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Abstract

The US2-11 region of human and rhesus cytomegalovirus encodes a conserved family of glycoproteins that inhibit MHC-I
assembly with viral peptides, thus preventing cytotoxic T cell recognition. Since HCMV lacking US2-11 is no longer able to
block assembly and transport of MHC-I, we examined whether this is also observed for RhCMV lacking the corresponding
region. Unexpectedly, recombinant RhCMV lacking US2-11 was still able to inhibit MHC-I expression in infected fibroblasts,
suggesting the presence of an additional MHC-I evasion mechanism. Progressive deletion analysis of RhCMV-specific
genomic regions revealed that MHC-I expression is fully restored upon additional deletion of rh178. The protein encoded by
this RhCMV-specific open reading frame is anchored in the endoplasmic reticulum membrane. In the presence of rh178,
RhCMV prevented MHC-I heavy chain (HC) expression, but did not inhibit mRNA transcription or association of HC mRNA
with translating ribosomes. Proteasome inhibitors stabilized a HC degradation intermediate in the absence of rh178, but not
in its presence, suggesting that rh178 prevents completion of HC translation. This interference was signal sequence-
dependent since replacing the signal peptide with that of CD4 or murine HC rendered human HCs resistant to rh178. We
have identified an inhibitor of antigen presentation encoded by rhesus cytomegalovirus unique in both its lack of homology
to any other known protein and in its mechanism of action. By preventing signal sequence-dependent HC translocation,
rh178 acts prior to US2, US3 and US11 which attack MHC-I proteins after protein synthesis is completed. Rh178 is the first
viral protein known to interfere at this step of the MHC-I pathway, thus taking advantage of the conserved nature of HC
leader peptides, and represents a new mechanism of translational interference.
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Introduction

Human cytomegalovirus (HCMV) is a widespread pathogen

which is mostly asymptomatic in immune competent individuals,

but pathogenic in the immune compromised such as post-

transplant or AIDS patients [1]. Following primary infection,

HCMV establishes a latent infection for life which is largely

controlled by the cellular immune system. Immune control of

HCMV requires enormous immunological resources with often

more than 10% of the T cell pool being CMV-specific, a number

that might further increase with age [2]. However, these

immunological efforts are unable to eliminate the virus and do

not prevent super-infection [3]. Thus, HCMV is a master in

surviving in the face of a constant immunological onslaught.

As one of the largest human viruses, with well over 200 open

reading frames (ORFs), HCMV uses only about a third of its

coding potential for ‘‘essential’’ functions whereas the majority of

its genes are non-essential for growth in vitro [4,5]. Many of these

‘‘non-essential’’ genes encode modulators of innate or adaptive

immune responses including inhibitors of apoptosis, interferon-

induction, T cell and NK cell recognition [6–9]. However, the

importance of these immune modulators for viral pathogenesis

and immune escape in vivo is not known since HCMV does not

infect immunocompetent experimental animals. Such restricted

species specificity is a hallmark of CMVs and, as a result, CMVs

have co-evolved with their hosts [10]. Chimpanzee CMV is most

closely related to HCMV [11]. However, chimpanzees are a

protected species and unsuitable as an animal model. Although

more distantly related to humans, rhesus macaques (RM) are

readily available for experimentation. Sequence analysis of rhesus

CMV (RhCMV) revealed that approximately 60% of the open

reading frames (ORFs) are homologous to HCMV ORFs

including most of the aforementioned immune modulators

[12,13]. In order to study the importance of some of the immune

regulatory functions in vivo, we have begun to characterize several

of the conserved immune modulators of RhCMV.

The US2-US11 genomic region of HCMV encodes multiple

proteins that interfere with several MHC and MHC-like

molecules. Among the best studied of these is the US6-family

which contains four genes that inhibit MHC class I (MHC-I)-

mediated antigen presentation to T cells: US2, US3, US6 and

US11 [14–16]. These proteins are type I transmembrane

glycoproteins that reside in the endoplasmic reticulum and show

clear homology to each other and structural features resembling

the IG-superfamily fold [17]. Despite these structural similarities,

each protein interferes in its own unique way with the assembly of

MHC-I with peptides at a post-translational level. Upon

completion of heavy chain (HC) translation and translocation into

the lumen of the ER, but prior to assembly with the light chain b2-

microglobulin (b2-m), US2 and US11 mediate the retro-
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translocation of MHC-I molecules to the cytosol [18]. There, the

HC is deglycosylated by N-glycanase and degraded by the

proteasome [19]. US6 inhibits peptide translocation by the TAP

thus preventing the MHC-I heterodimers from obtaining viral

peptides [16]. Finally, US3 prevents ER exit of peptide-loaded

MHC-I molecules [15], both by directly interacting with MHC-I

molecules and by interfering with tapasin and protein-disulfide

isomerase, both chaperones of the peptide loading complex [20].

We previously demonstrated that the US2-11 orthologues of

RhCMV are also functionally equivalent in that Rh182 (US2) and

Rh189 (US11) mediate proteasomal destruction of MHC-I,

Rh183 (US3) retains MHC-I and Rh185 (US6) inhibits TAP

[21]. Thus, it seemed likely that eliminating the genomic region

spanning RhUS2-11 from RhCMV would restore MHC-I

assembly and transport in RhCMV-infected cells as previously

observed for US2-11-deleted HCMV [22]. Surprisingly however,

we discovered that in addition to these conserved mechanisms,

RhCMV contains an additional ORF, rh178, that targets the

MHC-I assembly pathway. Interestingly, this ORF does not

display any homology to the US6 gene family and acts by a novel

mechanism that operates post-transcriptionally, but prior to

completion of translation/translocation.

Results

Inhibition of MHC-I expression despite deletion of
RhUS2-US11

Deletion of the genomic region encoding US2-US11 restores

MHC-I expression in HCMV-infected cells [22]. To determine if

deletion of the homologous region in the RhCMV genome would

likewise restore MHC-I expression we created a recombinant

RhCMV lacking RhUS2-11 using a RhCMV-derived bacterial

artificial chromosome (BAC) (Protocol S1) [23]. Similar to

recombinant HCMV lacking US2-11, a growth defect was not

observed for DRhUS2-11 [22]. However, unlike US2-11-deleted

HCMV, DRhUS2-11 retained some ability to reduce MHC-I

steady state levels in infected TRFs as shown by immunoblot

(Fig. 1A). At 48 hours post-infection, MHC-I was markedly

reduced in DRhUS2-11-infected TRFs.

To determine whether the reduced steady state levels were due

to interference with newly synthesized MHC-I, we immunopre-

cipitated MHC-I from radiolabeled TRFs infected with wild-type

(WT) or DRhUS2-11. When cells were labeled for one or two

hours, we recovered dramatically less MHC-I from RhCMV-

infected cells despite the use of polyclonal antiserum K455

recognizing all forms of MHC-I (Fig. 1B) [24]. Compared to WT

there was an increase in HC recovery from DRhUS2-11-infected

cells. Such residual HC was also observed in pulse-chase

experiments, when DRhUS2-11-infected TRFs were pulsed for

10 min and chased from 30 min up to 90 min (Fig. S1A).

However, compared to mock-treated cells, radiolabeled HC was

drastically reduced at all time points either during pulse or chase.

In contrast to HC, expression of control proteins such as

Transferrin-receptor or vimentin was unaffected in RhCMV-

infected cells (Fig. 1D). Also, we did not observe a general shut-off

of host protein expression or a dramatic decrease of glycoprotein

recovered with the lectin concanavalin A (data not shown).

Moreover, expression of the light chain b2-m was much less

affected by RhCMV compared to HC, particularly in short pulse/

chase experiments (Fig. 1C). These data suggested that in addition

to RhUS2-11 inhibiting MHC-I assembly, RhCMV specifically

interferes with expression of HC. The residual HC recovered from

DRhUS2-11-infected cells indicate that this viral inhibition of HC

expression (VIHCE) was either incomplete or VIHCE did not

equally affect all MHC-I alleles present in TRFs.

VIHCE does not cause rapid degradation of complete
HCs

Since only minimal amounts of HC are detectable during

DRhUS2-11 infection, we wanted to examine if VIHCE caused

rapid degradation of HCs. In cells infected with HCMV, HC is

initially synthesized but then rapidly degraded as shown by pulse-

chase (Fig. 1C). This observation is consistent with previous reports

and is due to the reverse translocation of MHC-I mediated by US2

and US11 followed by proteasomal destruction of MHC-I [19]. In

contrast, during infection with both WT RhCMV and DRhUS2-11

only minimal amounts of HC were detectable after a 10-min

radiolabel, and remained low during a 30-min chase (Fig. 1C).

Furthermore, during a radiolabel for only 1-min HC synthesis was

markedly reduced during RhCMV infection (Fig. S1B). To rule out

that HC was not recovered due to epitope masking by a viral

protein or because HC was in a complex with NP40-insoluble

proteins, we lysed cells in SDS to disrupt protein complexes and

denature the HC prior to IP. Using either a monoclonal antibody

that recognizes only free HC (HC-10) [25] or K455, we were

unable to recover increased amounts of HC under these conditions

(Fig. 1E). Taken together these data suggest that RhCMV either

prevents complete HC synthesis or degrades HC prior to complete

protein synthesis.

Since co-translational degradation is mediated by proteasomes

[26] we wanted to determine whether HC translation could be

completed in the presence of proteasome inhibitors. TRFs were

infected with DRhUS2-11 and treated with the proteasomal

inhibitor MG132. However, no significant increase in HC

recovery was observed either when total MHC-I was immuno-

precipitated with K455 from NP40-lysates or with HC-10 from

SDS-lysates (Fig. 1F). In contrast, HC was stabilized in cells

transduced with Adenovirus expressing HCMV US11. The

proteasomal inhibitors Lactacystin and ZL3VS also failed to

stabilize HC in DRhUS2-11-infected cells (data not shown). Taken

together these data strongly suggest that RhCMV inhibits

expression of HC prior to or during polypeptide synthesis. Since

this phenotype is observed in the absence of RhUS2-11 and is not

present in HCMV, we further conclude that RhCMV contains

one or more unique gene(s) encoding VIHCE.

Author Summary

To avoid immune detection by cytotoxic T lymphocytes,
viruses interfere with antigen presentation by major
histocompatibility complex class I (MHC-I) molecules. We
have discovered a unique cytomegaloviral protein that
interferes with the biosynthesis of MHC-I heavy chains and
was thus termed viral inhibitor of heavy chain expression
(VIHCE). We show that VIHCE does not affect transcription
of MHC-I mRNA or the formation of poly-ribosomes.
Surprisingly, however, very little MHC-I protein is detected,
even when proteasomal protein degradation is inhibited,
suggesting incomplete protein translation. Interestingly,
VIHCE requires the proper MHC-I signal peptide, suggest-
ing that CMV takes advantage of the high conservation of
MHC-I signal peptides and interferes with protein transla-
tion by inhibiting signal sequence-dependent protein
translocation. This is the first description of a viral protein
that specifically targets the translation of a cellular
immuno-stimulatory protein.

MHC-I Translation Inhibition by CMV
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HC synthesis is restored upon infection with RhCMV
lacking Rh158–180

Since VIHCE seems to be specific to RhCMV, but absent from

HCMV, we examined the RhCMV genome for potential

candidate genes. The genomic region spanning ORFs Rh158 to

rh180, corresponding to the region between IE1/IE2 (UL123/

UL122) and US1 in HCMV, contains a large number of genes that

are either specific to RhCMV or are homologous to genes

frequently deleted in laboratory strains of HCMV [12,27]. To

examine whether this region contains the VIHCE gene, we

deleted Rh158–180 using the BAC-recombination strategy shown

in Fig. 2A. Interestingly, D158–180 did not show any obvious

growth defects despite such a large deletion (data not shown).

Moreover, pulse-chase labeling of D158–180-infected TRFs

revealed initial synthesis of MHC-I followed by degradation

(Fig. 2B). This degradation could be inhibited by the proteasome

inhibitor MG132 (Fig. 2C). MG132 also stabilized a smaller,

presumably deglycosylated, degradation intermediate (*) which is

also observed in cells transfected with RhUS2 [21]. Thus, it

seemed likely that D158–180 lacked VIHCE, and that in the

absence of VIHCE HC was now degraded by the RhCMV

homologues of US2 and US11. To examine whether the

combined deletion of RhUS2-11 and VIHCE would restore HC

expression in RhCMV-infected cells, we created a recombinant

Figure 1. RhCMV inhibits HC expression in the absence of RhUS2-11. All experiments were performed at 24 hours post infection at MOI = 3.
A) Immunoblot analysis of MHC-I or calreticulin in Mock- or RhCMV-infected TRF lysates. B) IP of total MHC-I upon labeling with 35S-Met/Cys for the
indicated time. (*) All IPs from WT and recombinant RhCMV- infected cells contain antibody-binding proteins around 55kDa (see Fig. S2) which likely
correspond to the RhCMV homologues of the Fc-receptor UL119-118 of HCMV [50]. Since these viral proteins are not involved in MHC-I inhibition
they are not shown in most figures. C) Pulse-chase labeling of 10 min and immunoprecipitation of total MHC-I from Mock-infected, HCMV-infected
THFs, or RhCMV-infected TRFs. D) Pulse-labeling of 60 min and IP of MHC-I, Tfn Rec (Transferrin receptor) or Vimentin from Mock-infected or RhCMV-
infected TRFs. E) Pulse-chase labeling of 10 min and IP of total MHC-I or HC. Cells were labeled as in 1C, but lysed in SDS buffer prior to IP. F) Pulse-
chase labeling and IP of RhCMV-infected TRFs treated with proteasome inhibitor. Where indicated TRFs were incubated with 50 mM MG132 or DMSO
during 60-min of Met/Cys starvation, 10-min label, and 30-min chase. For control, TRFs were transduced with AdUS11 (MOI = 25), a recombinant
adenovirus expressing HCMV US11, for 24 hours followed by NP40-lysis and IP with K455. Shown for RhCMV-infection is both NP-40 lysis (top panel)
and SDS-lysis (bottom panel) prior to IP with the noted antibody.
doi:10.1371/journal.ppat.1000150.g001

MHC-I Translation Inhibition by CMV
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lacking both Rh158–180 and RhUS2-11 (Fig. 2A). As expected

from the single deletions, the resulting double-deletion virus D158–

180,DRhUS2-11 did not display a growth defect in vitro (not

shown). When TRFs were infected with D158–180,DRhUS2-11,

HC expression was similar to Mock-infected cells indicating that

this recombinant virus no longer interfered with MHC-I expresson

(Fig. 2B). Taken together, these data indicate that the VIHCE

gene is located within the Rh158–180 region of RhCMV.

Furthermore, the fact that HC synthesis is observed in the absence

of VIHCE supports our conclusion that VIHCE acts prior to the

ER-associated degradation caused by the US2-US11 homologs.

RhCMV VIHCE maps to rh178
To identify the gene(s) coding for VIHCE we systematically

deleted fragments of decreasing size within the Rh158–180 region

in an iterative fashion (Fig. 3A; Table S1). We took advantage of

the fact that HC is initially synthesized in cells infected with

VIHCE-deleted virus but then degraded by US2 and US11 to

Figure 2. Deletion of Rh158–180 restores MHC-I expression during RhCMV infection. A) Diagram of the step-wise construction of the
DRhUS2-11 and D158–180,DRhUS2-11 viruses. Using the RhCMV BAC the RhUS2-11 region was replaced with a PCR-fragment containing a
Kanamycin resistance (Kanr) cassette flanked by RhCMV homologous regions. The Kanr cassette was removed by arabinose-induced FLP recombinase
prior to replacing the Rh158-180 region with Kanr. B) Pulse-chase labeling for 10 min of TRFs infected with WT or recombinant RhCMV followed by IP
of total MHC-I. In C) 50 mM MG132 or DMSO was included as in Fig. 1F. (*) indicates a deglycosylated cytosolic degradation intermediate stabilized by
MG132.
doi:10.1371/journal.ppat.1000150.g002

MHC-I Translation Inhibition by CMV
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Figure 3. VIHCE is encoded by rh178. A) Deletional mapping of VIHCE. Predicted open reading frames between Rh158–180 are shown as open
white arrows. Solid black rectangles indicate the region of deletion. Pulse-chase labeling for 10 min with the indicated recombinant virus was
performed as in Fig. 1C followed by IP with K455. Lack of VIHCE is readily apparent by the initial synthesis of HC (left lane) followed by US2-11-
mediated destruction (right lane). B) Predicted ORFs and experimentally confirmed transcripts in the rh178 region. The red rectangle indicates the
region essential for VIHCE function as determined by deletions in several independent recombinants. Large black arrows indicate positions of ORFs
rh175–178 predicted by [12]. Transcripts confirmed by RACE and cDNA PCR are shown below. C) Northern blot analysis of total RNA isolated from
mock or WT RhCMV-infected TRFs at 24 hours post infection. ORF rh178 was used to generate 32P-dCTP labeled DNA probe. D) Complementary
sequence of the RhCMV genome from 181921–182060bp. Underlined at 182058bp is the original predicted start codon for rh178 [12]. Transcription
actually begins at 182015bp as determined by 59 RACE (see sequence chromatogram below genomic sequence). Shaded in gray is the first ATG
codon of the transcript. Also noted is the splice donor site for rh178.4 which is spliced at 181944bp.
doi:10.1371/journal.ppat.1000150.g003

MHC-I Translation Inhibition by CMV
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distinguish between recombinants encoding or lacking VIHCE.

Initially, viruses carrying deletions approximately spanning the left

or right half of the Rh158–180 region were generated (Fig. 3A).

TRFs were infected with recombinants D158–168 and D167–180

and pulse-chase was performed. Since HC was expressed in TRFs

infected with D167–180 and not in TRFs infected with D158–168,

we concluded that VIHCE was located in the Rh167–180 region.

Similarly, HC was expressed in TRF infected with viruses D175–

180, D175–178, D176–178, and D177–178, but not D167–174,

D179–180, and D175–177 (Fig. 3A). These data suggested that

rh178 encodes VIHCE.

The region encoding rh178 overlaps with several predicted

ORFs and with a previously identified large intron of the US1-

homologue Rh181 [28] (Gene Bank Accession: AF474179). To

exactly determine the mRNAs encoding VIHCE we mapped the

transcriptional start and stop sites of the rh178 ORF and generated

additional, smaller deletions and point mutants within the rh178

coding region (Figs. 3–4). We performed 59 and 39 RACE as well

as Northern blot analysis. Sequence analysis of the 59 RACE

product identified a transcription start site downstream of the

originally predicted rh178 start codon (Fig. 3D). The identified

transcript is predicted to encode a shorter version of rh178.

39RACE and cDNA cloning further revealed additional splice

products in this region: a shorter splice product lacking most of the

rh178 protein encoding region (rh178.4; Note that Rivailler et al.,

(2006) have detailed additional predicted ORFs upstream of rh178

and denoted them rh178.1, rh178.2, and rh178.3) and the above

mentioned large Rh181-transcript which does not contain rh178

since it is removed by splicing. These three transcripts share the

same polyadenylation signal and 39 terminus (Fig. 3B). Northern

blot analysis using the predicted rh178 coding region as probe

revealed two transcripts (Fig. 3C). A larger predominant transcript

of approximately 1600bp corresponds to the expected size of

rh178. The smaller transcript may correspond to rh178.4, a

shortened rh178, or an unidentified transcript of the opposite

sense. These data confirm the expression of the rh178 transcript

during infection and correct the prediction of its protein coding

region.

Kinetic analysis indicates that VIHCE is an early gene that is

already expressed within 4 hours of infection (Fig. S3). To

determine whether the protein encoded by rh178 is responsible

for VIHCE, we created a frameshift in the 59-end of the predicted

coding region (rh178FS) (Fig. 4A). Since the primer-directed

mutagenesis strategy also caused deletion of a portion of the 59-

UTR we generated a control virus (rh178FSCtrl) containing the

same modification of the predicted 59-UTR of rh178 but no

frameshift (Fig. 4A). While rh178FSCtrl inhibited HC expression

similar to WT (Fig. 4B), HC was synthesized in rh178FS-infected

TRFs (Fig. 4C). Thus, VIHCE is mediated by the rh178-encoded

protein.

The rh178 protein (Fig. 5A), with a molecular weight of

approximately 24 kDa, does not display significant homology with

non-RhCMV sequences in the genomic database. A stretch of

highly hydrophobic amino-acids beginning at amino acid 14 is

predicted to represent a non-cleaved amino-terminal signal anchor

(Fig 5B). Thus, the most likely topology for this protein is that of a

type 1b transmembrane protein, i.e. a large cytoplasmic C-

terminus following the signal-anchor. Immunofluorescence anal-

ysis of epitope-tagged rh178 indicates that the protein localizes to

the ER, suggesting that rh178 is anchored in the ER-membrane

(Fig. 5E). To obtain better expression of rh178 for further analysis,

we constructed replication-defective adenovirus vectors expressing

either wild type rh178 (Ad178) or HA-tagged rh178 (Ad178-HA).

While there is a predicted glycosylation site at position N101,

digestion of whole cell lysate from Ad178-HA transduced cells

with peptide:N-Glycosidase F (PNGase) failed to cause a shift in

rh178 migration, while a shift was seen with MHC-I HC (Fig. 5C).

Thus, rh178 does not appear to be glcosylated and this is a further

indication that the C-terminus of rh178 is located in the cytosol.

To determine if rh178 by itself was capable of VIHCE, we

transduced TRFs and performed pulse-chase analysis. Cells

transduced with Ad178 exhibited reduced expression of HCs

while b2-m was unaffected (Fig. 5D), similar to the HC inhibition

observed in RhCMV-infected cells (Fig. 1). MHC-I HC in cells

transduced with a control adenovirus vector, AdTrans, was not

affected. Thus, rh178 is both necessary and sufficient for VIHCE.

RhCMV does not inhibit transcription or ribosome
association with HC mRNA

Our data suggest that VIHCE prevents expression of the

majority of HCs prior to completion of protein synthesis. Residual,

VIHCE-resistant HCs are eliminated by RhUS2-11. The

Figure 4. A frameshift mutation of rh178 restores HC expression. A) Sequence of the rh178 frameshift control and frameshift recombinants.
Shown is complementary genomic sequence, with transcripts running from right to left. In each recombinant a 20bp sequence in the 59 UTR of rh178
(gray boxes) was replaced with 93bp from the recombination vector including the FRT recombination site. (*) indicates the single base insertion
causing a frameshift. B) and C) HC expression in TRFs infected with control or frameshift viruses. Pulse-chase and IP was performed as in Fig. 1C.
doi:10.1371/journal.ppat.1000150.g004
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dramatic reduction of newly synthesized HC observed even in the

presence of proteasome inhibitors further suggests that VIHCE

either blocks transcription of HC mRNA, completion of HC

protein synthesis, or causes HC degradation in a proteasome-

independent manner. However, the levels of HC mRNA did not

change upon RhCMV-infection as shown by Northern blot

(Fig. 6A) and by quantitative RT-PCR (data not shown).

Additionally, the size of the HC mRNA was unaltered in

RhCMV-infected cells suggesting that mRNA is not cleaved,

alternative spliced or degraded by RhCMV. We further

determined whether HC mRNA is polyadenylated and exported

into the cytoplasm by isolating nuclear, cytoplasmic, and

polyadenylated RNA fractions from infected cells. We did not

observe a significant difference in any of these fractions compared

to Mock-infected cells (data not shown). These data indicate that

HC mRNA transcription, poly-adenylation, splicing and export to

the cytosol is not affected by RhCMV.

To determine whether the association of HC mRNA with

ribosomes is inhibited we analyzed the polyribosome distribution

of HC mRNA [29]. When sucrose-gradient fractions from lysates

of Mock-infected or RhCMV-infected TRFs were analyzed by

Northen blots, HC mRNA sedimented to the polyribosome

fractions 12 and 13 in both Mock- and RhCMV-infected cells

(Fig. 6B). Small shifts in polyribosome density were observed in

RhCMV infection for both HC and GAPDH mRNA, suggesting

virus infection causes a slight reduction of ribosomal occupancy on

cellular transcripts. Therefore, it seems that VIHCE does not

inhibit the association of polyribosomes with HC mRNA.

While sedimentation to the polyribosome fraction indicates the

association of HC mRNA with ribosomes, it was possible that the

ribosomes were not active. In order to determine if the ribosomes

associated with the HC mRNA are actively translating we

incubated cells with puromycin. Puromycin is a polypeptide chain

terminator that requires an active peptidyl transferase to cause

ribosome dissociation from transcripts. A short (4 min) incubation

with puromycin caused a shift in the polyribosome profile of HC

mRNA in both RhCMV and Mock-infected cells, indicating

ribosome dissociation (Fig. 6C). This result indicates that the

Figure 5. rh178 is a 212aa non-glycosylated ER localized protein that is sufficient to block HC synthesis. A) Complete polypeptide
sequence of rh178. Shaded in gray is the predicted signal anchor sequence. B) Hydrophobicity graph of rh178 (TopPred, http://bioweb2.pasteur.fr/).
TM refers to a predicted transmembrane domain cutoff value. C) Western blot of lysate from TRFs transduced with replication deficient adenovirus
vectors AdTrans (expressing a tetracycline responsive transactivator) or AdTrans together with Ad178-HA (expressing HA-tagged rh178) for 48 hours.
Lysate was treated without or with PNGase to remove N-linked sugars and blotted for MHC-I HC using the HC-10 antibody or for rh178-HA with an
anti-HA antibody. D) HC expression in TRFs transduced with AdTrans or AdTrans with Ad178 (expressing wild type rh178) for 24 hours, followed by a
10-min pulse label and 30-min chase. HCs were recovered with K455 from NP40 lysates. E) Immunofluorescence analysis of TRFs 24 hours after
transfection with HA-tagged rh178 together with FLAG-tagged K5 from KSHV. Primary antibodies were mouse anti-FLAG and rabbit anti-HA.
Secondary antibodies were 594 Alexa Fluor conjugated goat anti-rabbit and 488 Alexa Fluor conjugated goat anti-mouse.
doi:10.1371/journal.ppat.1000150.g005

MHC-I Translation Inhibition by CMV
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ribosomes bound to the HC mRNA are actively translating and

not simply stalled on the transcript. Taken together these data

suggested that HC mRNA is transcribed normally in RhCMV-

infected cells and that protein translation is not inhibited at the

level of initiation or elongation. However, since full-length HC

protein cannot be recovered it seems most likely that HC

translation is not completed.

VIHCE is dependent upon the MHC-I signal peptide
Observations similar to VIHCE were reported for translation

inhibition by microRNAs that bind to the 39-UTR of target

transcripts. Similar to VIHCE, mRNAs that are targeted by a

given microRNA are found in an active polyribosomal complex

but a translated polypeptide intermediate can not be recovered

even in the presence of proteasome inhibitors [30]. To examine

the possibility that VIHCE targets the 39-UTR of HCs we tested

the ability of VIHCE to block synthesis of HC with or without its

native 39-UTR. Since antibodies to rhesus HCs are not available,

and VIHCE is able to block expression of human HCs (Fig. 7A),

we chose to examine VIHCE function on HLA-A3. To determine

whether the 39-UTR was required for this inhibition we transiently

expressed HLA-A3 with or without its native 39-UTR in TRFs.

Following transfection we infected cells with either RhCMV

containing VIHCE (DRhUS2-11) or RhCMV lacking VIHCE

(Drh178,DRhUS2-11). Expression of both HLA-A3 carrying the

native 39-UTR and a heterologous vector-derived 39-UTR

sequence was reduced by VIHCE (Fig. 7B). The 59-UTR was

vector-derived in both constructs. Therefore, we conclude that

VIHCE does not target the UTRs of HC mRNA.

Translation of type I transmembrane proteins such as HC is

dependent upon an N-terminal signal peptide (SP) that mediates

translocation across the ER membrane. Upon translation initiation,

the SP is recognized by the signal-recognition particle (SRP) which

binds to the SP and arrests translation. This is followed by docking

Figure 6. HC mRNA is present, intact, and associates with actively translating ribosomes during RhCMV infection. A) Northern blot
analysis of HC- or GAPDH-specific mRNA from total RNA isolated at 24 hours after Mock- or RhCMV-infection. The 32P-dCTP labeled probes were
generated using rhesus-derived cDNAs for HC or GAPDH as templates. B) Polyribosome fractionation and northern blot analysis. TRFs were either
mock infected or infected with wild-type (WT) RhCMV at MOI = 3 for 24 hours followed by isolation and fractionation of polysomes. Ethidium Bromide
(EtBr) staining of a denaturing agarose gel shows the amount and ratio of 18S and 28S rRNA present in each fraction, indicating the presence of
ribosomal subunits. Polysomes sediment to higher, denser fractions. Lower panels show northern blots of the gel using the HC and GAPDH-specific
probes. C) Cells were infected as in B. However, after 24 hours, cells were incubated for 4 min with either DMSO or 100 mg/ml puromycin prior to
polysome harvesting.
doi:10.1371/journal.ppat.1000150.g006
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of the translation complex to the SRP-receptor which aids the

transfer of the ribosomal/mRNA/nascent polypeptide complex to

the SEC61 translocon [31]. Translation then resumes and the

nascent polypeptide chain is imported into the lumen of the ER.

The fact that VIHCE requires the HC coding sequence suggested

that the HC protein might be at least partially translated and that

VIHCE acts on the nascent polypeptide. Compared to human HC,

we observed that the murine MHC-I molecule H2-Kb was more

resistant to VIHCE (data not shown). We hypothesized that this

resistance was encoded in the amino-terminus of H2-Kb,

specifically the SP. To test this hypothesis we replaced the SP of

HLA-A3 with that of H2-Kb. As a further control, we also

introduced the SP of CD4 which is more divergent from the HLA-

A3 SP (Fig. 7C). In both instances we observed that expression of

the chimeric protein was much less reduced by virus expressing

VIHCE compared to native HLA-A3. Remarkably, the SP of Kb is

quite similar to that of HLA-A3 (Fig. 7C) yet HLA-A3 expression

was restored to almost the same levels as observed for the CD4 SP

(Fig. 7D). Therefore, we conclude that the SP of primate MHC-I is

required for VIHCE to inhibit HC translation. The fact that

VIHCE requires the MHC-I SP further suggests that VIHCE

interferes with SP-dependent translocation which would lead to

translation arrest and rapid, co-translational destruction of the

resulting protein fragments.

We next examined if the MHC-I SP is sufficient for VIHCE

recognition. To test this we created a chimeric CD4 molecule with

the HLA-A3 signal peptide in place of the native CD4 signal

peptide (A3/CD4). When either wild type CD4 or A3/CD4 was

expressed in TRFs, neither molecule was significantly affected by

the presence of VIHCE, whereas the endogenous MHC-I HC was

decreased (Fig. 7E, 7D). This indicates that while the MHC-I SP is

necessary for recognition by VIHCE, it is not entirely sufficient.

Figure 7. Efficient HC targeting by rh178 is signal-peptide dependent. A) Rh178 inhibits expression of human HC. THFs were infected with
the indicated virus at MOI = 3 for 24 hours, followed by a 10-min pulse-label, a chase of 30-min and IP with K455. B) UTR-independent inhibition of
HLA-A3 expression by rh178. TRFs were electroporated with pEF1a containg the indicated HLA-A3 construct. After 24 hours, cells were either mock
infected or infected with recombinant RhCMV (MOI = 3) containing VIHCE (+; DRhUS2-11) or lacking VIHCE (2; D178, DRhUS2-11). After an additional
24 hours, cells were labeled for 30-min, lysed in NP-40, and HLA-A3 was immunoprecipitated. C) Upper panel: Amino acid sequence of the signal
peptides used in chimeric HLA-A3 HCs. Gray shading indicates identity with the HLA-A3 signal peptide. Lower panel: TRFs were electroporated with
native HLA-A3 (A3) or the indicated SP-chimera (the HLA-A3 signal peptide was replaced with the H2-Kb or the CD4 signal peptide in Kb/A3 or CD4/
A3, respectively) prior to infection with RhCMV, metabolic labeling and IP as in 7B. (*) indicates an uncharacterized HC-band that appears prominently
in IPs from CD4/A3 transfectants and that could represent a deglycosylated or truncated HC. D) Quantitation of HLA-A3, total HC, or CD4 expression
from 7C and 7E shown as a percent relative to HC or CD4 levels in the absence of VIHCE. Bands were quantitated using ImageQuant 5.1 software
(Molecular Dynamics). E) TRFs were electroporated with native CD4 or CD4 containing the HLA-A3 SP (A3/CD4) and treated as in 7C. All experiments
are representative of several replicates.
doi:10.1371/journal.ppat.1000150.g007
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Discussion

We report here that the ORF rh178 of RhCMV encodes a novel

immune modulatory function, viral inhibitor of heavy chain

expression (VIHCE), which prevents the translation of HC in a

signal-peptide dependent, but not sufficient, manner. This finding

is surprising because RhCMV additionally expresses the HCMV

US2-US11 homologs that also interfere with MHC-I stability and

assembly. The VIHCE-encoding rh178 is so far unique to

RhCMV suggesting that rh178 represents an adaptation to the

evolutionary pressure of the non-human primate MHC system.

Our previous observations [21] suggested that the immune evasion

mechanisms encoded by the US2-US11 region predate the

separation of human and old-world non-human primates which

is assumed to have taken place about 25 million years ago [32].

Recent sequence analysis of the MHC-I locus in RM revealed that

the MHC-I has undergone a tremendous change since then.

Whereas a typical human or ape haplotype contains ‘‘only’’ six

active MHC-I genes, as many as 22 different MHC-I genes are

expressed in rhesus. Moreover, the sequence divergence was

estimated to be 10-fold higher and genes have been duplicated at

an approximately three times greater rate than in humans [33,34].

Thus, it is conceivable that the additional MHC-I genes forced

RhCMV to evolve additional countermeasures. It is known that

polymorphic MHC-I proteins are differentially affected by US2

and US11 of HCMV [35,36], although the exact rules of this

discrimination still need to be determined. Moreover, each of the

US6-family viral immune modulators interferes at a distinct step

during the assembly cascade [37]. Allele-specificity has also been

reported for MCMV which contains three genes [38], unrelated to

either the US6-family or VIHCE, and each of three MCMV-gene

products interferes with a different step of MHC-I assembly [39].

Thus, it seems that CMVs optimize their interference mecha-

nisms, both within a given organism by sequentially attacking

MHC molecules during assembly and within a given population

by broadening the allele-specificities of these attacks. This

conclusion is also supported by our finding that RhCMV lacking

either rh178 or RhUS2-11 only partially suppressed MHC-I

assembly and transport compared to WT RhCMV. This is either

due to differences in allele-specificity within a given animal or an

incomplete elimination of all alleles. The finding that RhCMV has

a larger number of gene products interfering with MHC-I

assembly than either HCMV or MCMV thus correlates with the

observation that RM have a larger number of active MHC-I

alleles than either human or mouse.

The extracellular domains of MHC-I, particularly the peptide-

binding regions, are highly polymorphic and evolve rapidly. In

contrast, the cleaved signal peptide is highly conserved among

different MHC-I alleles including the RM MaMu and the human

HLA genes [33]. Many signal peptides for MaMu-I, MaMu-3 and

MaMu-A show less than 3 amino-acids difference to either HLA-A,

B or C alleles and some MaMu-SPs are identical to HLA-SPs [40].

A possible reason for the high conservation of HLA signal peptide

sequences is the fact that a conserved nona-peptide (VMAPRTLLL

in the HLA-A3 sequence) is presented by the non-polymorphic

HLA-E molecule to the negative signaling receptor CD94/NKG2A

or C of NK cells [41]. This system seems to be conserved in RM,

although some alleles start at the methionine within the peptide

[33]. Interestingly, the SP of the HCMV UL40 glycoprotein

contains this nona-peptide which is presented by HLA-E in

HCMV-infected cells in a TAP-independent fashion [42,43]. By

loading the decoy peptide onto HLA-E, HCMV is thought to

prevent the ‘‘missing self’’ stimulation of NK cells by MHC-I

downregulation. Importantly, this nona-peptide is also encoded

within the SP of Rh67 of RhCMV which otherwise shares only 19%

identity with UL40 [12]. Since VIHCE requires polypeptide

sequence beyond the SP in MHC-I HCs, the Rh67 protein is likely

resistant to VIHCE despite containing a similar SP sequence.

The MHC-I SP mimic contained in UL40 sets precedence for

CMV taking advantage of the highly conserved SP to escape the

cellular immune response. Different from UL40 however, rh178

does not mimic the SP, but seems to rely at least in part on this

conserved sequence to broadly eliminate HCs. VIHCE is clearly

different from any other previously described immune modulatory

mechanism since the ER-localized protein rh178 interferes with

HC expression after the onset but prior to the completion of

translation. One possible mechanism is that rh178 inhibits

translation at a step that occurs after the SRP targets the nascent

polypeptide/ribosomal complex to the ER membrane-localized

SRP receptor. During this process, translation is arrested until

SRP is released upon GTP hydrolysis and SEC61 binding [31,44].

A possible scenario is that rh178 interacts with the SRP/nascent

polypeptide/ribosome complex at the ER-membrane thus pro-

longing translational arrest. Alternatively, rh178 could prevent this

complex interaction with the SEC61 translocon in ER-membrane.

Conceivably, rh178 could also interfere with the translocation of

HC in a manner similar to cotransin, a small molecule

translocation inhibitor, which specifically interferes with binding

of certain SPs to a SEC61 subunit [45]. The ensuing transloca-

tional stalling results in co-translational degradation by the

proteasome, a process that involves cytosolic chaperones [46].

For non-stop RNA it was recently also shown that translational

arrest results in protein fragments that are rapidly degraded by the

proteasome [47]. Therefore, it seems likely that HC translation

intermediates are degraded by the proteasome despite the fact that

we were unable to detect a degradation intermediate in the

presence of proteasome inhibitors. Possible reasons why such

breakdown products were not identified are their potentially small

and heterogenous size and their extremely rapid degradation. HC-

derived intermediates might also lack the epitopes recognized by

the HC-specific antibodies used in this study.

Targeted disruption of protein translation by a viral protein has

so far not been described as an immune evasion strategy.

However, it was recently shown that the microRNA miR-

UL112 of HCMV inhibits the translation of MHC-I-related chain

B (MICB), a ligand for the activating NK cell receptor NKG2D

[48]. Thus, CMVs seem to interfere at multiple levels and by

multiple strategies with translation of immune stimulatory genes.

The virus might thereby employ or mimic cellular pathways of

translational or translocational regulation. Further elucidation of

the molecular events of VIHCE might thus reveal previously

unrecognized host cell mechanisms of translational and transloca-

tional control.

Materials and Methods

Cells and viruses
Telomerized rhesus fibroblasts (TRFs) [49] and telomerized

human fibroblasts (THFs) were obtained from Jay Nelson and

maintained in Dulbecco’s modified eagle’s medium (DMEM) with

10% fetal bovine serum, 100U/mL penicillin and 100ug/mL

streptomycin. RhCMV strain 68.1 was obtained from Scott Wong

[12] and propagated in TRFs. Recombinant RhCMVs were

created as described in the supplemental methods using the

RhCMV BAC obtained from Peter Barry [23]. Recombinant

rh178 adenoviruses were created using the AdEasy vector system

according to the manufacturers protocol (Stratagene). Adenovi-

ruses AdTrans and AdUS11 were obtained from David Johnson.

MHC-I Translation Inhibition by CMV
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Plasmids and Nucleofection
HLA-A3 and CD4 constructs were expressed from a modified

version of pCDNA3.1(-) (Invitrogen, Carlsbad, CA) in which the

CMV promoter was replaced with the EF1a promoter (obtained

from Jay Nelson) to create pEF1a. HLA-A3 was obtained by PCR

from Jurkat T-cell cDNA using the forward primer 59ctggaatt-

catggccgtcatggcgccccgaac and the reverse primer 59gtcggatcctca-

cactttacaagctgtgag to amplify the coding region only or the reverse

primer 59gtcggatccttaggaatcttctcc to include the 39UTR. pEF1a
expression plasmids were electroporated into TRFs using the

AMAXA Nucleofector II (AMAXA Biosystems, Gaithersburg,

MD) using cell line solution L and the T-030 program. 1e6-2e6

TRFs were resuspended in 100 ml AMAXA solution and 2 mg

expression plasmid. After electroporation cells were recovered in

500 ml RPMI for 45min at 37uC, and then plated in prewarmed

complete DMEM. Transfection efficiency was monitored with a

GFP reporter and was consistently .90%. Infections with

RhCMV were performed 24 hours after electroporation.

Metabolic labeling and immunoprecipitation
Cells were starved for 30-min, except where noted, using

DMEM without serum, methionine (Met) or cysteine (Cys).

Labeling was performed for indicated times using Pro-mix 35S-

Met/Cys (GE Healthcare) at 400 mCi/mL. To chase the label,

cells were washed 36 in phosphate buffered saline (PBS) followed

by incubation at 37uC in DMEM with 10% FBS containing

90 mg/mL Met and 188 mg/mL Cys. For NP-40 lysis, cells were

lysed for 30 minutes at 4uC in 1% NP-40 in PBS with complete

protease-inhibitor cocktail (Roche). For SDS lysis, cells were lysed

for 10 minutes at 25uC in 0.6% SDS in PBS with complete

protease-inhibitor cocktail, then diluted in 36 volume of 1.2%

triton X-100 in PBS prior to immunoprecipitation. For glycosidase

treatment, PNGase was obtained from NEB and used according to

the manufacturers protocol after NP-40 lysis.

Antibodies
Polyclonal sera K455 recognizes both chains of the MHC-I

heterodimer, assembled and unassembled (obtained from Per

Peterson) [24]. HC-10 only recognizes free MHC-I heavy chains

[25]. HLA-A3 antibody was purified from the GAP A3

hybridoma, obtained from ATCC (HB-122). Antibodies to

Calreticulin, Transferrin, Vimentin, HA and FLAG were

obtained, respectively, from Stressgen (Victoria, BC), Zymed (S.

San Francisco, CA), Biomeda (Burlingame, CA), Santa Cruz, and

Sigma. Human CD4 antibody (AHS0412) was obtained from

Invitrogen. Secondary Alexa Fluor-conjugated antibodies 594 goat

anti-rabbit and 488 goat anti-mouse were obtained from

Invitrogen.

Polyribosome fractionation and northern blots
Approximately 56106 TRFs were either Mock-infected or

RhCMV-infected for 24 hours. Fresh media was placed on the

cells for 45-minutes, and cells were placed on ice and washed 26
with cold PBS containing 0.1 mg/ml cycloheximide (Sigma). All

subsequent steps were performed at 4uC. Cells were lysed for

10 min using 600 ml of polysome lysis buffer (15mM Tris, pH 7.4,

15mM MgCl2, 0.3M NaCl, 1% Triton x-100, 0.1 mg/mL

cycloheximide, 1 mg/mL heparin). Lysates were cleared at

12,0006 g for 10 min. The supernatant was layered onto the

top of a 10–50% sucrose gradient composed of sucrose in

polysome lysis buffer excluding Triton x-100. The gradients were

centrifuged at 35,000 rpm in a Sorvall SW-41 rotor for 3 hours.

750 ml fractions were collected from the top of the gradient. After

adding 4.25ml of 5.65M guanidine HCl, each fraction was ethanol

precipitated (220uC overnight). RNA was pelleted at 15,0006 g

for 30 min, washed with 70% ethanol, dried at 25uC, and

resuspended in 400 ml RNAse-free water. RNA was then re-

precipitated by adding 40 ml 0.3M sodium acetate and 900 ml

100% ethanol, washed with 70% ethanol and resuspended in

50 ml RNAse-free water.

For Northern blotting, 10 ml of each fraction was separated on a

denaturing 1% agarose gel containing 16 MESA (Boston

BioProducts, Worcester, MA) and 3.7% formaldehyde and

transferred to Immobilon-Ny+ nylon membrane (Millipore) by

capillary blotting in 206SSC. RNA was fixed by air drying at

25uC for 30 min and baking at 80uC for 2 hours. Radiolabeled

probes were generated by random priming. After denaturing at

100uC for 10 min, the probe was chilled on ice and added to 5mL

ExpressHyb hybridization solution (Clontech) for hybridization.

Membranes were pre-hybridized for 30 min at 68uC followed by

probe hybridization for 2 hours, rinsed and washed twice with 26
SSC, 0.05%SDS followed by two washes in 0.16SSC, 0.1% SDS.

Immunofluorescence
Transfected cells were fixed with 3.7% formaldehyde for

40 minutes, washed twice with PBS, quenched with 50mM

NH4Cl for 10 min, washed twice with PBS, and permeabilized

with 0.1% Triton X-100 in PBS for 7 min prior to staining.

RACE
Total RNA from TRFs infected with WT RhCMV (or RhCMV

lacking rh175–178 as a negative control) for 24 hours was used.

For 39 RACE, cDNA was synthesized using an oligo-dT anchor

(59gaccggatccgaattcgtcgacttttttttttttttttv). PCR was performed from

cDNA using a PCR anchor primer (59-gaccggatccgaattcgtcgac)

and a gene specific primer. For 59 RACE, cDNA was synthesized

with a gene specific primer (rh178 59-catttgcatgcagctgtgcg). 10 mg

cDNA was then treated with terminal deoxynucleotidyl transferase

and 0.5mM dATP at 37uC for 30 min, followed by purification

and PCR using a nested gene specific primer (rh178 59-

gcgcgaaacacgcgtttgc) and the oligo-dT anchor.

Supporting Information

Figure S1 HC synthesis is not delayed nor rapidly degraded

upon synthesis during RhCMV infection. A) HC synthesis is not

delayed. Cells were radiolabeled for 10 min followed by chase of

indicated times. After SDS lysis, IP was performed using HC-10

antibody, which recognizes free MHC-I HC. (*) A non-MHC-I-

specific band indicating protein loading. B) HC is not rapidly

degraded upon synthesis. TRFs were infected with the indicated

virus, radiolabeled for 1 min, chased for 30 min, lysed with NP-40

lysis buffer and IP performed with K455.

Found at: doi:10.1371/journal.ppat.1000150.s001 (1.59 MB TIF)

Figure S2 RhCMV contains viral antibody binding proteins

that are not specific to the immunoprecipitated antigen. Complete

autoradiograph from Fig 2B showing pulse-chase and IP during

infection with RhCMV D158–180 and D158–180, DRhUS2-11.

Indicated on the left side are molecular weight estimates. This

indicates the viral antibody binding proteins that are not shown in

IPs from other figures since they are non-specific to the

immunoprecipitated antigen.

Found at: doi:10.1371/journal.ppat.1000150.s002 (1.97 MB TIF)

Figure S3 rh178 is expressed as an early gene transcript.

Northern blot analysis of rh178 and Rh156 (IE1) at 4 and

24 hours post infection. Cyclohexamide (CHX) and phosphonoa-
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cetic acid (PAA) were included where indicated. Note that PAA

did not inhibit VIHCE expression indicating that VIHCE is not a

late gene. In contrast, CHX inhibited VIHCE expression

indicating that VIHCE is not an immediate early gene.

Found at: doi:10.1371/journal.ppat.1000150.s003 (0.96 MB TIF)

Protocol S1 Supplemental materials and methods and figure

legends.

Found at: doi:10.1371/journal.ppat.1000150.s004 (0.04 MB

DOC)

Table S1 Sequences of the recombination portion of the BAC

mutagenesis primers.

Found at: doi:10.1371/journal.ppat.1000150.s005 (0.03 MB

DOC)
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