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Abstract: Pathological sodium-water retention or edema/congestion is a primary cause of heart fail-
ure (HF) decompensation, clinical symptoms, hospitalization, reduced quality of life, and premature
mortality. Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) based therapies reduce hospitaliza-
tion due to HF, improve functional status, quality, and duration of life in patients with HF with
reduced ejection fraction (HFrEF) independently of their glycemic status. The pathophysiologic
mechanisms and molecular pathways responsible for the benefits of SGLT-2i in HFrEF remain in-
conclusive, but SGLT-2i may help HFrEF by normalizing salt-water homeostasis to prevent clinical
edema/congestion. In HFrEF, edema and congestion are related to compromised cardiac function.
Edema and congestion are further aggravated by renal and pulmonary abnormalities. Treatment of
HFrEF patients with SGLT-2i enhances natriuresis/diuresis, improves cardiac function, and reduces
natriuretic peptide plasma levels. In this review, we summarize current clinical research studies
related to outcomes of SGLT-2i treatment in HFrEF with a specific focus on their contribution to
relieving or preventing edema and congestion, slowing HF progression, and decreasing the rate of
rehospitalization and cardiovascular mortality.

Keywords: HFrEF; edema; congestion; dilated cardiomyopathy; fluid management; endothelial
dysfunction

1. Introduction

Heart failure with reduced ejection fraction (HFrEF) is a complex and progressive
clinical syndrome that results from structural or functional impairments of cardiac function
(with left ventricular ejection fraction, LVEF < 40%); it is typically associated with elevated
natriuretic peptide (NP) levels and objective evidence of pulmonary or systemic edema
or congestion [1-3]. Major clinical manifestations of HFrEF include dyspnea, fatigue
and, malaise that linked to pulmonary and/or splanchnic congestion and/or peripheral
edema [1-10]. HFrEF is a progressive disease ranging from pre-symptomatic stages A
(at-risk for HF), B (pre-HF: decline in systolic function); to symptomatic stages C (true HF)
and D (advanced HF) [1-3,6,10,11].

Despite progress in management, symptomatic HFrEF remains an irreversible con-
dition that leads inexorably to a poor quality of life, disability and nearly 50% mortality
within five years of diagnosis; mechanical circulatory support or heart transplantation
being the only definitive curative measures [1-3].

In addition to regulating the neurohumoral system (sympathetic nervous system,
SNS; renin-angiotensin-aldosterone system, RAAS; and natriuretic peptides, NPs) [12,13],
recent advances in the pharmacological management of HFrEF include sodium-glucose
cotransporter-2 inhibitors (SGLT-2i: canagliflozin, dapagliflozin, empagliflozin) [1-3,14,15].
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SGLT-2i are a new class of hypoglycemic agents that were FDA-approved for the manage-
ment of New York Heart Association (NYHA) class II-IV HFrEF, with or without type 2
diabetes mellitus (T2DM) [15]. SGLT-2i function by inhibiting the reabsorption of sodium
(Na*) and glucose in the proximal convoluted tubules of the kidney by SGLT2, thereby
increasing urinary excretion of sodium and glucose in a 1:1 ratio and subsequently ex-
tracellular water [16,17]. Data from multiple clinical trials including post-hoc, meta and
cross-trial analyses, showed that HFrEF patients receiving guideline-directed pharmaco-
logical therapy with SGLT-2i had improved cardiovascular outcomes with a significant
reduction in the combined risk of cardiovascular death or HF-related hospitalization (HHF)
and renal outcomes regardless of T2DM status [18-35]. These improvements were indepen-
dent from co-administration of guideline-directed HF therapy [32,36]. The glucosuria and
reduced glycemic levels are insufficient to explain the overwhelming benefits of SGLT-2i
on cardiovascular outcomes, HHF and survival benefits in HFrEF. The pathophysiologic
mechanisms and molecular pathways underlying the benefits of SGLT-2i in HFrEF are
complex and have yet to be elucidated [15-17,37-48].

Symptomatic HF is characterized in part by excessive sodium and fluid retention in the
interstitial space (interstitium or ‘third” space) leading to clinically evident edema/congestion
in the lungs (pulmonary edema), or the thoracic cavity (pleural effusion), the abdomen
(ascites) and/or dependent extremities (peripheral edema). These clinical manifestations
of fluid overload are the primary cause of patient HHF and are associated with significant
morbidity and premature mortality [6-9,49-59]. The primary goals of HF management include
maintaining normal fluid homeostasis by managing sodium intake, use of HF medication(s)
and pharmacological treatment of edema [59].

The aim of this review is to analyze the existing clinical data with the major focus on the
potential of SGLT-2i in modulating or preventing fluid retention in patients at risk or active
symptomatic HFrEF. Although edema/congestion is associated with poor HF outcomes,
clinical diagnosis of edema is often limited to subjective patient symptoms and clinical signs
from physical exam. Objective diagnostic imaging, laboratory tools and algorithms for
assessment and early identification of edema are limited [8,9,51,56,57,59—67]. Limitations
in the quantitative assessment of edema/congestion have hampered the evaluation of
direct SGLT-2i edema-related outcomes in clinical studies and clinical trials.

2. Impact of SGLT-2i on Diuretic, Natriuretic and Renal Hemodynamic Outcomes in
HFrEF: Focus on Edema/Congestion

The exact mechanism(s) by which SGLT-2i exert beneficial effects on HFrEF outcomes
has yet to be elucidated. Currently there are numerous theories and hypothesized mecha-
nisms focusing on cardioprotective benefits of SGLT-2i [15-17,37-48,68]. However, these
theories when applied solely, are insufficient to explain the reduction of HHF rate and
mortality by SGLT-2i-based therapies in patients with HFrEF.

HF decompensation events related to edema/congestion are the primary cause of the
HHF and re-hospitalization. SGLT-2i may reduce HHF rate and benefit patients with HFrEF
by concomitant beneficial modulation of pathologically deregulated mechanisms causing
an imbalance of salt-water homeostasis manifesting as clinically evident edema/congestion.
The mechanisms contributing to edema/congestion attenuation in HFrEF by treatment
with SGLT-2i [15-17,37-48,68,69] are summarized on Figure 1.

2.1. Impact of SGLT-2i on Natriuresis and Osmotic Diuresis

SGLT-2i may benefit patients with HFrEF by promotion of natriuresis-suppression of
sodium reabsorption in the kidney, which is pathologically increased in HF causing dereg-
ulation of salt-water homeostasis manifesting as clinically evident edema, and associated
diuresis leading to decongestion.
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Figure 1. Summary of Mechanisms Contributing to Outcomes of SGLT-2i on Edema/Congestion in
HFrEF [15-17,37-48,68,69].

Blockade of the SGLT-2 in the proximal convoluted tubule inhibits the reabsorption of
30-50% of filtered glucose. This effect is accompanied by a significant increase in urinary
sodium excretion, leading to a potent combined osmotic diuretic and natriuretic effect and
an ensuing favorable reduction in plasma volume, blood pressure, and interstitial fluid
volume [28,29,70]. Treatment with dapagliflozin has been associated with a reduction in
mean 24-h blood pressure measurements, as well as a greater reduction in body weight and
plasma volume compared to hydrochlorothiazide [71]. The beneficial impact of SGLT-2i on
these parameters can be attributed to the immediate diuretic action and fluid loss that occurs
because of increased urinary sodium and glucose excretion. Prolonged inhibition of SGLT-
2 also favorably affects sodium excretion while concurrent activation of compensatory
mechanisms, such as increased renin and vasopressin secretion, restores extracellular
volume homeostasis, thereby preventing the deleterious effects of excessive diuresis or
dehydration [72,73].

The impressive benefits of SGLT-2i on HF outcomes may not be explained by their
diuretic effects alone, since other diuretics have not been associated with reduction in
HHF and death [44,74]. In fact, prolonged use of loop diuretics in the setting of acute
decompensated HF has been linked to worsening outcomes and increased mortality. This
is most likely due to the risk of hypotension, electrolyte imbalance, and reduced renal
perfusion if inadequately titrated. Reduced arterial filling can further activate RAAS,
leading to greater sodium and water retention which can worsen peripheral and pulmonary
edema [39,75]. In contrast, treatment with SGLT-2i may control electrolyte balance and
renal perfusion that delay or prevent renal hyperfiltration.

2.2. SGLT-2i Reduced Pathological HF-Related Intestinal Fluid Volume Rather Than Blood
Plasma Volume

The DAPA-HF trial showed that treatment with dapagliflozin was associated with a
larger increase in electrolyte free water clearance compared to a traditional loop diuretic. A
mathematical integrated cardiorenal modeling analysis showed that SGLT-2i may generate
Na*-free water clearance and its diuretic mechanism is distinct from other Na*-driven
diuretic classes. Therefore, it was hypothesized that SGLT-2i reduces pathological HF
interstitial fluid volume to a greater extent than blood plasma volume [39,76], which is in
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contrast to other diuretics. This difference may be mediated by peripheral sequestration
of osmotically inactive sodium. It has been shown that sodium can be stored in the skin
and other tissues, likely by binding with negatively charged proteoglycans [17]. When
excess water relative to sodium is removed and sodium concentration within the interstitial
compartment rises, peripheral tissues can sequester sodium [39]. This peripheral sequestra-
tion of sodium reduces the water volume needed to maintain the equilibrium of sodium
concentration between the interstitial and intravascular compartments. This coupled with
low cardiac output associated with HFrEF leads to a maladaptive neurohumoral response.
If SGLT-2i relieves fluid accumulation in HF by reducing congestion in the interstitial
space, arterial filling and organ perfusion may remain intact. Therefore, SGLT-2i may more
efficiently impact HF edema/congestion without the deleterious effects from other types
of diuretics.

2.3. Impact of SGLT-2i on Renal Function

Renal and cardiovascular hemodynamics are highly interdependent. In primary
cardiovascular dysfunction, the heart is unable to adequately pump blood into the systemic
circulation, causing prerenal hypoperfusion [77]. The reduced total renal blood flow and
glomerular filtration rate (GFR) contribute to increased sodium retention and to edema
formation in patients with congestive HF [8,78-80]. Beneficial renal hemodynamic effects
of SGLT-2i observed in clinical trials in patients with and without diabetes likely support
glycemic-independent nature of such improvement.

SGLT-2i can potentially mitigate the fluid retention that occurs as a result of inadequate
renal blood flow. Treatment with SGLT-2i directly affects the physiology of tubuloglomeru-
lar feedback. Blockade of SGLT-2-mediated reabsorption of sodium and glucose leads
to increased sodium delivery to the distal tubule [81]. Increased sodium concentration
activates the juxtaglomerular apparatus and subsequent vasoconstriction of the afferent
arteriole. This lowers glomerular hydrostatic pressure and decreases the GFR. Lowering
the GFR at the start of treatment with SGLT-2i (GFR normalizes soon after) delays the onset
of glomerular hyperfiltration that progressively leads to diabetic nephropathy. Several
cardiovascular outcome trials, such as CREDENCE and DAPA-HE, reported a significant
reduction in the rate of hyperfiltration at the onset of treatment as well as a long-term
reduction in the overall decline of GFR [20,24,81].

Also, it was proposed that SGLI-2i could protect against renal failure by attenuating
latent renal congestion by diminishing excessive sodium and water from the interstitial space
of the kidney parenchyma. This mechanism might be beneficial even at asymptomatic HF [82].

2.4. Effects of SGLT-2i on Neurohumoral Activation

The pathophysiology of HFrEF involves prolonged activation of the SNS and classical
RAAS, compromised angiotensin converting enzyme 2-angiotensin (1-7) axis of RAAS, and
impairment of NP system and nitric oxide (NO) pathway associated with accumulation
of sodium and body fluid, blood pressure and cardiac remodeling [13,65,83-90]. Reduced
cardiac output causes persistent sympathetic activation and a maladaptive cycle that
perpetuates fluid retention and edema. There exists evidence to suggest that SGLT-2i
may modulate this deleterious sympathetic response. Several clinical trials have shown
that treatment with SGLT-2i was not associated with a reflex increase in heart rate in
response to blood pressure reduction [48]. This can be considered a marker of sympathetic
suppression. Similar findings have been shown in experimental animal studies. Dampening
of neurohormonal activation was seen in a group of empagliflozin-treated, nondiabetic
pigs with HF. This group had lower plasma levels of norepinephrine catabolites [91].

The diuretic, natriuretic and cardiac hemodynamic outcomes of SGLT-2i associated
with reduced congestion in HFrEF patients with and without T2DM might potentially
lead to classical RAAS overactivation. However, the data on association between chronic
treatment with SGLT-2i and classical RAAS systemic and renal activation are complicated
and mostly limited to the patients with T2DM and translational models of T2DM [92].
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3. Overview of SGLT-2i Treatment Outcomes Contributing to Edema/Congestion
Modulation in HFrEF-Related Clinical Trials

The overall results of the randomized clinical trials strongly support a role for SGLT-2i
in the treatment of HFrEF patients independently of their glycemic status and might suggest
its effects on maintaining normal fluid homeostasis. Results of HF-associated clinical trials
demonstrated benefits on cardiovascular outcomes, renal function, and plasma ANP/BNP
and NT-pro-BNP levels with a significant reduction in mortality and HHF and overall
quality of life.

3.1. Impact of SGLT-2i on Death and Hospitalization Rates

Reductions in premature mortality and HHF rates are the primarily endpoints in the
HFrEF-associated clinical trials. In randomized controlled trials, SGLT-2i added to guideline-
directed pharmacological therapy reduced HHF or cardiovascular-related mortality in HFrEE
As HF-related edema is strongly associated with HHF and mortality [5-7,49-52,54,57-60,93-95]
a potential SGLT-2i impact on edema attenuation may contribute to the reduction in HHF
and premature mortality. The major outcome measures in primary HFrEF clinical trials are
summarized in Table 1.

SGLT-2i have become the subject of investigation in several cardiovascular outcome trials
within the past six years. Trial data assessing cardiovascular risk in patients with T2DM treated
with SGLT-2i has shown possible off target benefits for cardiovascular disease and HF. The
EMPA-REG OUTCOME trial demonstrated a significant reduction in the rate of major adverse
cardiac events (MACE) in patients with T2DM and established atherosclerotic cardiovascular
disease (ASCVD) treated with empagliflozin [18]. The CANVAS trial yielded similar results in
the same target population of patient with T2DM and ASCVD treated with canagliflozin [19].
These trials, as well as DECLARE-TIMI and CREDENCE, also demonstrated a significant
reduction in the rate HHF [18-20,97]. However, these studies primarily included diabetic
patients without evidence of pre-existing HF at baseline. The DAPA-HF (Dapagliflozin
and Prevention of Adverse outcome in Heart Failure) trial was a cardiovascular outcome
trial designed to assess the effect of SGLT-2i in patients with pre-existing HFrEF, with or
without T2DM. The primary outcome of a composite of a first episode of worsening HF
(HHF or an urgent visit resulting in IV therapy for HF) or cardiovascular death occurred in
16.3% of patients in the dapagliflozin group versus 21.2% in the placebo group [24]. This
finding was significant across all prespecified subgroups, including those with and without
T2DM. In this trial, patients experienced less symptoms of HF in the dapagliflozin arm
compared to conventional therapy. This was evidenced by improvement in the Kansas City
Cardiomyopathy Questionnaire (KCCQ) score. This finding was also homogenous across
prespecified subgroups. The EMPEROR-Reduced trial (assessing outcome of empagliflozin in
HFrEF) evaluated the same target population as DAPA-HE, however it included patients with
markedly reduced EF and elevated NPs [27]. The primary outcome was a composite of HHF
or cardiovascular death. The overall combined risk was 25% lower in the empagliflozin group
than in the placebo group [27]. Patients in the empagliflozin group were also more likely to
experience an improvement in NYHA functional class compared to the placebo group. In the
pilot EMPA-RESPONSE-AHF, treatment with empagliflozin reduced a combined endpoint
of worsening HF, HHF or death for 60 days in patients with acute HF [29]. Dapagliflozin
reduced the risk of total (first and repeat) HHF and cardiovascular death [98]. A post hoc
analysis of DAPA-HF showed that in patients with dapagliflozin reduced the risk of sudden
death when added to conventional therapy [99]. Dapagliflozin reduced the risk of worsening
HEF, cardiovascular death, and all-cause death irrespective of sex [100]. Thus, data from the
multiple clinical trials show that in HFrEF SGLT-2i improves cardiovascular outcomes with
a significant reduction in mortality and HHF regardless of T2DM status [14,18-35,47,97].
A meta-analysis investigating the overall effect of SGLT-2i on cardiovascular outcomes in
patients with HF concluded that they significantly reduced the risk of cardiovascular death
and HHF by 23%. SGLT-2i were robustly effective in HFrEF subgroup regardless of T2DM
and tended to be effective in HFpEF [101].
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Table 1. SGLT-2i treatment outcome in primary HFrEF clinical trials.
HF Clinical Trial Study .Populflthn Major Outcome Measures Summary
Inclusion Criteria
e  HFrEF (LVEF < 40%), with/without T2DM.  Dapagliflozin vs. pacebo groups:
. Sample size—4744 . Composite of a first episode of worsening HF
DAPA-HF ° Male/female, >18 years (hospitalization or an urgent visit resulting in
Dapagliflozin: 10 mg or 5 mg tablets given once e  Symptomatic HFrEF (NYHA functional class IV therapy for HF) or CV death-event rate of
daily /up to 27.8 months. [I-1V), for %2 months 16.3% Vvs. 21.2%; Dapagliflozin reduced HHF and CV death
McMurray et al., . LVEF < 40% . Composite of HHF or CV death-lower; (HR =
2019 [24] e  Elevated NT-proBNP Patients should receive 0.75, 0.65-0.85)

background OMT for HFrEF according to
locally recognized guidelines
eGFR > 30 mL/min/1.73 m? at enrolment

Total number of hospitalizations for HF and
CV death-fewer (16.1% vs. 20.9%)

EMPEROR-REDUCED
Empagliflozin:

10 mg/once daily/up
to 1040 days
Packer et al.,

2020 [27]

Chronic HFrEF (LVEF < 40%), irrespective of
diabetes status.

Sample size—3730

Male/female, >18 years

EF > 36% to <40%: NT-proBNP > 500 pg/mL
or patients without AF and NT-proBNP >
5000 pg/mL for patients with AF

EF > 31% to <35%: NT-proBNP >1000
pg/mL for patients without AF and
NT-proBNP > 2000 pg/mL for patients with
AF

EF < 30%: NT-proBNP > 600 pg/mL for
patients without AF and NT-proBNP > 1200
pg/mL for patients with AF

EF < 40% and hospitalization for HF in the
past 12 months: NT-proBNP > 600 pg/mL for
patients without AF and NT-proBNP > 1200
pg/mL for patients with AF

Empagliflozin vs. placebo group:

Reduced hospitalization for worsening HF or
CV death;

Overall combined risk was 25% lower in the
empagliflozin group

The occurrence of all adjudicated
hospitalizations for HF (first and recurrent
events)—31% lower; Rate of decline in the
eGFR was slower

Empagliflozin reduced HHF and CV death;
preserved renal function




Diagnostics 2022, 12, 989

7 of 17

Table 1. Cont.

HF Clinical Trial

Study Population
Inclusion Criteria

Major Outcome Measures

Summary

Empagliflozin vs. placebo group from baseline to 6

. HFrEF months:
. Sample Size—84 . LV end-systolic volume: 26.6 mL vs. —0.5 mL
e  Male/female, >18 years (p <0.001); e . .
EMPA-TROPISM e Diagnosis of Heart failure (NYHA II to III) e LV end-diastolic volume: 25.1 vs. —1.5mL (p  Empagliflozin improved cardiac function
Empagliflozin: 10mg/once daily/6 months . LVEF < 50% on echocardiography <0.001); (suggesting cardiac pressure overload
Santos-Gallegos et al., 2021 [96] . cMRI in the previous 6 months LVEEF: 6.0% vs. —0.1% (p < 0.001); improvement) and patient exercise capacity

. Have stable symptoms and therapy for HF . LV mass: —17.8 g/ m? vs. 4.1 g/ m? (p <0.001);

within the last 3 months. . Peak VO2: 1.1 mL/kg/min vs. —0.5

mL/kg/min (p = 0.017);
° 6-min walk test: 82 vs. —35 min (p < 0.001).

. Acute HF, Congestive HF with

decompensation
. Sample size—80 Empagliflozin vs. placebo group:
*  Male/female, >18 years e  No difference was observed in VAS dyspnea
° Hospitalized for AHF: score, diuretic response, length of stay, or

- Dyspnea at rest change in NT-proBNP;

EMPA-RESPONSE-AHF - Signs of congestion, such as edema, ° Reduced a combined endpoint of in-hospital
Empagliflozin: rales, and/or congestion on chest worsening HE, rehospitalization for HF or o )
10 mg/daily/30 days radiograph death at 60 days compared with placebo [4 Empagliflozin reduced HHF; acute setting and
Damman et al., - BNP > 350 pg/mL or NT-proBNP > (10%) vs. 13 (33%); p = 0.014]; small sample size limited results
2020 [29] 1400 pg/mL (Patients with AF: BNP > e  Urinary output significantly greater
500 pg/mL or NT-proBNP > 2000 [difference 3449 (95% confidence interval
pg/mL) 578-6321) mL; p < 0.01];

. Treated with loop diuretics . No adverse effects on blood pressure or renal
e Able to be randomized within 24 h function.
° Able and willing to provide freely given

written informed consent
e eGFR (CKD-EPI) > 30 mL/min/1.73 m?

Dapagliflozin and Prevention of Adverse-outcomes in Heart Failure (DAPA-HF); Empagliflozin Outcome in Chronic Heart Failure with Reduced Ejection Fraction (EMPEROR-
REDUCED); Are the “Cardiac Benefits” of Empagliflozin Independent of Its Hypoglycemic Activity? (EMPA-TROPISM); Effects of Empagliflozin on Clinical Outcomes in Patients with
Acute Decompensated HF (EMPA-RESPONSE-AHF); Type 2 diabetes mellitus (T2DM); Atherosclerotic cardiovascular disease (ASCVD); Myocardial infarction (MI); Cardiovascular
(CV); CV disease (CVD); Hospitalization for heart failure (HHF); Heart failure (HF); Left ventricular ejection fraction (LVEF); Heart failure with reduced ejection fraction (HFrEF); Left
ventricular (LV); Estimated glomerular filtration rate (¢GFR); End-stage renal disease (ESRD); Chronic kidney disease (CKD); Hazard ratio (HR); Atrial fibrillation (AF).
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In summary, randomized clinical trials support the hypothesis that SGLT-2i provides
cardiovascular benefits and a reduction in HHF rates via an unknown mechanism in addi-
tion to those affecting blood glucose regulation and might suggest that SGLT-2i benefits pa-
tients with HFrEF with or without T2DM in part through attenuation of edema/congestion.

3.2. Impact of SGLT-2i on Cardiac Remodeling and Metabolism

The EMPA-TROPISM double-blind, placebo-controlled clinical trial evaluated the
effects of empagliflozin on cardiac remodeling in nondiabetic patients with HFrEF [96].
Treatment with empagliflozin was associated with significant reductions in LV end systolic
volume and end diastolic volume as well as increased EF and decreased LV mass [96].

A secondary analysis of the comparative cardiac MRI data at baseline and after
6 months of nondiabetic HFrEF patients enrolled in the EMPA-TROPISM clinical trial
revealed that empagliflozin significantly improved adiposity (epicardial adipose tissue),
interstitial myocardial fibrosis, aortic stiffness [102].

MRI-determined LV end-systolic volume and LV end-diastolic volume index were sig-
nificantly reduced in another randomized, double-blind, placebo-controlled trial (SUGAR-
DM-HF) with HFrEF patients (NYHA functional class II to IV) with prediabetes/diabetes
treated with empagliflozin [103].

The EMPA-VISION clinical trial (double-blind, randomized, placebo-controlled) was
designed to assess the effects of empagliflozin treatment on cardiac energy metabolism in
HFrEF patients with or without T2DM using longitudinal MRI [104]. Additional studies are
underway to explore the potential metabolic alterations from SGLT-2i therapy for HFrEF.
Important to note, cardiac cachexia and sarcopenia which result from a negative metabolic
state of advanced HFrEF, may be an additional source of extracellular water via hydrolysis
(See 3.6 for Impacts of SGLT-2i on Fluid Retention).

3.3. Impact of SGLT-2i on Plasma Biomarkers

Plasma levels of ANP/BNP and their NT-pro-forms are strongly associated with
HFrEF decompensation related to clinical symptoms from fluid and salt retention and play
crucial role in the clinical assessment of decompensation in patients with HF [5,6,105-107].

The impact of the SGLT-2i on a broad range of plasma biomarkers in clinical and
pre-clinical HFrEF was comprehensively reviewed [108]. Here, we briefly summarize the
influence of SGLT-2i on plasma levels of NPs and inflammatory markers that might indicate
congestion status in patients with HFrEF in randomized clinical trials.

In the DEFINE-HF clinical trial, HFrEF patients (NYHA functional class II-III,
eGFR > 30 mL/min/1.73 m?, and elevated NT-proBNP) receiving dapagliflozin over
12 weeks did not show difference n mean NT-proBNP, however, there were increases in the
proportion of patients with clinically meaningful improvements in KCCQ score or NPs [25].
In DAPA-HF trial treatment of HFrEF patients (NYHA functional class II-1V, increased NT-
pro-BNP) with dapagliflozin for 8 months caused significant reduction in NT-proBNP levels
(by 300 pg/mL) vs. placebo, which was consistent with a reduction of the risk of HF pro-
gression, death and improved HF symptoms [109]. In the EMPEROR-Reduced trial (HFrEF
patients with elevated levels of BNP), patients treated with empagliflozin experienced
greater reductions in NT-proBNP concentrations compared to placebo. There was also a re-
duced risk of adverse HF outcomes regardless of baseline NT-proBNP levels [27]. Treatment
with empagliflozin significantly reduced plasma ANP/BNP levels when assessed after 1, 3,
6 and 12 months vs. baseline in small randomized study of Japanese patients with chronic
HFrEF and T2DM [110]. It is important to note that assessments of the NT-pro-BNP level
may be affected by chronic kidney dysfunction (eGFR < 60 mL/min/1.73 m?) [84,111,112],
and increased body mass index [88,112].

Chronic sustained inflammation promotes pathological cardiac remodeling, LV dys-
function, pleural/pulmonary/systemic edema in HFrEF [113-115]. Therefore, inflamma-
tory plasma biomarkers might indirectly reflect the congestion status in HFrEF patients. Pro-
teomic analysis revealed that treatment of nondiabetic HFrEF patients with empagliflozin
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vs. placebo (EMPA-TROPISM clinical trial) was associated with a significant reduction in
inflammatory biomarkers [102]. Therapy with SLT-2i decreased plasma levels of inflamma-
tory markers such as tumor necrosis factor-1, fibronectin, and matrix metalloproteinase 7 in
patients randomized to canagliflozin vs. glimepiride [116]. These results suggest that SGLT-
2i contributes to the suppression of inflammation-related molecular processes and may
attenuate associated endothelial dysfunction as supported by preclinical studies [117-119],
and therefore prevent vascular leakage which contributes to edema/congestion.

3.4. Impact of SGLT-2i on Renal Function

Chronic renal dysfunction (eGFR < 60 mL/min/1.73 m?) accelerates HFrEF decom-
pensation and mortality [120-122]. The DAPA-HEF trial assessed the safety and efficacy of
dapagliflozin in patients with HFrEF with or without T2DM. Treatment with dapagliflozin
slowed the rate of decline in eGFR. The benefits of dapagliflozin on morbidity and mortality
were not affected by baseline kidney function [123]. The rate of decline in eGFR was slower
in the empagliflozin group than in the placebo group in the EMPEROR-Reduced trial [27].

The experimental trials with canagliflozin (CREDENCE) and prespecified subgroup
meta-analyses from DAPA-HF (dapagliflozin) and EMPEROR-Reduced (empagliflozin)
have demonstrated that SGLT-2i has beneficial effects on renal outcomes in patients with
HEFrEF regardless of T2DM and chronic kidney disease (CKD) status [32,41,84,85]. Treat-
ment with canagliflozin was associated with 30% reduction in the primary composite out-
come of end-stage kidney disease (dialysis, transplantation, or sustained
eGFR of <15 mL/min/1.73 m?) [20]. A secondary composite outcome of ESRD, dou-
bling of serum creatinine, and renal death was reduced by 34% [20]. These improved renal
outcomes were observed in addition to improved cardiovascular outcomes. Treatment
with canagliflozin was associated with a 20% decrease in the risk of myocardial infarction
(MI), stroke, and cardiovascular death. HHF was reduced by 39% [20]. These findings were
observed in conjunction with only a slight reduction in Hemoglobin Alc, which suggests
that the mechanisms of the observed benefit are independent of the glucose lowering effect
of SGLT-2i.

3.5. Impact of SGLT-2i on Functional Status and Quality of Life

In many clinical trials (DEFINE-HE, DAPA-HF, EMPEROR-REDUCED, EMPA-TROPISM,
and SOLOIST-WHF), HFrEF patients treated with SGLT-2i experienced reduced clinical symp-
toms of HF compared to patients treated with only conventional therapy, as was evidenced
by improvement in the KCCQ score from baseline [124]. The EMPA-TROPISM clinical trial
evaluated the effects of empagliflozin on functional capacity, and quality of life nondiabetic
patients with HFrEF [96]. HFrEF patient functional status was significantly improved in
the empagliflozin sub-group vs. placebo group, evidenced by enhanced oxygen consump-
tion and improvement in a 6-min walk test. Patients in the empagliflozin treatment sub-
group also reported a lower symptom burden and improved quality of life (21 +/— 18 vs.
2 +/—15; p <0.001) on the KCCQ [96]. A secondary analysis of the EMPEROR-Reduced
trial found that empagliflozin significantly improved patient health status as assessed
by the KCCQ-CSS by 1.5 to 2.0 points. Empagliflozin led to more 5-point, 10-point, and
15-point improvements in and fewer deteriorations in KCCQ-CSS at 3 months compared
to placebo [125]. The improved functional status assessed by KCCQ was also reported for
HFrEF patients treated with dapagliflozin vs. placebo in DEFINE-HF [25] and DAPA-HF
trials [30,109]. Treatment of HFrEF patients with dapagliflozin improved clinical symptoms,
physical function, and health-related quality of life regardless of sex [100]. Using a new
type of study design, the CHIEF-HF trail (randomized, double-blind, controlled), focused
on patient-centered outcomes and conducted in a completely remote fashion, showed
canagliflozin significantly improved patient symptom burden after 12 weeks of treatment
(KCCQ Total Symptom Score improvement by 4.3 points), regardless of EF or T2DM sta-
tus [126]. Collectively, these data emphasize substantial benefits of SGLT-2i in improvement
of HF symptoms, function and quality of life in HFrEF patients.
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3.6. Direct Impact of SGLT-2i on Fluid Retention

One method commonly used to quantify the extent of peripheral edema is fluid weight
gain. Several of the HF-associated clinical trials reported an overall decrease in weight
and waist circumference in the patients treated with an SGLT-2i [106]. Meta-analysis of
eight randomized-controlled trials (a combined cohort of 5233 HF patients without T2DM)
reported 20% relative risk reduction in cardiovascular and HHEF, associated with a reduction
in body weight (—1.21 kg, p < 0.001), body mass index (—0.47 kg/m?, p < 0.001) in patients
treated with SGLT-2i vs. those without treatment [127]. The post-hoc analysis of the SONAR
trial (patients with T2DM and CKD), show that six-weeks treatment SGLT-2i added to an
endothelin receptor antagonist decreased body weight, a surrogate for fluid retention [128].

Since major HF symptoms are associated with fluid retention and vascular congestion,
SGLT-2i must significantly improve the volume status of patients with HF. An ongoing
clinical trial called EMPULSE is currently investigating the effects of empagliflozin on all-
cause mortality and HHF for acute HF with signs of dyspnea, fluid overload, and elevated
NPs [107]. This trial will be assessing the clinical benefit and safety of empagliflozin in
this population. The results will shed light on whether SGLT-2i provides any benefits in
patients with acute symptomatic HE.

4. Discussion

Two independent clinical trials, DAPA-HF and EMPEROR-Reduced, showed that
SGLT-2i (dapagliflozin and empagliflozin), reduce HHF and all-cause cardiovascular death,
and improved renal outcomes in HFrEF patients with or without diabetes independently
from co-administration of OMT. These significant benefits have been associated with
improving functional status and quality of life. The pathophysiologic mechanisms and
molecular pathways underlying the benefits of SGLT-2i in HFrEF are complex and remain
incompletely understood.

The HHF and re-hospitalization rates reflect HF decompensation events related to
clinical symptoms caused by edema/congestion. Thus, reducing HHF /re-hospitalization
is directly related to the suppression/prevention of edema/congestion exacerbation. In
patients with HFrEF, edema/congestion develops, as a pathophysiologic outcome, un-
der control of interdependent functional crosstalk between dynamic cardiac function and
remodeling, chronic inflammation, endothelial dysfunction, changes in peripheral vascula-
ture system, and pathological neurohormonal activation of SNS-RAAS and impairment of
NPs and NO-related mechanisms. Comorbidities with renal or pulmonary abnormalities
aggravate these pathologies. Treatment of HFrEF patients (with or without T2DM) with
SGLT-2i leads to diuresis/natriuresis stimulation (reduced volume overload), improvement
of overall cardiac function (improved cardiac output), and reduction (significant or mild)
of NP plasma levels. The impact of the SGLT-2i on the classical RAAS overactivation and
impairment of NP/NO mechanisms in HFrEF remains to be determined.

In contrast with other diuretics, treatment with SGLT-2i likely controls electrolyte
balance and renal perfusion. A mathematic integrated cardiorenal modeling analysis of the
DAPA-HF clinical trial predicts that SGLT-2i relives HF-related edema/congestion by reduc-
ing pathologically elevated interstitial fluid volume without significantly reducing blood
plasma volume (i.e., normalizing blood volume homeostasis—or reducing volume overload
stress on the heart). The ability of SGLT-2i to suppress chronic inflammation and, eventually,
attenuate endothelial dysfunction suggests that SGLT-2i may control/prevent fluid leakage
from the vascular compartment to the interstitial space and prevent edema development.
The summary of SGLT-2i outcomes in HFrEF associated with edema/congestion repressing
shown in the Figure 2.

The prevention and detection of pathological fluid is important for HF outcomes.
SGLT-2i appear to prevent and delay HF progression, but additional research is needed
and ongoing.
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HFrEF » Congestion Event
T Clinical Symptoms
T Hospitalization
T Mortality

SGLT-2i

(canagliflozin, dapagliflozin, empagliflozin)

Improves HF Outcomes
! Edema = | Hospitalization

Figure 2. Schematic presentation of SGLT-2i Contribution to Attenuation of Edema/Congestion in
HFrEF. Created with BioRender.com.

5. Conclusions

Late stage HF is characterized by the generation of edema/congestion leading to
clinical symptoms and hospitalization. Clinical HFrEF studies summarized in this review
suggest that SGLT-2i treatment may attenuate the pathological salt-water retention; how-
ever, additional studies should be designed to investigate HFrEF edema/congestion as a
primary outcome.
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Abbreviations

AF Atrial Fibrillation

ANP/NT-proANP  Atrial natriuretic peptide/N-terminal-proANP
ASCVD Atherosclerotic cardiovascular disease
BNP/NT-proBNP  Brain/B-type natriuretic peptide/N-terminal-proBNP
CKD Chronic kidney disease

CSS Clinical summary score

Ccv Cardiovascular

EF Ejection fraction

eGFR Estimated glomerular filtration rate

ESRD End-stage renal disease

HF Heart failure

HFrEF Heart failure with reduced ejection fraction
HFpEF Heart failure with preserved ejection fraction
HHF Hospitalization due to heart failure

HR Hazard ratio

KCCQ Kansas City Cardiomyopathy Questionnaire
LVEF Left ventricular ejection fraction

MACE Major adverse cardiac events

NO Nitric oxide

NPs Natriuretic peptides

NYHA New York Heart Association
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OMT Optimal medical therapy

RAAS Renin-angiotensin-aldosterone system
SGLT-2i Sodium-glucose cotransporter-2 inhibitors
SNS Sympathetic nervous system

T2DM/T1DM Type 2/Type 1 diabetes mellitus
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