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Introduction

Radiation therapy plays an important role in 
both curative and palliative treatment of patients 
with non-small-cell lung cancer (NSCLC) [1]. Ra-
diation therapy benefits more than 75% of patients 
with NSCLC [2]. Technological developments have 
greatly reduced the side effects of radiation therapy, 

especially when performing intensity-modulated 
radiotherapy (IMRT) or volumetric modulated arc 
therapy (VMAT) techniques. However, controlling 
patient’s breathing movement remains challenging 
[3, 4]. To ensure sufficient coverage of the tumor, 
the internal margin and the setup margin must be 
added from the clinical target volume (CTV) to 
delineate the planning target volume (PTV) [5]. 

ABSTRACT

Background: The study was to evaluate the effectiveness of dose distribution of four-dimensional computed tomography 
(4DCT) simulation. 

Materials and methods: The gross tumor volume (GTV) and clinical target volume (CTV) were contoured in all 10 respiratory 
phases of 4DCT in 30 patients with non-small cell lung cancer (NSCLC). Both 3D and 4D treatment plans were made individu-
ally for each patient using the planning volume (PTV). The PTV3D was taken from a single CTV plus the recommended margin, 
and the PTV4D was taken from the 4D internal target volume, including all 10 CTVs plus the setup margins. 

Results: The mean PTV was 460 ± 179 (69–820) cm3 for 3DCT and 401 ± 167 (127–854) cm3 for 4DCT (p = 0.0018). The dose 
distribution (DD) of organs at risk, especially the lungs, was lower for the 4DCT simulation. The V5%, V10%, and V20% of 
the total lung dose for 4DCT were significantly lower for the 3DCT. However, lung V30% the heart, esophagus, and spinal 
cord were not significantly different. In addition, the conformity index and the dose heterogeneity index of the PTV were not 
significantly different. The normal tissue complication probability (NTCP) of the lung and heart was significantly lower for 
4DCT than for 3DCT. 

Conclusions: The 4DCT simulation gives better results on the NTCP. The organs at risk, especially the lungs, receive a signifi-
cantly lower DD compared with the 3DCT. The conformity index (CI), heterogeneity index (HI) and the DD to the heart, spinal 
cord, and esophagus were not significantly different between the two techniques.
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The geometric margin of respiratory motion is often 
based on medical imaging such as X-ray, comput-
ed tomography (CT), magnetic resonance imaging 
(MRI), positron emission tomography (PET)/CT, 
clinical experience, and recommended values [6]. 
Geometric margins are not accurate or depend on 
the characteristics of each patient, so the PTV may 
be less or more than the volume required for radio-
therapy [7]. Four-dimensional computed tomog-
raphy (4DCT) simulation shows obvious changes 
in time, anatomical images during simulation, 
planning, and dose distribution [8]. Theoretical-
ly, 4DCT can reconstruct tumor cell mobility in 
each phase for radiotherapy planning and accurate 
internal target volume (ITV) generation, which 
covers the movement range of the CTV. Research-
ers have recently reported that using 4DCT to de-
termine the ITV for lung cancer could substantially 
reduce the PTV while safely covering the target [9, 
10]. However, this new method has not been widely 
used to identify the ITV with 10 respiratory stages 
to evaluate quantitatively the benefit of minimizing 
dose delivery to organs at risk (OAR) in patients 
with NSCLC in Vietnam. This study was designed 
to evaluate the usefulness of 4DCT in reducing 
the dose distribution and the probability of major 
organ complications in radiotherapy.

Materials and methods

Criteria for patient selection
The study included 30 patients with histological-

ly confirmed inoperable stage 3 NSCLC, staged ac-

cording to the TNM system according to the AJCC 
Cancer Staging Manual (8th edition). Each patient 
underwent 4DCT simulation with the free breath-
ing technique as shown in Figure 1. The indicated 
dose was 60 Gy with 30 fractions. The radiotherapy 
plan was performed with the 3D conformal radi-
ation therapy (3D-CRT) technique (17 patients) 
and IMRT (13 patients) from December 2020 to 
July 2022 at the Department of Radiation Thera-
py, Institute of Oncology and Nuclear Medicine, 
Military Hospital 175. The data were retrospective-
ly analyzed. Each patient agreed to participate in 
the study before it began.

4DCT simulation
The Prostep and Wingstep immobilizers were 

used to improve the imaging-stable reconstruc-
tion of patients during daily radiotherapy. Patient 
data were obtained with a 3 mm slice thickness 
from the lower end of the cricoid cartilage to 
the lower edge of the liver. 4DCT simulations 
were performed using the Philips Brilliance Big 
Bore CT system (Philips Medical Systems, High-
land Heights, OH, United States) while the pa-
tient breathed freely. The patient was trained to 
breathe freely and tracked on the screen to ana-
lyze the breathing rate, frequency, and variables 
before simulation. The Phillip’s Air Bellow mo-
tion measurement system was placed on the pa-
tient during the scan.

Data collection was repeated at each position 
until the entire longitudinal anatomical image of 
the region of interest was obtained. The 4DCT 

Figure 1. The belt system records the patient’s breathing and simulated posture. The breathing pattern appears 
on the screen of the simulated computed tomography system
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images are arranged into 10 stages according 
to the respiratory cycle, labeled from CT00 to 
CT90 (CT00 for the inhalation phase, CT20 for 
the respiratory-intermediate state, and CT50 
for the exhalation phase). Transform anatomy 
to other AVG10 image set using deformable, 
projection images of the AVG10 mean phase of 
4DCT were reconstructed to delineate the PTV 
with the 3mm for each slide. The imaging data 
were then sent to the Elekta Monaco Version 2.4 
planning system.

Determination of the planning target 
volume (PTV)

For PTV4D, the GTV and the CTV were ob-
tained directly from the AVG10 dataset. In this 
study, the GTV is an image that includes the pri-
mary lesion observed on CT and is based on refer-
ence some other diagnostic images such as CT scan 
with contrast injection and/or PET/CT. The GTV 
was determined based on the mediastinal window 
image, then re-added and re-edited on the lung pa-
renchyma window. Lymph nodes were considered 
involved if they were larger than 10 mm, and these 
regional lymph nodes were identified based on me-
diastinal window imaging. The ITV in the study 
of macroscopic and lymph node tumors was de-
termined for each phase of the respiratory process 
and then aggregated on the average CT image to 
form the ITV. The CTV includes the volume of 
the macroscopic tumor and the surrounding mi-
croscopic metastases. The CTV was determined by 
adding the surrounding 5 mm for both the tumor 
and lymph node according to the European Soci-
ety for Radiotherapy and Oncology (ESTRO) 2017 
criteria. The PTV includes the CTV considering 
tumor mobility and deviation when placing the pa-
tient during radiation therapy. The deviation in pa-
tient placement during radiotherapy was averaged 
at 5 mm. PTV4D was calculated as CTV4D + 5 mm 
in all directions. 

For PTV3D, the conventional CT scan phase was 
the set of routine CT image CT1 which is acquired 
before the processing of 4DCT simulation. It was 
calculated with the formula CTV3D + 10 mm (front, 
back, and sides sides) + 15 mm (upper-lower di-
rection). 

After delineating the entire radiotherapy Plan-
ning Target Volume (PTV) of the two datasets 
4DCT and 3DCT, including the organs at risk in-
cluding the lungs, heart, esophagus, and spinal 
cord were plotted on two sets of recording data, 
AVG10 and CT1, for planning.

Planning and evaluation
The 3DCT and 4DCT treatment plans were made 

in the MONACO system software which use Mon-
te-Carlo algorithm to calculate dose for each pa-
tient by using two different PTVs in the (Diagram 
1) PTV3D and PTV4D. 3D-CRT and IMRT radio-
therapy techniques were performed using the Elek-
ta Precise linear accelerator with a 6 MV or 15 MV 
photon beam. The indicated dose and field design 
were identical between the two plans with 7–9 co-
planar fields; the indicated dose was 2.0 Gy/frac-
tion. The target dose was at least 95% of the dose 
that covers the entire PTV3D and PTV4D.

The following information was also record-
ed: a dose–volume histogram (DVH) of OAR 
for the 3DCT and 4DCT plans in each patient; 
the mean lung dose (MLD) values; V5%, V10%, 
V20%, and V30% of the whole lung; the mean heart 
dose; the maximum spinal cord dose; and the mean 
esophageal dose. The normal tissue complication 
probability (NTCP) was calculated for the lung, 
heart, and esophagus based on a previous study11, 
with the alpha/beta values, the coefficient a, the tol-
erance dose (TD50), the 50% gamma coefficient, 
the radiation dose per fraction (Gy), and the total 
dose fractions presented in Table 1.

Gay et al. [11] proposed a two-step process to 
calculate the NCTP. First, equivalent uniform dose 

Table 1. Results from Emami et al. [19] when healthy tissue tolerates a dose of 1.8–2 Gy/fraction

Organs TD50 [Gy] a 50% gamma Dose [Gy] 
per fraction

Number 
of fractions Alpha/beta

Lung 24.5 1 2 2 30 4

Heart 50 3 3 2 30 2.5

Esophagus 68 19 4 2 30 10

TD50 — tolerance dose for 50% complication probability
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(EUD) which was derived on the basis of a mech-
anistic formulation using a linear-quadractic cell 
survival model, is calculated as
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Where a is a unitless model parameter that is 
specific to the normal structure of interest, and is 
unitless and represents the i’th partial volume re-
ceiving dose Di in Gy. Since the relative volume of 
the whole structure of interest corresponds to 1, 
the sum of all partial volume   will equal 1.

Then, NTCP is calculated from EUD:
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TD50 is the tolerance dose for a 50% complica-
tion rate at a specific time interval when the whole 
organ of interest is homogeneously irradiated, 
and the  is a unitless model parameter that is spe-
cific to the normal structure or tumor of interest 
and describes the slope of the dose-response curve.

A program to calculate the percentage of 
NCTP and EUD using the open-source Python 
code has been developed and is available from 
the GitHub open source community (Fig. 2), including 
the URL https://github.com/ahmedx10/nctp-proj-
ect.git. The parameters for evaluating the probability 

of benign tissue complications were taken from Gay 
et al. [11].

The DVH and radiotherapy plan evaluation are 
based on consensus between the medical physicist 
and physician until the desired plan is reached. 
Field angles and radiation dose-weighted ratios 
are used to optimize coverage for the planned tar-
get volume and to minimize the radiation dose 
to the heart, esophagus, and especially the lungs. 
The lung tumor location depends on the patient 
and does not always satisfy the requirements for 
the homogeneity of the isodose line. The confor-
mity index (CI) and the dose heterogeneity index 
(DHI) were calculated to evaluate the reasonable-
ness and uniformity in the dose distribution [12]. 
The equations appear below:

CI = VRI/TV     (3)

where VRI is the reference isodose volume 
(cc) which, according to ICRU, is 95% isodose 
and the target and TV is the Target volume desig-
nated as planned target volume (PTV) (cc);

DHI = D ≥ 95%/D ≥ 5%     (4)

where D ≥ 95% is the dose approaching 95% of 
the PTV and D ≥ 5% is the dose approaching 5% 
of the PTV.

Statistics and data analysis
Statistical analysis was performed using Mic-

rosoft Excel software with functions in the Data 
Analysis set. Paired t-tests were used to compare 
and evaluate the results of volume and dose distri-
bution between plans. The difference was consid-
ered significant if p < 0.05.

Results

PTV comparison
The mean PTV4D was 401 ± 167 (69–820) cm3 

and the mean PTV3D was 460 ± 179 (127–854) cm3. 
On the other hand, the average percentage differ-
ence (APD) which is calculated by the absolute 

𝐸𝐸𝐸𝐸𝐷𝐷 � ����� 𝐷𝐷�� 
���

��
���

 

 

�𝑇𝑇�� � 1
1 � 𝑇𝑇𝐷𝐷��𝐸𝐸𝐸𝐸𝐷𝐷

���� 

 

��𝐷𝐷 � �PTV3D � PTV�D
PTV3D � ∗ 100 

is 21,7% between PTV4D and PTV3D (P = 0.00183, 
Table 2). In 25 of 30 patients, the PTV3D was larg-

Figure 2. Program used to calculate the normal tissue 
complication probability (NTCP) in the Python language
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er than the PTV4D (Fig. 3). The conventional mar-
ginal opening added to the CTV for the 3DCT 
simulation exceeded what was needed and result-

ed in unnecessary irradiation of normal tissues, 
especially the lungs and spinal cord. Although 
5 of 30 patients had a smaller PTV3D to PTV4D, 

Table 2. Comparison of three-dimensional (3DCT) and four-dimensional (4DCT) computed tomography simulation results 
of vital organ at risk (OAR) doses

Organs 3DCT 4DCT p

PTV [cm3] 460 ± 179 401±167 0.0018

Mean lung dose [Gy] 18.3 ± 4.00 16.9 ± 3.30 0.020

V5% [Gy] 59.9 ±12.30 44.6 ± 10.20 0.049

V10% [Gy] 55.8 ±11.70 31.2 ± 6.90 0.008

V20% [Gy] 40.5 ±8.60 28.9 ± 6.90 0.027

V30% [Gy] 28.9 ±6.90 25.3 ± 7.20 0.129

Mean heart dose [Gy] 15.8 ± 16.80 13.1 ±12.20 0.473

Maximum spinal cord dose [Gy] 40.0 ± 6.30 37.9 ± 6.10 0.116

Mean esophagus dose [Gy] 19.1 ± 7.50 18.7 ± 8.02 0.680

NTCP to the lungs (%) 31.75 ± 9.15 26.96 ± 7.40 1.54e-05

NTCP of the heart (%) 11.18 ± 10.02 7.78 ± 6.73 0.0018

NTCP of the esophagus 21.17 ± 10.09 19.45 ± 10.91 0.060

CI 0.62 ± 0.122 0.62 ± 0.164 0.827

DHI 1.09 ± 1.11 1.10 ± 0.03 0.579

PTV — planning target volume; NTCP — normal tissue complication probability; CI — conformity index; DHI — dose heterogeneity index

Figure 3. Tumor volume of the three-dimensional (3DCT) and four-dimensional (4DCT) simulations and percent difference (PD)
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the PTV for the 3DCT simulation which may im-
plicate that 3D technique was missing target vol-
ume that can be exceeded by the volume required 
for radiotherapy.

Dose assessment for OAR
Table 2 shows the dosimetric evaluation from 

the 3DCT and 4DCT simulations. The 4DCT sim-
ulation numerically reduced the dose to the lungs, 
heart, esophagus, and spinal cord. While the max-
imum dose to the spinal cord, the mean dose to 
the heart, and the mean dose to the esophagus 
were not significantly different between the 3DCT 
and 4DCT simulations (p > 0.05), the mean dose 
to the lungs was significantly higher for the 3DCT 

simulation than for the 4DCT simulation (p = 0.02). 
V5%, V10%, and V20% of the lung were signifi-
cantly higher for the 3DCT than for the 4DCT sim-
ulation (p < 0.05). There was no significant differ-
ence in lung V30% between the 3DCT and 4DCT 
simulations (p = 0.129). 

Comparison of the DHI, the CI, and NCTP
The DHI and CI were not different between 

the two plans (p = 0.827 and p = 0.0579, respective-
ly (Tab. 2). The NTCP to the lungs was significantly 
smaller for the 4DCT simulation than for the 3DCT 
simulation (p = 1.54e-05). The NCTP to the heart 
was also significantly smaller for the 4DCT simu-
lation than for the 3DCT simulation (p = 0.0018). 

Figure 4. The workfollow of three-dimensional (3DCT) and four-dimensional (4DCT) computed tomography treatment plans 
were made in the monaco system which use Monte-Carlo algorithm.

Determine tranformation matrices
for deformable registration

Acquire 4DCT (T00-T90)

Contour anatomy on each phase
CT image set from CT00 to CT90

Transform anatomy to other AVG10 
image set using deformable registration

Create treatment plan on one
image sets CT1

Create treatment plan on one
image sets AVG10

Caculate dose distributions 
by 3DCRT or IMRT in MONACO Software

Evaluate and approve or modify

Send the plan to record and verify 
system IviewGT for treatment

Calculate dose distributions 
by 3DCRT or IMRT in MONACO Software

Contour anatomy on CT1 image set

Acquire 3DCT (CT1)
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In contrast, there was no significant difference in 
the NTCP to the esophagus (p = 0.060). In addi-
tion, for the group of patients using the IMRT tech-
nique to plan radiotherapy, it was possible to in-
crease the dose of radiation therapy from 4 to 6 Gy 
depending on the plan, while still limiting the dose 
to healthy organs.

Discussion

4DCT is a radiotherapy simulation technique 
that provides more complete information with 
the addition of a “time” element to convention-
al 3DCT images. This technology has served as 
the basis for the development of the 4D radio-
therapy method [13, 14]. A 4DCT simulation is 
useful to track the movement of tumors and nor-
mal tissues during radiation therapy. With 4DCT 
technology, Weiss et al. [15] recorded the change 
in volume and position of a tumor in the thorax 
and normal tissues during normal respiration 
and found that during respiration, marginal vol-
ume magnitude increased to 62.5% for the GTV, 
25.5% for the lung, and 12.6% for the heart. In this 
study, the average percentage difference volume be-
tween PTV3D and PTV4D is about 21.7%. This may 
result in underdosing the tumor and overdosing 
vital organs. However, with the 4DCT technique, 
tumor healthy organ movements can be recorded 
and the AVG images are processed by aggregating 
the average images of the 10 recorded phases. Fur-
thermore, 5 in 30 patients had the PTV3D smaller 
than PTV4D that can explain missing the target 
volume and depends on the location of the tumor 
in the lung. Due to PTV3D being reconstructed 
each slide of 5 mm and 3 mm for the 4DCT sim-
ulation. In lung cancer, there is still much contro-
versy regarding which phase of synthesis is most 
appropriate when using radiotherapy planning 
because of electron density concerns. This may 
cause some errors in the calculated dose results. 
Sun et al. [16] studied the change in lung volume 
and its respiratory movement characteristics based 
on 4DCT and concluded that lung volume on CT 
at 20%, 30%, and 80% of respiration is the closest 
to the mean lung volume during free respiration, 
and the radiation dose distribution values provide 
reasonable estimates when performed over this 
period. Compared with inhalation, during exha-
lation the patient is more comfortable and easier 

to perform; therefore, stage 20% (T20) was chosen 
as the reference image to calculate the dose distri-
bution. However, in this study, we choice AVG10 
dataset in order to calculate the dose and realize 
that there is a difference between them. 

After performing 4DCT imaging, the main 
problem is to identify the target tumor accurate-
ly. Rietzel et al. [6] discussed that, when using 
an open-ended treatment plan for patients with ab-
normal respiratory movements as recommended, 
it is possible to omit the target volume requiring 
radiotherapy or to overdose the volume that does 
not require radiotherapy. Therefore, for special 
cases of respiratory function, it is necessary to have 
an open design target volume for each case. With 
the 4DCT technique, Rietzel et al. [6] found that 
comparing a PTV with a margin of 15 mm on a 4D 
target volume to a PTV with 20 mm on routine 
3DCT data resulted in a mean 23% reduction in 
the target mass size. It is similar to our study where 
we also noted a 21.7% difference in the PTV when 
comparing 3DCT and 4DCT. This result indicates 
that the 3DCT simulation can increase the irradia-
tion area, a finding consistent with the assessment 
of this study, which should be of interest and im-
portance in NSCLC irradiation. Compared with 
the 3DCT plan, the 4DCT plan reduces the dose to 
the lungs, so it is possible to think about increas-
ing the dose for the tumor from 4 to 6Gy while 
ensuring that the healthy organs still receive an ac-
ceptable amount of radiation. Machtay et al. [17] 
concluded that a biologically effective dose of 1Gy 
biologically effective dose (BED) provided an ap-
proximately 3% relative improvement in locore-
gional control.

The results of the present study are differ-
ent than those reported by Tong Bai et al. [18]. 
Those authors found significant differences be-
tween the 3DCT and 4DCT simulations regarding 
the radiation doses delivered to the heart, spinal 
cord, and esophagus. There are two reasons for 
the lack of a significant difference in the present 
study. First, the patients in this study had large 
tumor volumes: in many patients, the volume ac-
counted for 30–40% of the ipsilateral lung volume. 
Second, radiotherapy was performed using two 
techniques: IMRT (n = 13) and 3D-CRT (n = 17) 
techniques. We don’t use IMRT in all cases. How-
ever, the results of pulmonary totals are consistent 
with other studies.
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Based on the NTCP results, the 4DCT plan has 
a lower risk of normal tissue complications than 
the 3DCT plan. However, this result is only for 
theoretical reference; in fact, many factors affect 
the effectiveness of treatment and side effects for 
patients.

Conclusion

Using 4DCT simulation for radiotherapy plan-
ning in patients with NSCLC reduces the radiation 
dose volume compared with 3DCT simulation. 
Additionally, it reduces the dose distribution to 
the vital organs, especially the lungs. It allows for 
an increase in the radiotherapy dose to the tumor 
while limiting radiation delivered to healthy or-
gans. The DHI and CI were not significantly differ-
ent between the simulation techniques. The prob-
ability of pulmonary and cardiac complications 
is significantly lower when performed on 4DCT 
compared to 3DCT. However, 4DCT simulations 
often take a long time to delineate organs over 10 
phases including OAR and tumors, take up a lot of 
data memory, and the X-ray tube wears out faster.
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