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Abstract

Drug–target protein interaction (DTI) identification is fundamental for drug discovery and

drug repositioning, because therapeutic drugs act on disease-causing proteins. However,

the DTI identification process often requires expensive and time-consuming tasks, including

biological experiments involving large numbers of candidate compounds. Thus, a variety of

computation approaches have been developed. Of the many approaches available, chemo-

genomics feature-based methods have attracted considerable attention. These methods

compute the feature descriptors of drugs and proteins as the input data to train machine and

deep learning models to enable accurate prediction of unknown DTIs. In addition, attention-

based learning methods have been proposed to identify and interpret DTI mechanisms.

However, improvements are needed for enhancing prediction performance and DTI mecha-

nism elucidation. To address these problems, we developed an attention-based method

designated the interpretable cross-attention network (ICAN), which predicts DTIs using the

Simplified Molecular Input Line Entry System of drugs and amino acid sequences of target

proteins. We optimized the attention mechanism architecture by exploring the cross-atten-

tion or self-attention, attention layer depth, and selection of the context matrixes from the

attention mechanism. We found that a plain attention mechanism that decodes drug-related

protein context features without any protein-related drug context features effectively

achieved high performance. The ICAN outperformed state-of-the-art methods in several

metrics on the DAVIS dataset and first revealed with statistical significance that some

weighted sites in the cross-attention weight matrix represent experimental binding sites,

thus demonstrating the high interpretability of the results. The program is freely available at

https://github.com/kuratahiroyuki/ICAN.

Introduction

Drug–target protein interaction (DTI) identification is fundamental for drug discovery and

drug repositioning, because therapeutic drugs act on disease-causing proteins. However, the

DTI identification process often requires expensive and time-consuming tasks, including bio-

logical experiments involving large numbers of candidate compounds [1]. To address these
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problems, intensive efforts have focused on virtual screening or computational prediction of

DTIs based on large biological datasets and information available in public databases. A variety

of computational approaches, including structure-based, similarity-based, and feature-based

chemo-genomics methods, have been proposed for DTI prediction [2]. Conventional struc-

ture-based approaches, that include docking simulations have been studied for decades, but

they are limited to proteins for which the three-dimensional structure is known or can be pre-

cisely reproduced by molecular dynamics simulations. Similarity-based approaches such as

kernel regression [3–5] and matrix factorization [6–8] utilize known drug-target similarity

information to infer new DTIs. However, these methods are not applicable to target proteins

of different classes for which similarity information is lacking [9]. Feature-based methods used

in chemo-genomics approaches compute the descriptors of drugs and proteins as the input

data to train machine and deep learning models so that they can accurately predict unknown

DTIs as classification models and the associated binding affinity as regression models, respec-

tively. In the feature-based approaches of the classification models, drug compounds can be

represented as types of fingerprints, including extended connected fingerprints (ECFPs) [10]

and PubChem [11], one-dimensional (1D) sequences, and molecular graphs (traditionally

called two-dimensional (2D) structures). Protein sequences are described as 1D sequences,

which are converted into feature vectors using various descriptors, including composition

transition distribution [12] and protein sequence composition (PSC) descriptors [13]. In gen-

eral, machine learning methods, such as random forest and gradient boosting, can be com-

bined with such descriptors to predict DTIs [14–18], where appropriate design and selection

of descriptors are critically important [19,20]. From a different point of view, several recent

studies have integrated heterogeneous, protein- or drug-related knowledge, such as GO

semantic information [21], biological networks [22], and drug-drug interactions [23], into PPI

datasets to improve PPI prediction performance.

Recent studies have proposed various end-to-end, deep learning frameworks that inte-

grated sequence representation and model training in a unified architecture [24,25]. Deep

learning–based methods such as deep neural network [26], autoencoder [27], long short-term

memory [28,29], convolutional neural networks (CNNs) [30,31], and Transformer [13] have

improved the prediction performance of machine learning methods. DeepDTI [9] proposed a

deep belief network [32] that uses ECFP2, ECFP4, and ECFP6 [10] to encode drugs and PSC

descriptors to encode amino acids (AAs). DeepDTA [30] uses two CNNs that extract the fea-

tures of the Simplified Molecular Input Line Entry System (SMILES) of drugs and AA

sequences from their label-encoding vectors. DeepConv-DTI [33] involves an architecture

similar to DeepDTA, which uses CNNs with max pooling layers and fingerprint ECFP4 to

encode SMILES. From another aspect in which a drug compound is regarded as a molecular

graph, GNN-CPI [34] and GraphDTA [35] have implemented graph neural networks (GNNs)

[36,37] and graph CNNs [38,39], respectively. These predictors separately learn the molecular

representations of drugs and proteins and then concatenate their features to calculate a final

output, while neglecting the interactions of sub-sequences between drugs and proteins.

Such interactions are widely considered by exploiting the attention mechanisms of Trans-

former, an encoder-decoder model consisting of multi-headed attention layers and pairwise

feed-forward to extract sequence-to-sequence features. TransformerCPI [13] implemented a

Transformer that applies drugs and proteins via a sequence-to-sequence or cross-attention

mechanism. MolTrans [40] employs two self-attention mechanisms to create an interaction

map that integrates the separately generated context features from drugs and proteins. These

attention-based methods have suggested a few examples that roughly explain how a high value

of attention weight matrixes correspond to experimental binding sites, but they do not prove

this in an objective and statistical manner.
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To overcome these problems, we developed a new attention-based method that predicts

DTIs based on SMILES of drugs and AA sequences of proteins; this method was designated

the interpretable cross-attention network (ICAN). We optimized the attention mechanism

architectures in terms of cross-attention or self-attention, attention layer depth, and selection

of the context matrixes from the attention networks. ICAN outperformed state-of-the-art

methods in several respects and first revealed with statistical significance that some weighted

attention sites represent experimental binding sites, thus demonstrating the distinct interpret-

ability of the method.

Materials and methods

Computation framework

The proposed cross-attention model consists of three networks: an embedding layer, an atten-

tion layer, and an output layer, as shown in Fig 1. In the embedding layer, the SMILES of

drugs and AA sequences of target proteins are separately encoded as the embedding matrixes.

These matrixes are input into the cross-attention network to generate the drug-related context

matrix of a protein and the protein-related context matrix of a drug. The resulting context

matrixes are applied to the output layer of the CNN, which functions as a decoder to capture

local feature patterns at different levels, followed by computing of a DTI probability score. The

cross-attention considers sub-sequence interactions between a drug and a protein to produce

the context matrixes; the CNN uses different filters to extract local sub-sequence patters within

the context matrixes. Details in encoding methods and attention-based models are described

in Tables 1 and 2.

DTI dataset

The three widely used datasets were prepared: DAVIS, BindingDB, and BIOSNAP, as shown

in Table 3. These were the same datasets employed in a previous study [40] and facilitated

direct comparison of our proposed method with existing methods. The DAVIS dataset consists

of biochemically determined experimental Kd (dissociation constant) values for 68 drugs and

379 proteins [41]. The BindingDB database [42] includes Kd values for 10,665 drugs and 1,413

proteins. DTI pairs with a Kd<30 μM are regarded as positive samples. The MINER DTI data-

set from the BIOSNAP collection [43] includes 13,741 DTI pairs for 4,510 drugs and 2,181

proteins from DrugBank [44]. As the BIOSNAP dataset contains only positive DTI pairs, nega-

tive DTI pairs are collected and removed from among the unseen pairs [40]. We removed sam-

ples for which SMILES was not applicable to RDKit [45].

Drug and protein representations

Drugs are represented by the SMILES [46], which is a character sequence of atoms and bonds

(e.g., C, N, O, =), generated by depth-first traversal for a molecule graph. The SMILES has the

disadvantage that its respective characters do not always correspond to chemically valid mole-

cules. To overcome this problem, SELF-referencIng Embedded Strings (SELFIES) [47] are

introduced so that all of the tokens or words of the SELFIES correspond to chemically valid

molecules, increasing the reliability of interpretation and rationality of the learning algorithms

or mechanisms. It should be noted that a token is the minimum meaningful character set. A

target protein is represented as a letter sequence of the 20 standard AAs.
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Frequent consecutive sub-sequence mining

The frequent consecutive sub-sequence (FCS) mining method [40] is used to extract sub-

sequences with variable length for both drug compounds and proteins. The FCS algorithm

finds recurring sub-sequences across drug and protein sequence datasets. According to the

natural language processing–based identification method of sub-word tokens [48,49], FCS

produces a hierarchical set of frequently occurring sub-sequences. After collecting a sequence

set of SMILES and AA sequences, the FCS method decomposes or tokenizes the sequences of

drugs and proteins into sub-sequences and individual atoms and AAs that are designated a

Fig 1. Architecture of the cross-attention-based neural network. It is the CA_DP network (Table 2). Q, K, and V indicate Query, Key, and

Value matrixes. AW: Attention-weight matrix, A: Attention matrix, D: Drug-context matrix, P: Protein-context matrix, d: Length of drug

sequence, p: Length of protein sequence, h: Hidden dimension size.

https://doi.org/10.1371/journal.pone.0276609.g001
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token set. FCS scans the token set to identify the most-frequent consecutive tokens (e.g., X, Y)

and updates them with their combined token (XY). FCS repeats the process of scanning, iden-

tification, and updating until no frequent token is above a specific threshold or the number of

tokens reaches a specific threshold. Frequent sub-sequences are bound into one token, and

infrequent sub-sequences are decomposed into short tokens.

Encoding methods

We paired each token of SMILES FCS, AA FCS, SMILES, SELFIES, and AAs with its corre-

sponding label integer to generate a label-encoding vector. The resulting label-encoding vec-

tors were embedded into token-embedding matrixes by two encoding methods, nn.

Embedding (PyTorch) and one-hot encoding. Table 1 shows the five encoding methods

Table 1. Drug and protein encoding methods.

Name Drug token Protein token

nn.Embedding of FCS SMILES FCS AA FCS

nn.Embedding of SMILES SMILES character AA letter

nn.Embedding of SELFIES SELFIES word AA letter

one-hot encoding of SMILES SMILES character AA letter

one-hot encoding of SELFIES SELFIES word AA letter

“Character” and “word” indicate “a letter or a symbol” and “minimum chemically valid characters”, respectively.

https://doi.org/10.1371/journal.pone.0276609.t001

Table 2. Architectures of different attention-based models.

Method name Attention mechanism Attention layer depth Context matrix Output layer

CA_DP Cross-attention 1 Drug+Protein CNN

CA2_DP Cross-attention 2 Drug+Protein CNN

CA3_DP Cross-attention 3 Drug+Protein CNN

CA_DP_FCL Cross-attention 1 Drug+Protein FCL

SA_DP Self-attention 1 Drug+Protein CNN

CA_D Cross-attention 1 Drug CNN

CA_P (ICAN) Cross-attention 1 Protein CNN

All of the models employ the nn.Embedding of FCS (Table 1).

https://doi.org/10.1371/journal.pone.0276609.t002

Table 3. Statistics of the employed datasets: DAVIS, BindingDB and BIOSNAP.

Dataset Drug Protein Positive sample Negative sample

Train Valid Test Train Valid Test

DAVIS 68 379 1,043 1,043 160 2,846 303 5,708

BindingDB 10,665 1,413 6,329 6,334 925 5,712 1,903 11,377

BIOSNAP 4,510 2,181 9,656 9,533 1,394 1,344 2,761 2,719

The numerical values indicate the numbers.

Positive DTI pairs were divided into training, validation, and testing sets at a ratio of 7:1:2. For well-shaped training, the number of negative DTI samples was set to the

same number as positive samples in the training datasets. The remaining negative pairs were placed in the validation and test datasets. The positive and negative pairs

are balanced in the BIOSNAP test dataset; they are imbalanced in the DAVIS and BindingDB test datasets, where the number of negative samples is more than 20-fold

and 7-fold greater than that of positive samples, respectively.

https://doi.org/10.1371/journal.pone.0276609.t003
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employed: (1) nn.Embedding of FCS embeds the label-encoding vectors of SMILES FCSs and

AA FCSs; (2) nn.Embedding of SMILES embeds the label-encoding vectors of SMILES charac-

ters and AA letters; (3) nn.Embedding of SELFIES embeds the label-encoding vectors of

SELFIES words and AA letters; (4) one-hot encoding of SMILES embeds the label-encoding

vectors of SMILES characters and AA letters; and (5) one-hot encoding of SELFIES embeds

the label-encoding vectors of SELFIES words and AA letters. Here, we demonstrate how to

make a label encoding vector with SMILES characters. SMILES [CN = C = O] is decomposed

into a character list: [C, N, =, C, =, O], which is then converted into a label-encoding vector [1,

3, 60, 1, 60, 4, 60], where (C:1, N:3, =: 60, O:4).

As drug and protein sequences have varying lengths, the maximum sizes of the label-encod-

ing vectors for drugs and proteins were set to 50 and 545, respectively. nn.Embedding embeds

the label-encoding vectors of a drug and protein into 50 × 384 and 545 × 384 token-embedding

matrixes, respectively. The one-hot encoding method encodes a drug and a protein into 50×
(length of the SMILES character list or SELFIES word list) and 545× (length of AA letter list)

token-embedding matrixes, respectively.

We also added a positional embedding method to the token-embedding, because the posi-

tion of words generally plays an essential role in any language grammar, defining the semantics

of a sentence. As the token-embedding matrixes do not have any information regarding posi-

tion of the sub-sequences or tokens, we added position information for the sub-sequences to

their features. The position label–encoding vector is embedded by nn.Embedding into the

position-embedding matrix, which is added to the token-embedding matrix. The resulting

matrix was designated the embedding matrix.

Cross-attention network

We built multi-head cross-attention networks with an attention head number of h [50]. The

query of a target protein, QP ¼ ðQP
1
; . . .;QP

hÞ, is provided with the embedding matrix of a pro-

tein YP by:

QP
i ¼ Y

PWQ
i ði ¼ 1; 2; ; hÞ; ð1Þ

whereWQ
i represents the weight matrix. The Key and Value of a drug, KD ¼ ðKD

1
; . . .;KD

h Þ and

VD ¼ ðVD
1
; . . .;VD

h Þ, are provided with the embedding matrix of a drug YD by:

KD
i ¼ Y

DWK
i ; ð2Þ

and

VD
i ¼ Y

DWV
i : ð3Þ

We calculated the dot product of QP
i and KD

i to obtain the attention weight matrix given by:

Attention weightPi ¼ softmaxð
QP
i K

D
i
T

ffiffiffi
d
p Þ; ð4Þ

where d represents the column dimension ofWQ
i and KD

i
T represents the transposed matrix of

KD
i . The attention weight matrix is multiplied by VD

i to compute the attention, or head, which

is given by:

headPi ¼ Attention
P
i ¼ Attention weight

P
i � V

D
i : ð5Þ
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The multi-head attention is expressed by:

MultiheadðQP;KD;VDÞ ¼ concatðheadPi ; . . .; headPi Þ �W
P
0
: ð6Þ

Subsequently, context matrix of protein CP is given by

CP ¼ QP þMultiheadðQP;KD;VDÞ: ð7Þ

Next to the context matrix of a protein, we computed the following context matrix of a

drug, and vice versa.

CD ¼ QD þMultiheadðQD;KP;VPÞ ð8Þ

The final context matrixes from the cross-attention networks have three types: consecu-

tively concatenated context matrixes of a drug and protein (CD, CP), context matrix of a drug

alone CD, and context matrix of a protein alone CP.
The resulting context matrix was sent to the output layer to obtain a final probability or pre-

diction score. The output layer consists of two sets of 1D-CNN, ReLU function, max pooling

layer, and dropout layer, and one linear transformation layer with the sigmoid function. As an

alternative output layer, we prepared fully connected layers composed of two sets of a linear

transformation layer, ReLU function, and dropout layer, and one linear transformation net-

work with the sigmoid function.

Evaluation

Six statistical metrics were used to evaluate the prediction performance of the proposed mod-

els: sensitivity (recall) (SN), specificity (SP), precision (PR), F1, area under the receiver operat-

ing characteristic curve (ROCAUC), and area under the precision and recall curve (PRAUC)

[51]. SN, SP, PR, and F1 are given by:

SN ¼
TP

TP þ FN
; ð9Þ

SP ¼
TN

TN þ FP
; ð10Þ

PR ¼
TP

TPþ FP
; ð11Þ

and

F1 ¼
2 � PR � SN
PRþ SN

; ð12Þ

where TP, TN, FP, and FN denote the numbers of true positives, true negatives, false positives,

and false negatives, respectively. We conducted five independent runs to train the models and

evaluate them with the test datasets. The statistical metrics were averaged over 5 models.

PRAUC was an effective metric on the imbalanced test datasets of DAVIS and BindingDB,

where the number of negative pairs was much larger than that of positive pairs.

Attention site analysis

To demonstrate the interpretability of the attention mechanisms, we investigated the relation-

ship between a high value in the attention weight matrix and the experimental drug-binding

sites of target proteins or whether the attention sites correspond to the experimental DTI
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binding sites. First, we added experimental data regarding drug-binding sites, as derived from

sc-PDB [52], to the BIOSNAP test dataset. Consequently, we updated 160 DTIs with their

binding sites. Notably, DTI samples with experimental drug-binding sites are limited. Second,

we fed the 160 DTIs into the CA_P model (Table 2) to generate attention weight matrixes,

which were expanded by the protein and drug sequence axes. For each DTI sample, we sorted

the attention sites according to value and then selected the top 30 attention sites. Third, we

counted the attention sites that corresponded to the experimental binding sites for each target

protein, and this value was designated the experimental consistency number. Fourth, to statis-

tically validate the experimental consistency numbers, we artificially generated random bind-

ing sites for each target protein, while keeping the number of random sites the same as the

number of experimental sites. We then calculated how many times the top 30 attention sites

corresponded to the randomly generated binding sites, which was designated the simulated

consistency number. This simulation process was iterated 10,000 times for the 160 DTIs to

obtain a profile of simulated consistency numbers. Finally, based on the simulated profile, we

calculated the z-score of the experimental consistency number between the top 30 attention

sites and the experimental binding sites.

Implementation

All the programs were written in Python. Programming regarding SMILES and SELFIES was

written using RDKit [45]. The deep learning programs, including the attention mechanisms

and CNN, were implemented in PyTorch [53].

Results and discussion

Optimization of neural network structures

There are a number of network architectures in the attention-based methods (Table 2). We

designed or optimized the network structures of the attention-based network and output layer

using the DAVIS dataset with nn.Embedding of the FCS. This optimality of this encoding will

be demonstrated later. The attention mechanism selects either of two types: self-attention or

cross-attention. The depth of attention layers varies as 1, 2, and 3. The context matrixes result-

ing from the attention network have three types of concatenated context matrixes: drug and

protein, drug context alone, and protein context alone. The output layer employs either of two

neural networks: CNN or fully connected layer.

First, we defined CA_DP (Table 2, Fig 1) as the base model that consists of nn.Embedding

of the FCS, one-layer cross attention mechanisms for the concatenated matrixes of drugs and

proteins, and CNN output layer, and tuned its hyper-parameters. Consequently, we deter-

mined the number of multi-head attentions as 4, the learning rate as 0.001, maximum epochs

as 50, and training batch size as 128. The Adam optimizer was used. All hyper-parameters are

provided in our program. To select the neural network suitable for the output layer, we com-

pared CA_DP with CA_DP_FCL that used the fully connected layer as the output layer, as

shown in Fig 2 and S1 Table. CNN presented higher SN, ROCAUC, and PRAUC values than

FCL; thus, CNN was selected. We emphasized the values of PRAUC and ROCAUC to deter-

mine the best method, because they are independent of a threshold value, while SP, PR and F1

depend on the threshold. S1 Table indicates the values of all the six metrics including PR and

F1. We considered that CNN captured local context patterns with different filters. To investi-

gate the effect of attention layer depth on performance, we compared one layer (CA_DP), two

layers (CA2_DP), and three layers (CA3_DP). An increase in the layer number decreased the

ROCAUC and PRAUC values, suggesting that complex attention mechanisms do not improve

performance. Thus, we selected a one-layer attention mechanism. We compared the cross-
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attention (CA_DP) and self-attention (SA_DP) mechanisms (S1 Fig). The cross-attention

mechanism exhibited better performance for the four metrics than the self-attention mecha-

nism. This suggests that interactive cross-attentions between drug and protein features are

critically important for prediction. This was not consistent with the observation that the two

Fig 2. Optimization of the attention-based network architecture. Attention-based models with nn.Embedding of FCS were trained using the DAVIS

training dataset and evaluated using the DAVIS test dataset. Details of the methods are shown in Table 2. CA_P was designated ICAN.

https://doi.org/10.1371/journal.pone.0276609.g002
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self-attention mechanisms employed by MolTrans exhibit high prediction performance. We

speculate that MolTrans complements the lack of cross-attention between drugs and proteins

with an interaction map that integrates drug and protein context features from the self-atten-

tion mechanism.

To select the optimal context matrixes resulting from the attention mechanisms, we com-

pared CA_DP, CA_D, and CA_P (S2 Fig). CA_P provided higher SN, ROCAUC, and PRAUC

values than CA_DP and CA_D, suggesting that CA_P decodes drug-related protein context

features without any protein-related drug context features. This is similar to TransformerCPI,

which decodes protein features based on encoded drug features, whereas CA_P uses a plain

one-attention-layer architecture without any pairwise feed-forward. We conclude that the

plain attention mechanism, CA_P, is sufficiently effective to achieve high prediction

performance.

Comparison of encoding methods

To demonstrate the superiority of the nn.Embedding of FCS, five CA_Ps with different encod-

ing methods (Table 1) were tested on the DAVIS dataset, as shown in Fig 3 and S2 Table: nn.

Embeddings of FCS, SMILES, SELFIES, and one-hot encodings of SMILES and SELFIES. nn.

Embedding of FCS presented the highest SN, ROCAUC, and PRAUC values. nn.Embeddings

of SMILES and SELFIES outperformed the one-hot encodings of SMILES and SELFIES, sug-

gesting that nn.Embedding facilitates attention-based learning to a greater degree than one-

hot encoding. This difference is due to the perceptron architecture implemented by nn.

Embedding. nn.Embedding of SELFIES provided higher SP, ROCAUC, and PRAUC values

than nn.Embedding of SMILES; one-hot encoding of SELFIES provided much higher SN,

ROCAUC, and PRAUC values than one-hot encoding of SMILES. This result indicates that

SELFIES is more effective than SMILES at learning features, because SELFIES decomposes

chemical formulas into chemically meaningful character lists, whereas SMILES does not.

These optimization processes confirmed that CA_P with nn.Embedding of FCS is the optimal

method, which was then designated ICAN.

Comparison with state-of-the-art methods

We compared the optimal architecture of ICAN with 7 state-of-the-art methods on DAVIS, as

shown in Fig 4 and S3 Table. S3 Table presents the values of all the six metrics including PR

and F1. We employed a classical machine learning method, a linear regression (LR)-based

model that used ECFP for encoding drugs and PSC for encoding proteins [40,54], and the fol-

lowing CNN-based models: GNN-CPI [34], DeepDTI [9], DeepDTA [30], DeepConv-DTI

[33], and the latest attention mechanism–based methods of TransformerCPI [13] and Mol-

Trans [40]. ICAN and MolTrans outperformed the CNN-based methods (GNN-CPI,

DeepDTI, DeepDTA, and DeepConv-DTI) in terms of ROCAUC and PRAUC. In particular,

ICAN provided the highest SN, ROCAUC, and PRAUC values for all of the methods, although

MolTrans was very competitive compared with ICAN. ICAN and MolTrans exhibited higher

SN, SP, ROCAUC, and PRAUC values than TransformerCPI. The high PRAUC value of the

ICAN method suggests that it takes advantage in the imbalanced dataset. The CNN-based

methods provided higher SN, ROCAUC, and PRAUC values than the classical machine learn-

ing model of LR. In the CNN-based methods, DeepDTA exhibited the highest SN, whereas

DeepConv-DTI exhibited the highest ROCAUC and PRAUC values.
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Robustness analysis

To characterize the robustness of the optimal network architecture of ICAN, we compared it

with 7 state-of-the-art methods on the BindingDB and BIOSNAP datasets, as shown in Figs 5

and 6 and S4 and S5 Tables. In BindingDB (Fig 5, S4 Table), ICAN provided the highest

Fig 3. Optimization of encoding methods. CA_Ps (ICANs) with 5 different encoding methods were trained using the DAVIS training dataset and

evaluated using the DAVIS test dataset. Details regarding the encoding methods are shown in Table 1.

https://doi.org/10.1371/journal.pone.0276609.g003
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PRAUC value, whereas the CNN-based models (GNN-CPI, DeepDTA, and DeepConv-DTI)

and MolTrans were competitive compared with ICAN in terms of ROCAUC and PRAUC val-

ues. For the three attention-based models (TransformerCPI, MolTrans, and ICAN), MolTrans

and ICAN provided higher ROCAUC and PRAUC values than TransformerCPI. Although

GNN-CPI provided high SP, ROCAUC, and PRAUC values, it exhibited poor performance on

DAVIS. On BIOSNAP (Fig 6, S5 Table), the CNN-based methods (GNN-CPI, DeepDTI,

DeepDTA, and DeepConv-DTI) provided high ROCAUC and PRAUC values that were com-

petitive with or greater than those obtained with the three attention-based methods. DeepDTA

provided the highest ROCAUC and PRAUC values for all of the methods. For the three atten-

tion-based models, MolTrans provided slightly higher ROCAUC and PRAUC values than

ICAN, whereas TransformerCPI was competitive compared with ICAN. TransformerCPI

functioned well using the balanced dataset (BIOSNAP), but it performed poorly on the imbal-

anced datasets (DAVIS, BindingDB).

The performance of the deep learning models including ICAN depended on the datasets.

No method is ideal or perfect for all three datasets. ICAN provided the highest PRAUC value

on the DAVIS and BindingDB test datasets (imbalanced dataset) but not on the BIOSNAP test

dataset (balanced dataset). This suggests that ICNA has an advantage in predicting imbalanced

test datasets. It is notable that the DAVIS and BindingDB test datasets contain a much greater

abundance of negative samples than positive samples. In contrast, the BIOSNAP test dataset

contains an equal number of negative and positive samples (Table 3). Both the attention-based

Fig 4. Comparison of the performance of ICAN with that of state-of-the-art models on DAVIS datasets. All models were trained using the DAVIS

training dataset and evaluated using the DAVIS test dataset. CA_P was designated ICAN.

https://doi.org/10.1371/journal.pone.0276609.g004
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methods (ICAN, MolTrans) and CNN-based methods (DeepDTA, DeepConv-DTI) exhibited

competitive performance on the BindingDB test dataset. DeepDTA and DeepConv-DTI

exhibited higher prediction performance on the BIOSNAP test dataset compared with the

attention-based models. CNN may learn a large BIOSNAP dataset efficiently to provide high

performance.

It is essential that DTI predictors exhibit generalization capability and robustness for exter-

nal tests and practical applications. To this end, we must understand what deep learning mod-

els learn that can affect the generalization capability and use not only publically available data

for drugs and proteins but also unlabeled biochemical and biophysical data, including struc-

tural information. In this regard, structural information emerging from the AlphaFold Protein

Structure Database [55] would be useful for enabling accurate predictions.

Interpretability of binding mechanism

To demonstrate the interpretability of the attention mechanisms, we fed the 160 DTIs with

their binding sites into ICAN to generate corresponding attention weight matrixes (Fig 7A)

and calculated the experimental consistency number between the top 30 attention sites and the

experimental drug-binding sites as 2.020 (Fig 7B). We found that approximately 2 of the 30

attention sites corresponded to the experimental binding sites for each target protein. To sta-

tistically evaluate this number, we generated 10,000 simulated consistency numbers between

Fig 5. Comparison of the performance of ICAN with that of state-of-the-art models on BindingDB. All models were trained using the BindingDB

training dataset and evaluated using the BindingDB test dataset. CA_P was designated ICAN.

https://doi.org/10.1371/journal.pone.0276609.g005
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the top 30 attention sites and randomly generated binding sites of proteins for 160 DTIs (Fig

7B). The mean and standard deviation of the consistency number were 1.64 and 0.119, respec-

tively. Based on this profile, the calculated z-score for the experimental consistency number

(2.020) was 3.186, indicating that the attention sites were definitely related to the experimental

binding sites.

To determine why it is necessary to use the top 30 attention sites, we investigated how a

change in the maximum number of attention sites affects the experimental consistency num-

bers and their corresponding z-scores, as shown in Fig 7C. Using the top 30 attention sites pro-

vided the greatest increase in both the experimental consistency number and z-score. Thus, we

selected the top 30 attention sites. Another reason was that the average number of experimen-

tal binding sites was approximately 28.9 (~30) for each target protein. Using the top 10 atten-

tion sites provided a small experimental consistency number of 0.5, whereas the top 30

attention sites provided a number of 2. This suggests that the top-ranked attention site does

not always represent the binding site. Only 2 of 30 attention sites corresponded to binding

sites, whereas the remaining 28 did not. The remaining sites may interact indirectly with the

binding sites or affect the biochemical and/or structural properties of DTIs. Consequently,

although the binding sites are clearly focused by the attention mechanism, they are not priority

factors of the mechanism. It would be very interesting to identify what the attention mecha-

nism actually focuses on.

Fig 6. Comparison of the performance of ICAN with that of state-of-the-art models on BIOSNAP. All models were trained using the BIOSNAP

training dataset and evaluated using the BIOSNAP test dataset. CA_P was designated ICAN.

https://doi.org/10.1371/journal.pone.0276609.g006
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To further validate the relationship between attention sites and experimental binding sites,

we shifted the attention sites by −2, −1, 0, 1, and 2 to calculate the experimental consistency

numbers and corresponding z-scores. Zero indicates no shift of the attention sites, whereas a

value of 1 indicates that the attention site was up-shifted by one amino acid. A shown in Fig

7D, a shift of −1 did not reduce the experimental consistency number and its corresponding z-

score, whereas shifts of −2, 1, and 2 decreased these values. These results demonstrate that the

attention mechanism focuses on the exact binding site and neighboring sites.

Recently developed attention-based deep learning models have suggested that attention can

be interpreted by investigating the relationship between highly weighted attention sites and

Fig 7. Attention-weight analysis. 160 DTIs with their binding sites were tested by ICAN. The simulation was iterated 10,000

times. (A) Attention-weight matrix for the DTI between DB06896 and P08581 (hepatocyte growth factor receptor). (B) Profile of

simulated consistency numbers between the top 30 attention sites and randomly generated binding sites. (C) Effect of the

number of top attention sites on experimental consistency numbers and associated z-scores. Experimental consistency numbers

and associated z-scores were calculated with respect to a change in the top attention site number. (D) Effect of a shift of attention

sites on experimental consistency number and their z-score values.

https://doi.org/10.1371/journal.pone.0276609.g007
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experimental binding sites. Data from TransformerCPI suggested that weighted attention sites

are related to binding sites of transforming growth factor-beta type 1 receptor and C-X-C che-

mokine receptor type 4 [13]. MolTrans suggested binding sites for Ephrin type-A receptor and

Dasatinib and binding sites for histone deacetylase 2 and hydroxamic acid [40]. Although

these studies provided a few successful examples, they did not conduct statistical analyses of

the results. To overcome this limitation, we first conducted a statistical analysis to determine

the relationships between the attention sites and experimental binding sites and discovered

that the attention sites were closely related to the experimental binding sites. This conclusion

resulted from the plain structure of the cross-attention mechanism, which directly reads the

drug and protein encoding features (Fig 1).

Conclusions

We designed an attention-based DTI method designated ICAN, which is composed of an

embedding layer, attention mechanism, and output layer. Analyses of the attention mechanism

factors (cross attention/self-attention, attention layer depth, selection of context matrixes from

the attention networks, and output layer algorithms [CNN or fully connected layer]) revealed

that the plain cross-attention mechanism with CNN and CA_P (ICAN) provided the highest

prediction performance. The cross-attention mechanism considers sub-sequence interactions

between a drug and a protein to produce context matrixes; the subsequent CNN extracts local

sub-sequence patterns within the context matrixes using different filters. ICAN successfully

decodes drug-related protein context features without the need for any protein-related drug

context features. This is similar to TransformerCPI, which decodes protein features based on

encoded drug features, but it is not consistent with MolTrans, which uses two self-attention

mechanisms. MolTrans implements an interaction map that integrates the drug and protein

context features from the self-attention mechanism to complement the lack of a cross-atten-

tion mechanism between drugs and proteins. We then selected nn.Embedding of FCS as the

best of the five encoding methods: nn.Embedding of FCS, nn.Embedding of SMILES, nn.

Embedding of SELFIES, one-hot encoding of SMILES, and one-hot encoding of SELFIES. Fur-

thermore, we found that SELFIES was more effective than SMILES in terms of DTI prediction,

because SELFIES decomposes chemical formulas into a chemically meaningful character list,

but SMILES does not.

We also characterized the optimal architecture of ICAN in comparison with 7 state-of-the-

art methods: a classical LR-based method, CNN-based models (GNN-CPI, DeepDTI,

DeepDTA, and DeepConv-DTI), and the latest attention mechanism–based methods (Trans-

formerCPI, MolTrans). ICAN provided the highest PRAUC value on the imbalanced datasets

(DAVIS, BindingDB) but not on the balanced dataset (BIOSNAP). These results suggest that

ICAN has an advantage in predicting imbalanced test datasets. The attention-based methods

provided higher ROCAUC and PRAUC values than CNN-based models on DAVIS. Both the

attention-based methods (ICAN and MolTrans) and CNN-based methods (DeepDTA and

DeepConv-DTI) showed very competitive performance on BindingDB. DeepDTA and Deep-

Conv-DTI exhibited better performance than the attention-based models on BIOSNAP. No

best method was identified for all three datasets. These results indicate that the performance of

deep learning models depends on the dataset.

The important task is to first conduct a statistical analysis to clearly determine the relation-

ships between attention sites and experimental binding sites. ICAN was shown to enable the

interpretation of various DTI mechanisms. We consider that such interpretability results from

the plain structure of the cross-attention mechanism between a drug and protein. On the other

hand, our analyses also suggested that the attention mechanism captures critical factors other
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than binding sites, as it was shown to explain only a few of the 30 attention sites considered.

To further increase the interpretability and robustness in examining independent datasets, it is

necessary to determine exactly what the attention mechanism really captures and how this

affects the generalization capability. Additional DTI predictors remain to be developed using

different chemo-genomics approaches.
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