to the
selected conformation of the most active compound (Tables 2 and
3). The compounds in the selected conformations were used in
QSAR model building as outlined below.

3.2. Generation of 3D-QSAR model for activity prediction

After selection of the best conformations for the ligands, the
compounds were divided into train and test sets randomly based
on their biological activities using SPSS program (version 11.5) in an
effort to have similar range of biological activities for both sets. The
train compounds were subjected to Pentacle program and the
generated GRIND-based descriptors were used to build 3D-QSAR
models. FFD variable selection was performed for several times on
the generated models until no significant changes in statistical
indices (squared correlation coefficient r2, cross validated correla-
tion coefficient q2 and SDEP) were observed. The internal pre-
dictivity of the models was evaluated by LOO and LTOmethods and
the obtained statistics are shown in Table 4. As seen in Table 4, the
r2acc values and standard deviation of error in calculation (SDEC) for
S1P1 and S1P3 models have been improved by increasing the
number of latent variables and reached to the optimumvalues with
five latent variables (5LVs). Although LOO and LTO q2 values (i.e.,
0.39 and 0.42, respectively) for S1P1 model with 5LVs are lower
than that with 2, 3 and 4 LVs, the overall assessment of internal
validation and prediction errors suggested the model with 5LVs as
the best model for activity prediction. However, in the case of S1P3
model, the model generated with 5LVs was validated as the best
predictive model from both predictivity (i.e., q2 LOO, 0.48 and q2
LTO 0.49) and level of errors (SDEC, 0.19) points of view.

Fig. 3 illustrates the distance dependent plot of PLS coefficients
for the selected variables analyzed with 5LVs during 3D-QSAR
model development. The most important variables for the 3D-
QSARmodels are summarized in Table 5. As it can be seen in Table 5
and Fig. 3, the S1P1and S1P3 models share DRY-DRY (14e14.4 Å),
N1eN1 (11.2e11.6 Å), TIP-TIP (17.6e18 Å) and N1-TIP (4.4e4.8 and
8e8.4 Å) variables with almost equal probe-probe distances; while,
DRY-N1 (10.4e10.8 Å) and DRY-O (12.4e12.8 Å) variables were
unique MIF pairs which were selected just in S1P1 model with
positive and negative impacts on biological activities, respectively.
As seen in Fig. 4 DRY-N1 (10.4e10.8 Å) variable connects thiazoli-
dine ring to hydroxyl moiety at the most end of the structure
indicating that the presence of an hydrophobic region (for example
thiazolidine ring in compound 61) at the distance of 10.4e10.8 Å
from a hydrogen acceptor group (i.e., hydroxyl group in compound
61) positively influences the biological activities as well as the
selectivity of the studied compounds towards S1P1 receptor. On the
other hand, analyzing the PLS coefficients revealed that the positive
impact of DRY-N1 variable is higher for the compounds 02, 04, 21,
23, 25, 25, 26, 28, 29, 59 and 62 whose selectivity towards S1P1 is
higher compared to the compounds 44, 45, 46, 56 and 58 as the
least selective compounds towards S1P1 over S1P3 receptor.
Another selectivity inducing variable, DRY-O (12.4e12.8 Å), con-
nects a hydrophobic region (i.e., thiazolidine ring in compound 61)
to a hydrogen donor group (i.e., etheric oxygen in compound 61),
far apart 10.4e10.8 Å from each other which adversely affects the
S1P1 receptor agonistic activity. The impact of this variable is lower
for the S1P1 selective compounds such as compounds 22, 25, 42, 60
and 62 which are the S1P1 selective compounds rather than S1P3
receptor. Taking into account all these explanations, it seems that
DRY-N1 and DRY-O variables can be considered as the S1P1 receptor
selectivity-introducing factors for the studied compounds.

3.3. Predictivity assessment

For external prediction, based on the model statistics, five latent
variables (LVs) were selected as the optimum number of PLS
components for both S1P1 and S1P3 receptors activity prediction
models. The r2 values for external prediction were 0.75 and 0.62
with SDEP values of 0.33 and 0.21 for S1P1 and S1P3 models,
respectively, indicating the good predictive power of the developed
models. Experimental vs. predicted values are presented in Table 1
and Fig. 5.

According to the Organization for Economic Co-operation and
Development (OECD) [32,39], it is required to define the



Table 2
Docking scores and Tanimoto index for the studied compounds upon docking the ligands into S1P1 receptor. Shape-it programwas used to select a conformation of each ligand
structurally similar to the most active compound. GOLD scores and Tanimoto index values are included for comparison.

GOLD Docking Shape-it selecton

Compounds Best rank GOLD score Tanimoto index Docking rank GOLD score Tanimoto index

1 61.97 0.483 1 61.97 0.483
2 56.03 0.396 5 50.67 0.406
3 57.86 0.392 9 56.43 0.469
4 57.85 0.393 1 52.94 0.51
5 57.72 0.355 1 56.57 0.545
6 54.56 0.494 2 52.61 0.551
7 51.49 0.358 4 49.93 0.462
8 63.15 0.411 7 56.83 0.548
9 58.83 0.456 3 58.83 0.456
10 62.03 0.41 9 57.03 0.473
11 59.22 0.401 4 58.74 0.509
12 58.32 0.372 3 57.96 0.442
13 61.32 0.337 2 60.16 0.373
14 61.74 0.4 8 45.63 0.471
15 64.68 0.383 7 61.4 0.412
16 58.16 0.391 7 54.89 0.469
17 66.74 0.371 1 56.31 0.489
18 56.26 0.465 10 56.26 0.465
19 58.35 0.434 10 56.36 0.462
20 54.09 0.393 3 49.53 0.515
21 57.01 0.338 7 50.63 0.467
22 58.23 0.483 2 58.23 0.483
23 69.35 0.442 3 45.06 0.455
24 57.28 0.426 10 51.47 0.504
25 56.5 0.461 9 53.84 0.48
26 60.43 0.377 10 51.47 0.496
27 58.54 0.425 6 46.17 0.486
28 57.62 0.406 4 49.34 0.535
29 55.36 0.453 3 50.39 0.479
30 58.1 0.458 4 58.54 0.458
31 49.38 0.387 3 46.62 0.437
32 61.13 0.381 3 60.47 0.485
33 64.3 0.391 2 51.39 0.42
34 64.35 0.392 6 57.59 0.424
35 71.89 0.392 3 65.65 0.426
36 55.5 0.437 10 53.89 0.495
37 58.83 0.445 5 51.34 0.491
38 61.44 0.4 1 52.33 0.528
39 57.67 0.481 2 55.5 0.481
40 58.9 0.383 10 46.98 0.523
41 57.67 0.429 4 50.52 0.574
42 55.03 0.469 5 52.83 0.52
43 61.29 0.511 9 54.18 0.569
44 56.9 0.422 10 50.43 0.637
45 56.44 0.396 1 53.42 0.505
46 55.05 0.461 9 51.25 0.53
47 58.6 0.459 2 54.11 0.503
48 53.91 0.407 1 49.27 0.503
51 58.72 0.553 9 49.98 0.49
52 59.22 0.585 9 59.22 0.585
53 63.71 0.528 7 61.38 0.534
54 61.47 0.507 3 59.53 0.518
55 62.49 0.419 7 61.75 0.555
56 63.17 0.409 5 56.68 0.517
57 61.04 0.369 3 59.77 0.544
58 67.4 0.457 7 62.72 0.535
59 58.76 0.502 9 54.94 0.55
60 67.01 0.53 10 54.3 0.583
61 64.56 1 1 64.56 1
62 66.3 0.55 3 58.79 0.609
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applicability domain (AD) for the developed QSAR models. There-
fore, the calculated PC values during the PLS analysis for the studied
compounds and their biological activities were analyzed by
“Applicability Domain using standardization approach” program to
determine the possible outliers in train and test sets [32]. The re-
sults indicated none of the structures as the outlier. To further
evaluate the robustness of the models, the errors of the predicted
values were calculated and the results are presented in Table 6. The
calculated mean absolute errors of the predictions for 95% of the
test sets were 0.28 and 0.13 for S1P1 and S1P3 models, respectively.
These error values are smaller than 0.30 and 0.27 (i.e., 10% of the
train set activity range for S1P1 and S1P3 models data sets,
respectively) indicating adequate prediction ability of the models.
Using more rigorous treatment of the predictions by MAE-based



Table 3
Docking scores and Tanimoto index values for the studied compounds upon docking the ligands into S1P3 receptor. Shape-it programwas used to select a conformation of each
ligand structurally similar to the most active compound. GOLD scores and Tanimoto index values are included for comparison.

GOLD Docking Shape-it selecton

Compounds Best rank GOLD score Tanimoto index Docking rank GOLD score Tanimoto index

1 59.4 0.546 7 53.67 0.56
2 60.43 0.474 9 60.43 0.474
3 61.58 0.443 4 60.59 0.525
4 60.05 0.459 7 51.49 0.642
5 58.58 0.546 9 58.44 0.599
6 51.66 0.517 4 48.13 0.528
7 65.97 0.551 8 50.82 0.572
8 62.63 0.499 7 51.14 0.567
9 55 0.509 9 53.08 0.617
10 63.5 0.512 2 51.53 0.515
11 54.93 0.547 9 53.74 0.603
12 60.6 0.493 10 49.85 0.649
13 62.56 0.573 8 61.38 0.708
14 60.18 10 10 60.18 1
15 58.88 0.421 7 56.87 0.728
16 60.89 0.439 3 52.11 0.597
17 55.46 0.534 6 48.96 0.561
18 53.53 0.511 2 53.53 0.511
19 57.27 0.453 3 52.15 0.545
20 50.04 0.485 6 49.59 0.594
21 53.86 0.445 6 53.4 0.581
22 52.83 0.497 8 51.99 0.529
23 55.91 0.548 2 51.31 0.602
24 49.87 0.522 5 46.9 0.584
25 54.42 0.499 1 48.06 0.554
26 53.74 0.45 3 50.15 0.568
27 54.3 0.417 4 52.02 0.539
28 53.01 0.517 7 50.44 0.659
29 55.54 0.51 7 55.54 0.51
30 52.18 0.447 10 49.48 0.546
31 54.24 0.462 6 53.19 0.498
32 54.32 0.458 1 49.04 0.593
33 58.68 0.561 10 54.48 0.645
34 63.99 0.519 8 60.92 0.599
35 71.84 0.494 9 71.84 0.494
36 55.37 0.487 7 47.03 0.609
37 51.75 0.462 5 48.6 0.532
38 56.71 0.482 2 51.62 0.551
39 56.07 0.464 6 52.84 0.558
40 56.72 0.467 5 49.36 0.509
41 55.3 0.476 7 44.95 0.675
42 58.43 0.455 8 55.43 0.553
43 57.58 0.502 4 55.31 0.521
44 57.24 0.505 7 48.69 0.563
45 58.88 0.527 1 51.76 0.544
46 57.64 0.48 3 49.67 0.533
47 59.52 0.448 1 53.38 0.591
48 60.02 0.54 5 44.22 0.637
49 50.76 0.54 5 48.06 0.566
50 58.65 0.623 9 46.68 0.645
51 57 0.543 4 47.55 0.547
52 61.28 0.512 4 60.44 0.545
53 61.27 0.462 2 56.68 0.507
54 61.71 0.453 9 53.73 0.545
55 66.66 0.516 8 56.32 0.53
56 67.54 0.449 1 53.97 0.512
57 63.4 0.441 2 52.27 0.532
58 69.98 0.453 5 56.93 0.48
59 56.96 0.477 1 55.73 0.628
60 66.76 0.552 1 63.99 0.563
61 63.76 0.545 7 63.76 0.545
62 62.47 0.367 1 60.35 0.497
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Table 4
The statistical data of the built PLS model for S1P1 and S1P3 agonists.

Models for s1p1

No. LVs r2acc SDEC q2 LOO SDEP q2 LTO SDEP

1 0.25 0.57 0.1 0.63 0.11 0.62
2 0.69 0.36 0.46 0.49 0.45 0.49
3 0.82 0.28 0.49 0.47 0.47 0.48
4 0.87 0.24 0.46 0.49 0.42 0.50
5 0.93 0.18 0.39 0.52 0.42 0.50

Models for s1p3

No.LVs r2acc SDEC q2 LOO SDEP q2 LTO SDEP

1 0.56 0.38 0.36 0.45 0.33 0.46
2 0.68 0.32 0.45 0.42 0.46 0.42
3 0.79 0.26 0.43 0.43 0.46 0.42
4 0.85 0.22 0.48 0.41 0.51 0.4
5 0.89 0.19 0.48 0.41 0.49 0.41

Abbreviations: SDEC, standard deviation of error in calculation; SDEP, standard deviation of error of prediction. The acc stands for accumulative value, Validationmethods used
for calculation of q2 are: leave one out (LOO), leave two out (LTO) and random five groups out (R5GO).

Fig. 3. 5LV PLS coefficient plots for the obtained models. The most intensive variables are labeled by sequential numbers. 5LV indicates 5 latent variables; PLS, partial least squares.

Table 5
The most important structural variables in the 3D-QSAR model for S1P1 and S1P3 agonists.

S1P1

Probe block Variable No Distance (Å) Impact

DRY-DRY 35 14e14.4 e

N1eN1 148 11.2e11.6 þ
TIP-TIP 224 17.6e18 e

DRY-O 266 10.4e10.8 e

DRY-N1 331 12.4e12.8 þ
N1-TIP 551 4.4e4.8 þ
N1-TIP 560 8e8.4 e

S1P3

Probe block Variable No Distance (Å) Impact

DRY-DRY 10 4e4.4 e

N1eN1 149 10.8e11.2 þ
TIP-TIP 199 6.4e6.8 þ
TIP-TIP 225 16.8e17.2 e

N1-TIP 554 2e2.4 e

N1-TIP 573 9.6e10 þ
N1-TIP 580 12.4e12.8 þ
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Fig. 4. The unique structural elements associated with variables selected in S1P1 model: (A) DRY-N1 (10.4e10.8 Å) and (B) DRY-O (12.4e12.8 Å).

Fig. 5. Experimental vs predicted EC50 values for compounds. Form data set, 48 and 50 compounds were used as train sets for S1P1 and S1P3 models, respectively while 12
compounds as test sets. Open and filled squares indicate train and test sets compounds, respectively.

Table 6
The calculated errors for the predicted pEC50 values of external validation compounds.

r2 SDEP MAE (95% data) MAEþ3*SD (95% data) training set range

S1P1 0.75 0.33 0.28 0.62 2.98
S1P3 0.62 0.21 0.13 0.43 2.69

Abbreviations: SDEP, standard deviation of error of prediction; MAE, mean absolute error.
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metrics of Roy et al., the prediction power of the S1P1 and S1P3
models are considered to be of moderate and good qualities,
respectively.
3.4. Identification of selective S1P1 receptor agonist candidates

In order to propose potential S1P1 receptor selective agonists,
PubChem database of chemical molecules was searched based on
80% structural similarity to the core structure of the studied com-
pounds (Fig. 1). The molecules identified by similarity search (1706
structures) were docked on the binding site of S1P1 and S1P3 re-
ceptors. The agonistic activities for the best docking poses of the
identified molecules were predicted based on the developed 3D-
QSAR models. The results demonstrated that compounds 400
(PubChem ID: 136647497), 452 (PubChem ID: 72785505), 798
(PubChem ID: 18758433) and 799 (PubChem ID: 18758427) could
bind to S1P1 receptor with predicted EC50 values of 0.65, 3.63, 1.35
and 0.68 nM, respectively, while their predicted affinities towards
S1P3 receptor were estimated to be considerably low (Table 7).
Comparing the predicted affinities towards S1P1 and S1P3 receptors
showed excellent selectivity for compound 452 (S1P3 EC50/S1P1
EC50: 13489). This level of predicted selectivity is comparable with
the selectivities reported for S1P1 agonists in clinical trials such as
ozanimod [19] and siponimod [40] and much greater than that of
compound 61, indicating that compound 452 is noteworthy to be
evaluated in experiments for development of a potent and selective
S1P1 agonist. Moreover, among the selected compounds, com-
pound 799 showed high predicted EC50 value (0.68 nM) with
acceptable S1P1 over S1P3 selectivity (5888 times), demonstrating
its feasibility to be explored as a potent and selective S1P1 agonist.
Overall, it seems that the selected compounds from PubChem
search can be considered as promising selective and potent S1P1
receptor agonists.



Table 7
The structures and the predicted activities for compounds selected from PubChem search.as the S1P1 agonists. The database of chemical molecules in PubChemwas searched
based on 80% similarity to the core structure originated from the data set and the selected compounds activities were predicted by the generated 3D-QSAR models.

Compounds structure S1P1 EC50 (nM) S1P3 EC50 (nM) S1P3 EC50/S1P1 EC50

400 0.65 549.54 851.13

452 3.63 48977.88 13489.63

798 1.35 7413.10 5495.41

799 0.68 3981.07 5888.44

Fig. 6. 3D-represantation of the docked S1P1 receptor agonists in comparison with
S1P1 receptor co-crystallized antagonist. S1P1 receptor antagonist has been imple-
mented in all figures and colored yellow. Panel A compound 61, B compound 400, C
compound 452, D compound 798, and E compound 799. The compounds selected from
PubChem search have been named by their appearance order in database search.
PyMol program (version 1.7.0.0) was used to generate the images. The receptor and the
ligands have been shown as surface and sticks, respectively. By making the surface 90%
transparent the ligands inside of the protein were shown. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of
this article.)

Table 8
Physicochemical properties of PubChem selected compounds compared to S1P1
agonists in clinical trials. The values have been calculated using QSAR properties
module implemented in HyperChem software.

Compounds LogP Mass (amu)

400 0.63 339.43
452 3.09 285.39
798 2.06 351.44
799 2.84 330.38
61 (Ponesimod) 0.60 460.98
Sphingosine 1-phosphate 5.00 379.48
Ozanimod 1.30 404.47
Siponimod 5.04 516.60
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3.5. Prediction of binding mode between S1P1 receptor and its
agonists

The 3D illustrations of the obtained best docking pose for
compounds 61, 400, 452, 798 and 799 in complex with S1P1 re-
ceptor are shown in Fig. 6 and compared with S1P1 receptor co-
crystallized antagonist. As seen in Fig. 6, compound 61 from the
data set interacts differently with the receptor compared to S1P1
receptor co-crystallized antagonist and the compounds identified
from PubChem search. However, the latter compounds bind the
same site as the antagonist, which may indicate their capability of
S1P1 receptor recognition. Analyzing the chemical structures of the
selected compounds reveals some important details about the
observed results in terms of predicted potency and selectivity of
these structures. Table 8 summarizes the physic-chemical proper-
ties of the selected compounds in comparison to compound 61, S1P,
ozanimod, and siponimod. The analysis shows that those com-
pounds more hydrophobic than compound 61 have higher pre-
dicted activities, whichmay be attributed to the easy penetration of
more lipophilic compounds into the innermost binding site of S1P1
receptor (Fig. 7). In an effort to identify the interaction modes of
agonists with the receptor, the 2D illustrations of the bindings were
generated using Discovery Studio Visualization (version 17.2.0)
program (Fig. 8). The results revealed that the binding of com-
pounds 400, 452, 798 and 799 with S1P1 receptor are dominantly
stabilized by hydrophobic interactions. Site directed mutational
studies have revealed the importance of Arg120 and Glu121 residues
located at the extracellular end of third transmembrane helix of S1P



Fig. 7. 3D-represantation of S1P1 receptor in complex with its ligands. As seen, com-
pounds 61 (shown as green sticks) is interacting differently with S1P1 receptor
compared to S1P1 receptor co-crystallized antagonist (yellow) and compounds 400
(pink), 452 (orange), 798 (cyan), and 799 (purple). PyMol program (version 1.7.0.0) was
used to generate the images. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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receptors in signal transduction [41,42]. Gonzalez-Cabrera et al.
showed that ligands not interacting with both Arg120 and Glu121

residues or interact just with one of them can exert agonistic ac-
tivity with improved specificity [43]. 2D analysis of the identified
ligands docked into the binding site of S1P1 receptor (Fig. 8)
revealed that they do not interact at a time with Arg120 and Glu121.
These observations are in agreement with the selective agonistic
S1P1 activities predicted for the identified compounds obtained
from database search [43,44]. Moreover, the identified compounds
also interact with Phe210 and Trp269 residues, which are known
essential for agonistic activity as confirmed by the point muta-
genesis studies [3]. Further, these ligands interact with Leu276 and
Met124 at the binding site of S1P1 which are S1P1 selectivity-
inducing residues over S1P3 and S1P4 receptors, respectively [3].
The identification of the selective S1P1 receptor agonists demon-
strated in the previous section outlines the potential for selectivity
predictions based on the above mentioned qualitative descriptions
of the binding modes to S1P receptors defined implicitly in the
developed 3D-QSAR models. The interesting finding regarding the
most selective compound (452), identified based on PubChem
similarity search, was that it binds and inhibits E protein from
Human coronavirus. This protein plays a central role in virus
morphogenesis and assembly and acts as a viroporin and self-
assembles in host membranes forming pentameric protein-lipid
pores that allow ion transport. The experimental studies have
shown that compound 452 binds to the transmembrane helical
segments of E protein. Although, there is no apparent similarity
between E protein and S1P1 receptor sequences, both of them are
helical transmembrane proteins. The docking studies conducted in
this work identified the core of the helical bundle of S1P1 receptor
(a member of 7 transmembrane GPCR superfamily) as the binding
site for 452, which is in agreement to the experimentally identified
binding site of this compound formed by transmembrane helical
bundle of pentameric E protein. The alignment between profiles
prepared for S1P1 receptor and E protein using their closely related
sequences and the known secondary structural information
revealed that E protein can be aligned with the 5th transmembrane
helix of S1P1 receptor as demonstrated in Fig. 9. Although not very
conclusive, but one may state that the binding sites available on
S1P1 receptor and E protein for compound 452 could share similar
environment.

3.6. S1P1 receptor binding energies of the ligands

In order to calculate the free binding energies of the compounds
identified from PubChem search in complex with S1P1 receptor, the
MD simulations were performed using Lipid14 [38] and Amber-
ff99SB force fields available in AMBER 14. To do this, S1P1 recep-
tor with docked ligands was embedded in lipid bilayer membrane
(Fig. 10) and MD simulated for 125 ns. Table 9 represents the
calculated binding energies for ligands-receptor interactions using
MM-GBSA and MM-PBSA algorithms after 125 ns MD simulations.
The results revealed that compound 400 binds S1P1 receptor
stronger than the rest of studied compounds with the binding DG�

values of�46.18 and�9.75 kcalmol�1, calculated byMM-GBSA and
MM-PBSA algorithms, respectively In the MD simulations, com-
pound 61 was used for comparison which showed the lowest af-
finity towards S1P1 receptor with DG� binding energy values
of �28.38 and 28.98 kcal mol�1, calculated by MM-GBSA and MM-
PBSA algorithms, respectively. Interestingly, the receptor binding
energy (DG�) values of the studied compounds (Table 9) correlate
strongly with their predicted EC50 values (Table 7) calculated by
S1P1 3D-QSAR model, which in turn, further validates the devel-
oped model.

4. Conclusion

In the current work, we aimed to build 3D-QSAR predictive
models for a series of S1P1 and S1P3 receptors agonists in order to
identify structural features required to design S1P1 receptor se-
lective agonists. The validity of the developed models was evalu-
ated by the internal and external cross validation methods, in
which the generated models showed adequate statistical parame-
ters for their predictive abilities. The results showed that in-
teractions such as DRY-N1 and DRY-O promote the agonistic
activity towards S1P1 receptor. Furthermore, structural variables
associated with hydrophobic moieties are the important features
influencing the S1P1 receptor selectivity of the studied compounds.

Structural similarity search of PubChem database using the core
structure of the data set as the query structure identified 1706
compounds of which compounds 400, 452, 798, and 799 demon-
strated excellent predicted potencies and selectivities towards S1P1
receptor. Docking of themost potent compound (i.e., compound 61)
in the data set and those identified by database similarity search
showed that they interact differently with S1P1 receptorwhichmay
be attributed to the higher lipophilicity of the identified com-
pounds compared to compound 61 from the data set. The identified
most selective compound from the similarity search bind to E
protein from Human coronavirus which may share commonality
with S1P1 receptor in terms of binding site, providing further evi-
dence in agreement with the results obtained from 3D-QSAR
model. Moreover, S1P1 receptor binding energies were calculated
using molecular dynamics simulations for the agonists identified
from PubChem database search. The results were indicative of their
appropriate receptor affinities due to the negative binding energies,
which are also in close agreement with the predicted EC50 values.



Fig. 8. 2D-representation of interactions of docked compounds (A) 400, (B) 452, (C) 798, and (D) 799 at the binding site of S1P1receptor. Discovery Studio Visualization (v 17.2.0)
program was used for analysis.

Fig. 9. The alignment between profiles prepared for S1P1 receptor and E protein using the known secondary structural information. The profiles were generated using their closely
related sequences extracted from NCBI. As seen, E protein can be aligned with the 5th transmembrane helix of S1P1 receptor. The alignment was performed using ClustalW program
implemented in ClustalX (version 2.0).
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Fig. 10. S1P1 receptor (cartoon representation in cyan) with docked compound 400
(stick representation) embedded in lipid bilayer membrane containing 130 DOPC
molecules (gray) and 37H2O per each lipid molecule. KCl was added to neutralize the
system. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Table 9
S1P1 receptor binding energies calculated for the ligands identified from PubChem
search using MMGBSA/MMPBSA algorithms.

MMGBSA

Ligand EEL VDW DG gas DG solv DG binding SEMDG binding

400 �15.91 �50.22 �66.13 19.95 �46.18 0.04
452 �16.25 �44.54 �60.80 21.67 �39.31 0.04
61 4.65 �48.57 �43.91 15.53 �28.38 0.03
798 �22.21 �47.28 �69.29 26.68 �42.81 0.03
799 �19.55 �48.85 �68.40 22.97 �45.43 0.03

MMPBSA
Ligand EEL VDW DG gas DG solv DG binding SEMDG binding

400 �15.91 �50.23 �66.14 56.40 �9.75 0.07
452 �16.25 �44.54 �60.80 54.47 �6.33 0.07
61 4.66 �48.57 �43.9155 72.89 28.98 0.07
798 �22.21 �47.28 �69.49 61.00 �8.49 0.04
799 �19.55 �48.85 �68.40 65.20 �3.20 0.05

EEL; Electrostatic energy, VDW:Van der Waals interaction, DG gas:binding energy
difference in gas state, DG solv: binding energy difference in solvated state, SEMDG

binding: standard error of Mean of DG binding.
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The results of this work can be useful for designing novel potent
and selective S1P1 receptor agonists.
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