
Citation: Dhillon, S.K.; Ganggayah,

M.D.; Sinnadurai, S.; Lio, P.; Taib,

N.A. Theory and Practice of

Integrating Machine Learning and

Conventional Statistics in Medical

Data Analysis. Diagnostics 2022, 12,

2526. https://doi.org/10.3390/

diagnostics12102526

Academic Editor: Md

Mohaimenul Islam

Received: 19 August 2022

Accepted: 4 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Theory and Practice of Integrating Machine Learning and
Conventional Statistics in Medical Data Analysis
Sarinder Kaur Dhillon 1,* , Mogana Darshini Ganggayah 2 , Siamala Sinnadurai 3, Pietro Lio 4

and Nur Aishah Taib 5

1 Data Science & Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science,
Universiti Malaya, Kuala Lumpur 50603, Malaysia

2 Department of Econometrics and Business Statistics, School of Business, Monash University Malaysia,
Kuala Lumpur 47500, Malaysia

3 Department of Population Medicine and Lifestyle Disease Prevention, Medical University of Bialystok,
15-269 Bialystok, Poland

4 Department of Computer Science and Technology, University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK

5 Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
* Correspondence: sarinder@um.edu.my

Abstract: The practice of medical decision making is changing rapidly with the development of
innovative computing technologies. The growing interest of data analysis with improvements in big
data computer processing methods raises the question of whether machine learning can be integrated
with conventional statistics in health research. To help address this knowledge gap, this paper
presents a review on the conceptual integration between conventional statistics and machine learning,
focusing on the health research. The similarities and differences between the two are compared using
mathematical concepts and algorithms. The comparison between conventional statistics and machine
learning methods indicates that conventional statistics are the fundamental basis of machine learning,
where the black box algorithms are derived from basic mathematics, but are advanced in terms of
automated analysis, handling big data and providing interactive visualizations. While the nature of
both these methods are different, they are conceptually similar. Based on our review, we conclude
that conventional statistics and machine learning are best to be integrated to develop automated data
analysis tools. We also strongly believe that machine learning could be explored by health researchers
to enhance conventional statistics in decision making for added reliable validation measures.

Keywords: conventional statistics; machine learning; comparison; integration; health research;
data analytics

1. Introduction

Recently, machine learning has been fueling active discussions among clinicians and
health researchers, particularly for decision making in e-diagnosis, disease detection and
medical image analysis [1–5]. A few common questions are “can machine learning replace
conventional statistics?”, “are they the same?” and “how statistics be integrated with
machine learning?”. This review focuses on the concept of conventional statistics and
machine learning in health research and the explanation, comparison and examples may
answer the aforementioned questions.

It is seen from various research that conventional statistics have dominated health
research [6–15]; however, machine learning, since its inception, is widely being used by data
scientists in various fields [16–27]. Examples of common conventional statistical analyses
are hypothesis testing (t-test, ANOVA), probability distributions (regression) and sample
size calculation (hazard ratio), whereas in machine learning, the common concepts are
model evaluation, variable importance, decision tree, classification and prediction analysis.
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While many industries are capturing the vast potential of machine learning, healthcare is
still slow in attaining the optimum level to make sense of newer technologies and computa-
tional methods. This could be due to uncertain reliability and trust in machines to analyze
big data and make timely decisions on patients’ health. The production of large amounts of
healthcare data [28,29], such as administrative data, patients’ medical history, clinical data,
lifestyle data and other personal data, makes their analyses unmanageable using basic
statistical software tools, which subsequently leads to the need of technologically advanced
applications with cost-efficient high-end computational power. More importantly, the
applications must meet the target or be designed with user-friendly interfaces and data
protection utilities to aid the end users, who are the biostatisticians, researchers and clini-
cians. The experts need automated systems to optimize diagnoses and treatments, enhance
prognostications, predict health risks and develop long-term care plans. In line with this,
we need to answer the important question of whether machine learning is completely
different from conventional statistics or they are correlated with each other.

To begin with, conventional statistics have a history of over 50 years, beginning in
the early 17th and 18th centuries, when mathematical theories were introduced by various
scientists. In the 18th century, the importance of advanced statistics in medicine was
a prominent topic, where more theories were integrated to invent inferential statistical
models. Later, the use of computational power in statistical analysis was given priority,
hence advanced software tools were developed. Machine learning was introduced in
1952, and recently it has advanced into deep learning and is used as the basis of artificial
intelligence [30–32]. Figure 1 describes the evolution of conventional statistics and machine
learning in health research.

Diagnostics 2022, 12, x FOR PEER REVIEW 2 of 25 
 

 

are model evaluation, variable importance, decision tree, classification and prediction 
analysis. While many industries are capturing the vast potential of machine learning, 
healthcare is still slow in attaining the optimum level to make sense of newer technologies 
and computational methods. This could be due to uncertain reliability and trust in ma-
chines to analyze big data and make timely decisions on patients’ health. The production 
of large amounts of healthcare data [28,29], such as administrative data, patients’ medical 
history, clinical data, lifestyle data and other personal data, makes their analyses unman-
ageable using basic statistical software tools, which subsequently leads to the need of tech-
nologically advanced applications with cost-efficient high-end computational power. 
More importantly, the applications must meet the target or be designed with user-friendly 
interfaces and data protection utilities to aid the end users, who are the biostatisticians, 
researchers and clinicians. The experts need automated systems to optimize diagnoses 
and treatments, enhance prognostications, predict health risks and develop long-term care 
plans. In line with this, we need to answer the important question of whether machine 
learning is completely different from conventional statistics or they are correlated with 
each other.  

To begin with, conventional statistics have a history of over 50 years, beginning in 
the early 17th and 18th centuries, when mathematical theories were introduced by various 
scientists. In the 18th century, the importance of advanced statistics in medicine was a 
prominent topic, where more theories were integrated to invent inferential statistical 
models. Later, the use of computational power in statistical analysis was given priority, 
hence advanced software tools were developed. Machine learning was introduced in 1952, 
and recently it has advanced into deep learning and is used as the basis of artificial intel-
ligence [30–32]. Figure 1 describes the evolution of conventional statistics and machine 
learning in health research. 

 

Figure 1. The evolution of conventional statistics and machine learning in health research.



Diagnostics 2022, 12, 2526 3 of 25

1.1. Past Reviews, Rationale for the Review and Intended Audience

There are recent reviews on the comparison between conventional statistics and
machine learning [33–37]. These reviews have presented the definitions of the two terms
and the advantages and disadvantages over each other. However, to the best of our
knowledge, the conceptual integration between these two fields using examples in health
research have not been discussed previously. Moreover, the similarities between these two
fields have not been investigated thoroughly. This review may clarify the confusion among
clinicians as to whether machine learning can be integrated with conventional statistics in
health research. Clarifying the integration between conventional statistics and machine
learning may be able to convince health researchers to explore this approach in the future.
The intended audience of this review is not only healthcare researchers, but statisticians
and data scientists as well.

1.2. Review Content

This review contains five sections: (i) concepts in conventional statistics and machine
learning, (ii) advantages and disadvantages of conventional statistics and machine learning,
(iii) a case study of breast cancer survival analysis using a few techniques comparing
conventional statistics and machine learning, (iv) simplified machine learning algorithms
and their relationship with conventional statistics and (v) a discussion explaining the
integration of conventional statistics with machine learning and the significance of machine
learning, derived from fundamental conventional statistics. Section (iii) is explained using
a proven breast cancer prediction model [38], which has attracted a broad range of readers
both from the medical domain and computer science. The terms conventional statistics
(CS) and machine learning (ML) are used throughout the review.

2. Survey Methodology

The review was conducted using published works related to:

i. history of conventional statistics and machine learning in medicine
ii. comparison between conventional statistics and machine learning
iii. use of machine learning in various fields
iv. analysis of medical data using conventional statistics and
v. use of machine learning and artificial intelligence in medical analysis.

The digital libraries and search engines used to extract the literature are Google
Scholar, Web of Science and PubMed. The literature search was followed by selecting
relevant literature using inclusion and exclusion criteria as listed below.

2.1. Inclusion Criteria

(i) all papers with year of publication between 2015 to 2022
(ii) all open access papers that are freely available
(iii) the keywords used for the search are conventional statistics, machine learning, medical

data, comparison and health research. The entries by using these keywords were
from various medical domains, machine learning analyses and statistics in healthcare
research, not focusing only on one type of disease.

2.2. Exclusion Criteria

(i) all papers not relevant to our topic
(ii) all papers that are not freely accessible
(iii) all papers with year of publication before 2015

The initial total number of papers is 511. The selection process is explained in Figure 2.
The final total number of selected literature is 102.
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3. Results
3.1. Concepts in Conventional Statistics
3.1.1. Hypothesis Testing and Statistical Inference for Classification

Hypothesis testing is the interpretation of results by making assumptions (hypotheses)
based on experimental data. The statistical tests (e.g., t-test, ANOVA) are used to interpret
the results based on measures such as p-value (significant difference). Biostatisticians and
medical scientists perform statistical analysis using conventional software tools [39–56]
because healthcare providers’ main objective is to focus on analysis based on hypothesis
testing in the context of patient care to check if treatments or drugs yield positive outcomes
or how to control certain risk factors for a particular disease. Therefore, they barely explore
or pay attention to the use of advanced computer science applications and automated
predictive tools such as Predict, CancerMath and Adjuvant. [57]. The basic concepts of
hypothesis testing are explained in Table 1.
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Table 1. Concepts in hypothesis testing.

Approach Concept Procedure

Hypothesis testing
• Inference

Research question:
• Is the null hypothesis

false?
• E.g., There is no difference
in survival outcome between

patients who underwent
surgical treatment of

mastectomy or
breast-conserving therapy

Answer:
• The null hypothesis is false
• E.g., There is a significant

difference between type of
surgical treatment and

survival outcome
Decision rule:

• A statistical test analyzes
the data, which results in a

p-value, which is then
compared against the
significance level and

probability odds ratio or
hazard ratio with a magnitude

of confidence interval (CI)
• E.g., p < 0.05, Hazard ratio

1.50, CI 1.12–2.30
Decision:

• Reject the null hypothesis

Step 1: Identify predictors
from related literature

Step 2: Design a hypothesis
and compare the similarities
and differences using a new

dataset

In conventional statistics, the approach used is the conclusion or “inference” in the
form of mathematical equations and measures to make predictions. For instance, an
inferential work to assess unknown evidence from observed data could be achieved via a
hypothesis-testing framework. The aim of hypothesis testing is to reject the null hypothesis
if the evidence found is true and clinically significant. For example, in deciding which
surgical treatment, “does breast-conserving therapy or mastectomy promote better survival
among breast cancer patients?” is an inferential question and the answer is unobservable.
In this scenario, patients are considered the observation, whereas the treatment types and
survival data are the independent variables, which decide the inference [34]. The results of
the analysis classify the dependent variable (surgical treatment) based on the patterns of
independent variables.

3.1.2. Regression

Regression analysis is a set of statistical methods to estimate the relationship between
a dependent variable and a set of independent variables. Regression has been widely
used in healthcare research to analyze and make predictions on various diseases. Selection
of a particular type of regression depends on the type of dependent variable, such as
continuous and categorical. Linear regression is used to determine the relationship between
a continuous dependent variable and a set of independent variables. This analysis estimates
the model by minimizing the sum of squared errors (SSE). Moreover, nonlinear regression
also requires a continuous dependent variable, but this is considered advanced as it uses
an iterative algorithm rather than the linear approach of direct matrix equations [58].

A categorical dependent variable is analyzed using logistic regression. This analysis
transforms the dependent variables which have values of distinct groups based on specific
categories and uses Maximum Likelihood Estimation to estimate the parameters. Logistic
regression is further divided into binary, ordinal and nominal categories. A binary variable
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has only two values, such as survival status (alive or dead), an ordinal variable has at least
three values in order, such as cancer stage (stage 1, stage 2, stage 3), whereas a nominal
variable has at least three values which are not categorized in any order, such as treatment
(chemotherapy, radiotherapy, surgery) [38].

3.2. Concepts in Machine Learning (ML)
3.2.1. Predictive Analytics

Prediction works with the concept of modeling using machine learning algorithms.
This prediction model requires a reliable relationship between the observations (patients)
and variables (independent variables). Prediction models generate accuracy measures
to determine the quality of data and predict the final outcome using the observations
(patients), input data (independent variables) and output data (dependent variable). The
basic concepts of predictive analysis are explained in Table 2.

Table 2. Concepts in predictive analysis (classification).

Approach Concept Procedure

Classification

Research question:
Is label 1 considered as the

target outcome?
Answer:

Yes, label 1 is the target
outcome

Decision rule:
• A trained classifier that

analyzes an unlabeled
observations’ variables and
values, which results in a

predicted label (1).

Step 1: Split dataset into
training and testing datasets
Step 2: Train the data using a

specific algorithm
Step 3: Test the remaining
dataset using the trained
algorithms to predict the

results accurately

3.2.2. Representation Learning

Representation learning is the process of training machine learning algorithms to
discover representations which are interpretable. Different representations can entangle
various explanatory factors in a specific dataset. The outcome of representation learning
should ease the subsequent task in the decision-making process. For example, repre-
sentation learning handles and groups very large amounts of unlabeled training data in
unsupervised or semi-supervised learning. The grouping of the unlabeled data is used for
the corresponding task, such as feature selection and decision tree, to predict outcomes.
The challenging factor of representation learning is that it has to preserve as much in-
formation as the input data contains in order to attain accurate predictions. Healthcare
research utilizes representation learning mostly in image recognitions, such as biomedical
imaging-based predictions [59].

3.2.3. Reinforcement Learning

Reinforcement learning (RL) trains machine learning models to make a sequence of
decisions, unlike supervised learning, which relies on a one-shot or single dependent factor.
Its main objective is to endow an individual’s skills to make predictions through experience
with the environment around them and develop evaluative feedback. This unique feature
of reinforcement learning helps in providing prevailing solutions in various healthcare
diagnosis and treatment regimens which are usually characterized by a prolonged and
sequential procedure. Reinforcement learning follows a few techniques for sequential
decision making, namely, efficient techniques such as experience-level, model-level and
task-level and representational techniques such as representation for value function, reward
function and task or models). Applications of RL in different healthcare domains, such as
chronic diseases and critical care, especially sepsis and anesthesia, are explained in detail
in [60,61].
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3.2.4. Causal Inference/Generative Models

Causal inferencing plays a vital role in understanding the mechanisms of variables to
find a generative model and predict outcomes which the variables are subjected to. The
characteristic of causal inference is to find answers for questions about the mechanisms
by which the variables come to take on values. For example, epidemiologists gather
dietary-related data and find the factors affecting life expectancy to predict the effects
of guiding people to change their diet. Examples of causal models are models with free
parameters (fixed structure and free parameters) and models with fixed parameters (free
parameters with values). A large number of variables, small sample size and missing values
are considered serious impediments to proper data analysis and production of accurate
decision making in the medical domain. Causal inferencing is used in healthcare research
mainly for clinical risk prediction and improving accuracy of medical diagnosis, despite
the issues with data [62].

3.3. Advantages and Disadvantages of Conventional Statistics and Machine Learning
3.3.1. Data Management

Conventional statistics are more suitable for simpler datasets, whereas machine learn-
ing can manage complex datasets. In general, conventional statistical analyses are per-
formed if the research has prior literature about the topic of interest, the number of variables
involved in the study is relatively small and the number of observations (samples) is bigger
than the number of variables. This may assist the scientist in understanding the topic con-
veniently by selecting the important variables from prior knowledge, as well by applying
appropriate analytical models to check the association between variables (independent)
and outcomes (dependent). The conventional statistical approach gives more priority to
the type of dataset, for example, those including a cohort study, which follow a specific
hypothesis [35]. On the other hand, prediction analysis based on machine learning al-
gorithms learn from data without relying on rules-based programming, which does not
make any prior assumption, but is rather based on the original data provided. Machine
learning algorithms can handle multi-dimensional big data, but conventional statistics
can handle only one specific format of data at a time. Furthermore, machine learning
algorithms can handle data from different data sources such as external databases or online
data repositories.

3.3.2. Computational Power, Interpretation/Explainability and Visualization of Results

The analytical strategy of biostatisticians depends on their pathophysiological knowl-
edge and experience where data-driven prediction analysis challenges this paradigm of
thought, and the increasing computational power may unmask the associations not realized
by the human mind.

In conventional statistical analysis, scientists use basic software tools, which lack the
capability to handle big data and visualization of results. Machine learning black box
algorithms have the ability to uncover subtle hidden patterns in multi-model data [63].
However, interpretability is domain-specific, hence the visualization techniques play a
vital role in explaining the results to higher stakeholders. Conventional statistical software
tools produce basic visualization, whereas the advanced data analytics tools produce
domain-specific, customized, inherently interpretable models and results [63]. Machine
learning is often very complex and difficult to be interpreted by clinicians because it uses
computational programming and not a user-friendly tool such as SPSS. Conventional
statistics are easily interpretable and have lower capacity, thus present a smaller risk of
failing to generalize non-causal effects.

Conventional statistics are considered more computationally efficient and more readily
acceptable in the medical domain. Contrarily, the results and visualizations produced by
ML algorithms are different from the CS methods, and no proper guideline is available on
the ways to explain the graphs for interpretation of final results. Machine learning requires
high computational power in terms of processing power and storage. Moreover, ML
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algorithms are updated regularly into newer versions, which requires updates in coding.
Furthermore, ML models have the ability to over-predict (overfitting), where the predicted
model is closely related to the provided dataset. This could constrain the possibility to
generalize the model in different datasets to produce better accuracy. Therefore, validity is
required in both cases to finalize decisions. ML algorithms are able to provide required
results and decisions automatically from precise training data based on their built-in
functions from the programming tools. Nevertheless, when dealing with large amount of
data, more hybrid models can be designed to resolve the issues arising in data science for
knowledge extraction, especially in healthcare. There is a myriad of algorithms and software
for ML techniques to build prediction models on diseases. In medical informatics, R, Matlab,
Waikato Environment for Knowledge Analysis (WEKA) toolkit and Python [64–70] are a
few of the widely used programming languages and software in conducting prediction
analysis. In the need of viable decisions and interpretation, healthcare providers and
researchers can consider leveraging explainable ML models, instead of focusing only on the
results. If the interpretability in a domain-specific notion can be followed by researchers,
the level of trust on black boxes among clinicians could be improved.

3.3.3. Dimensionality Reduction

Dimensionality reduction involves reduction of either dimension of the observation
vectors (input variables) into smaller representations [71]. Technically, dimensionality
reduction transforms original dataset A of dimensionality N into a new dataset B of
dimensionality n [72]. Machine learning models follow various dimensionality reduction
techniques based on the types of data in a specific research analysis. The larger the
number of input variables, the greater the complication in the predictive models; thus,
dimensionality reduction helps to select the best input variables to predict the models. A
few methods of reduction are Principal Component Analysis (PCA), Kernel PCA (KPCA), t-
distributed Stochastic Neighbor Embedding (t-SNE) and UMAP. Dimensionality reduction
techniques remove irrelevant input variables from the dataset, which could increase the
accuracy of machine learning models. It also helps to eliminate multi-collinearity, which
enhances the way of interpreting the variables. In line with this, the dataset with the
relevant input variables saves storage space, and less computing power is needed to
analyze the data [73].

3.3.4. Frequently Used Models or Methods for Data Assessment

The most frequently used models for the association study in conventional statistics
is logistic regression or Cox regression models for binary outcomes, linear regression
for continuous outcomes and more extensive models such as generalized linear models
based on the distribution of data. This scenario is typically popular in studies addressing
public health significance, especially when the analysis involves a population study [74–77].
Statisticians believe that, in order to draw a firm conclusion or inference, the number of
observations in an association study plays an important role [34]. This is a direct approach
in hypothesis testing.

Machine learning models are able to capture high-capacity relationships and they
are amenable to more operational tasks rather than direct research questions; thus, more
research gaps could be solved through the one-stop analysis [38]. Various medical data
analyses used a machine learning approach to make decisions [78–88]. Biostatisticians are
in a need of an updated methodology that uses a machine learning approach to conduct
analysis on a variety of medical data [89]. In this case, the similar concepts in CS and
ML need to be emphasized. Machine learning algorithms serve as alternatives to the
conventional statistics for common analyses, such as determining effect size, significant
factors, survival analysis and imputations. While conceptually they are similar, they
are distinct in terms of methods. The core differences between CS and ML concepts are
described in Table 3.
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Table 3. Machine learning alternatives to conventional statistics.

Analysis Conventional Statistics Machine Learning

1 Imputations Imputations

Objective

To impute missing value
based on pattern of missing

data. For example, missing by
random

To impute missing values to maintain the
quality of data

Method

Missing values are identified
on the percentage of missing

data, with an acceptance
range between (10–20%)

1. Determine the missing values in the
data

2. Perform multiple imputations using
algorithms such as mice, Amelia and

missForest (sample built in packages in R)

Result Imputed data/clean data Imputed data/clean data

2 Effect Size Model Evaluation

Objective

To determine if the data
explain the variability in data.
Often called residual error, the

residual should be as
minimized as possible

To determine the quality of data to be
used for further analysis

Method

Residual analysis, if necessary,
standardized residual error is

performed using linear
regression

1. Split data into training and testing
sets

2 Build models using algorithms (e.g.,
decision tree, support vector machine,

etc.)

Results

Measurable R2

• Under-fit model < 0.3
• Good-fit model (0.3–0.7)

• Over-fit model (preferable)
(> 0.7)

Accuracy, sensitivity, specificity,
precision, Matthew Correlation

Coefficient, area under the receiver
operating curve (AUROC)
• Good-fit model (> 0.7)

3 Significant Factors Variable Importance

Objective

To select important
independent variables, which

affect the target variable
(dependent variable)

To select important independent
variables, which affect the target variable

(dependent variable)

Method

1 Run the analysis using all
data

2 Treat missing values or
exclude missing values

3 Chi square test or logistic
regression to choose
significant variable

1. Run variable importance using the
best model, which fit the data from

model evaluation
2. Rank and select important variables
for further analysis using the importance

score

Results p-value, 95%CI
OR 2.00 CI (1.51–12.52)

Variable importance score/mean
(numerical) and variable importance plot

(visualization)

4 Survival Analysis Survival Analysis

Objective To determine survival rate
using time series data

To determine survival rate (%) using time
series data
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Table 3. Cont.

Analysis Conventional Statistics Machine Learning

Method Similar to machine learning,
just the software is different

1. Specify independent variable and target
(survival years)

2. Define survival status, event = dead/1
3. Use machine learning survival package,

which computes survival based on
Kaplan–Meier to calculate survival

percentage

Results Survival rate in percentage,
Hazard ratio

Survival rate in percentage,
Hazard ratio

3.4. Case Study to Compare Conventional Statistics and Machine Learning

A breast cancer dataset from the University Malaya Medical Centre (UMMC), n =
8066, diagnosed between 1993 and 2017, was used to perform prediction analysis using
both conventional statistics and machine learning. Written informed consent was obtained
from the participants included in this study. This dataset was extracted from the cancer
registry within the electronic medical record system of UMMC called iPesakit. A total of 23
independent variables and survival status (dependent variable) were used to determine
the most important prognostic factors of breast cancer survival. The data description is
provided in Table 3. The methods and results from three different types of analysis are
compared. SPSS was used to perform conventional statistics and R was used to perform
machine learning. The R codes used for machine learning analysis stated in the case study
of this paper are deposited on GitHub [90].

3.4.1. Imputation and Data Pre-Processing

Imputation applies both to conventional statistics and machine learning during data
cleaning. Single or multiple imputations can be performed using conventional statistical
software and programming tools such as R. In this case study, imputation was performed
on the dataset to fill the missing values only for conventional statistical analysis. This is
because the machine learning algorithms are able to handle the data with missing values.
The dataset was split into testing (30%) and training (70%) for machine learning.

3.4.2. Significant Factors (CS) and Variable Importance (ML)

The objective of this analysis was to compare conventional statistics and machine
learning (variable importance) to determine the similarities and differences in the results
using the same dataset. Table 4 shows the results using significant factor analysis in SPSS.
The results from the chi squared test (categorical variable) and Mann–Whitney U test
(continuous variables) show that all the independent variables are statistically significant
(p-value < 0.05).
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Table 4. Results from significant factor analysis in SPSS.

Variables
(Independent) Total, n (%) Survival Status (Dependent) p-Value 1

Alive, n (%) Death, n (%)

Age (years), median 51 (42, 61) 51 (43, 60) 53 (42, 63) 0.001

Marital status 0.001
Married 6397 (81.6) 4554 (82.5) 1843 (79.3)

Not married 1443 (18.4) 963 (17.5) 480 (20.7)

Menopausal status 0.000
Natural menopause 3984 (50.8) 2675 (48.5) 1309 (56.3)

Pre-menopause 3347 (42.7) 2459 (44.6) 888 (38.2)
Surgical menopause 509 (6.5) 383 (6.9) 126 (5.4)

Presence of family
history 0.000

No 6357 (81.1) 4378 (79.4) 1979 (85.2)
Yes 1483 (18.9) 1139 (20.6) 344 (14.8)

Race 0.000
Chinese 5394 (68.8) 4041 (73.2) 1353 (58.2)
Indian 921 (11.7) 608 (11.0) 313 (13.5)
Malay 1525 (19.5) 868 (15.7) 657 (28.3)

Method of diagnosis 0.000
Excision 1617 (20.6) 1294 (23.5) 323 (13.9)
FNAC 1886 (24.1) 1013 (18.4) 873 (37.6)

Imaging only 35 (0.4) 31 (0.6) 4 (0.2)
Trucut 4302 (54.9) 3179 (57.6) 1123 (48.3)

Classification of breast
cancer 0.000

Insitu 366 (4.7) 348 (6.3) 18 (0.8)
Invasive 7474 (95.3) 5169 (93.7) 2305 (99.2)

Laterality 0.000
Bilateral 97 (1.2) 26 (0.5) 71 (3.1)

Left 3553 (45.3) 2464 (44.7) 1089 (46.9)
Right 3895 (49.7) 2830 (51.3) 1065 (45.8)

Unilateral side
unknown 295 (3.8) 197 (3.6) 98 (4.2)

Cancer stage 0.000
Pre-cancer 365 (4.7) 347 (6.3) 18 (0.8)

Curable cancer 6624 (84.5) 4956 (89.8) 1668 (71.8)
Metastatic 851 (10.9) 214 (3.9) 637 (27.4)

Tumour size (cm),
median 2.7 (1.6, 4.5) 2.3 (1.5, 3.5) 4.00 (2.5, 8.0) 0.000

Total axillary lymph
nodes removed,

median
11 (4, 16) 12 (6, 17) 9 (0,16) 0.000

Number of positive
lymph nodes, median 0 (0, 2) 0 (0, 1) 0 (0,4) 0.000
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Table 4. Cont.

Variables
(Independent) Total, n (%) Survival Status (Dependent) p-Value 1

Grade of
differentiation in

tumour
0.000

Good 2548 (32.5) 1631 (29.6) 917 (39.5)
Moderate 2936 (37.4) 2259 (40.9) 677 (29.1)

Poor 2356 (30.1) 1627 (29.5) 729 (31.4)

Estrogen status 0.000
Negative 3198 (40.8) 1936 (35.1) 1262 (54.3)
Positive 4642 (59.2) 3581 (64.9) 1061 (45.7)

Progesterone status 0.000
Negative 4157 (53.0) 2603 (47.2) 1554 (66.9)
Positive 3683 (47.0) 2914 (52.8) 769 (33.1)

c-er-b2 status 0.000
Positive 1862 (23.8) 1245 (22.6) 617 (26.6)

Negative 5148 (65.7) 3666 (66.4) 1482 (63.8)
Equivocal 830 (10.6) 606 (11.0) 224 (9.6)

Primary treatment
type 0.000

Chemotherapy 976 (12.4) 438 (7.9) 538 (23.3)
Hormone therapy 270 (3.4) 100 (1.8) 170 (7.3)

Surgery 6140 (78.3) 4812 (87.2) 1328 (57.2)
None 454 (5.8) 167 (3.0) 287 (12.4)

Surgery status 0.000
Surgery done 6740 (86.0) 5121 (92.8) 1619 (69.7)
No surgery 1100 (14.0) 396 (7.2) 704 (30.3)

Type of surgery 0.000
Breast-conserving

surgery 1916 (24.4) 1661 (30.1) 255 (11.0)

Mastectomy 4821 (61.5) 3456 (62.6) 1365 (58.8)
No surgery 1103 (14.1) 400 (7.3) 703 (30.3)

Method of axillary
lymph node dissection 0.000

Yes 5553 (70.8) 4048 (73.4) 1505 (64.8)
SLNB (sentinel lymph

node biopsy) 540 (6.9) 531 (9.6) 9 (0.4)

1 p-value reported based on chi square test for all categorical variables and Mann–Whitney U test for continuous
variables.

Figure 3 shows the variable importance plot using random forest VSURF and random-
ForestExplainer packages in R [72]. The variables are ranked based on variable importance
mean from highest to lowest. A threshold was set up to 0.01 and six variables were selected
as the most important prognostic factors of breast cancer survival.

The difference between significant testing and variable importance is that the order of
the importance is determined in variable importance, but only the status of significance
(statistically significant or not) could be determined using the significant factor analysis.
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Figure 3. Results of variable importance using VSURF and randomForestExplainer R packages to
determine the important factors affecting breast cancer survival.

3.4.3. Survival Analysis

Survival analysis in machine learning follows exactly the same concept as the con-
ventional statistics, which is the Kaplan–Meier (KM) estimator. The time series data, date
of diagnosis, date of death and date of last follow-up are used to calculate the overall
survival rate. The methods used are different; in machine learning, the KM estimator is
encapsulated into a single package called survival in R. Programming codes are used to
plot the survival curve directly by specifying the variables. In contrast to conventional
statistics, it is not an algorithm, but a type of data analysis where the time series data
are selected to plot survival curves with a life table and hazard ratio. Both conventional
statistics and machine learning follow the same rules to predict survival rate. The survival
curves are shown in Table 5. Survival curves are created for three variables: tumor size,
cancer stage and positive lymph nodes. The survival curves from SPSS and R produced
quite similar results in terms of survival rate for various categories in each variable, but
with differences in numerical values (survival percentages).
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Table 5. Survival analysis comparison using SPSS and R.

Comparison SPSS R

Method

1. Under survival, life table is used to plot the survival
curve

2. Log rank test is used to determine significant
difference between variables

3. Stage is grouped as Stage 0 (pre-cancer), Stages 1–3
(curable cancer), Stage 4 (metastatic cancer)

4. The grouping of tumor size and positive lymph nodes
were done using clinical guideline

1. Package survival is loaded
2. Survival years and survival status are used to

calculate overall survival rate for selected variables
3. Stage is grouped as Stage 0 (pre-cancer), Stages

1–3 (curable cancer), Stage 4 (metastatic cancer)
4. The grouping of tumor size and positive lymph

nodes were done using results from decision tree

Results

a. Tumor size a. Tumor size
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Table 5. Cont.

Comparison SPSS R

p-value < 0.05 means it is statistically significant
Log

Rank
(Mantel-

Cox)

Chi-
square

df Sig.

Tumor
size

1105.407 2 0.000

Cancer
stage

1721.517 2 0.000

Interpretation

Positive
lymph
nodes

234.999 3 0.000

The survival percentages are extracted from the
survival curve to estimate the survival rate of

patients.

3.5. Simplified Machine Learning Algorithms and Their Relationship with Conventional Statistics

The mathematical equations in conventional statistics are encapsulated to form al-
gorithms in machine learning. These algorithms are used to perform predictions using
supervised and unsupervised machine learning. The integration between the mathematics
behind conventional statistics and machine learning are explained using the techniques,
model evaluation (supervised learning), variable importance (supervised learning) and hi-
erarchical clustering (unsupervised learning). A proven breast cancer prediction model [38]
has been used to explain the concepts of the algorithms.

Model evaluation in machine learning is similar to power analysis in conventional
statistics for assessing the quality of data. It is the key step in machine learning, as the
ability of the model to make predictions on unseen or future samples enhances the trust
on the model to be used in a particular dataset. The measurement for model evaluation is
the accuracy in percentage (estimate of generalization of a model on prospective data). Six
different supervised machine learning algorithms (decision tree, random forest, extreme gra-
dient boosting, logistic regression, support vector machine, artificial neural networks) are
simplified. These algorithms have been widely used in medical informatics [65,67,91–93].

3.5.1. Decision Tree

Decision tree has been widely used in medical informatics [63,71], as it is the basic
concept used by other algorithms such as random forest and gradient boosting, but with
certain differences in the processes to predict the final output.

The decision tree algorithm follows the model of a tree structure, where it has a root
node, decision node and terminal node. The root node starts with the most important
independent variable followed by decision nodes (other independent variables). The
terminal node indicates the dependent variable, which is the final predicted output.

The processes in the decision tree are summarized into three steps: (i) choosing
features, (ii) setting conditions to split and (iii) stopping the splitting process to produce a
final output. A tree structure is built based on the observation falling in each region and
the mean value of prediction.

The splitting process is continued until a user-defined stopping criteria (the number
of observations per node) is reached. In the case of more than two variables, the regions
cover all the variables with multiple axes.

3.5.2. Random Forest

Random forest is an ensemble learning algorithm, which is derived from decision tree.
It follows the rule of decision tree, but constructs a multitude of decision trees at training
time and outputs the class with the maximum vote. Random forest is the state-of-the-art
algorithm in medical informatics, as it has the ability to manage multivariate data [72].
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Random forest is known as an improved version of decision tree, as it constructs more
than one tree to select the best output, whereas decision tree constructs only one tree. The
number of trees constructed during the training process is not default, as the users can
specify it based on the number of samples. The number of trees is directly proportional to
the number of samples.

3.5.3. Extreme Gradient Boosting

Gradient boosting follows the principle of random forest but with an added interpreta-
tion to predict the final output. This algorithm also constructs multiple trees called boosted
trees. A prediction score is assigned for each leaf in the boosted trees (gradients), whereas
random forest only contains the final decision value for one tree. Several studies have used
the gradient boosting approach to analyze medical data [73,92].

This algorithm also considers the weak and strong prediction values during training
before making the final decision, unlike decision tree and random forest, which only select
the tree with the best class, without considering the other classes. This method in gradient
boosting is known as the impurity measure. The scores of all the leaves in the trees are
summed up to produce the gradient values, and the final prediction is made based on the
mean value, called gradient boosting.

3.5.4. Logistic Regression

Most studies use regression for prediction analytics in medicine [61]. Logistic re-
gression predicts categorical output, for example, the survival status (alive or dead). The
predictions are made based on the probabilities shown by a curve. This process is repeated
for all the samples. The curve is shifted to calculate new likelihoods of the samples falling
on that line. Finally, the likelihood of the data is calculated by multiplying all the likelihoods
together and the maximum likelihood is selected as the final result.

3.5.5. Support Vector Machine

Just like all other algorithms, support vector machine (SVM) segregates data into
different classes, but it involves discovery of hyperplanes. The hyperplane divides the
data into two groups (classes). The points closer to the decision boundary or hyperplane
are called support vectors. The final prediction is made based on the values of indepen-
dent variables and the support vectors corresponding to the hyperplane. The number
of hyperplanes depends on the number of independent variables. The SVM structure is
complicated, with more than three features, but its ability to process multiple variables
with multiple hyperplanes at a time to predict the final outcome is one of the advantages of
this algorithm.

3.5.6. Artificial Neural Networks

Neural networks are an artificial representation of the human nervous system. It can
be explained using the structure of neurons and how they work. The dendrites collect
information from other neurons in the form of electrical impulses (input). The cell body
generates inferences based on the inputs and decides the actions to be taken. The outputs
are transmitted through exon terminals as electrical impulses to other neurons.

The same concept is implied in artificial neural networks (ANN). The inputs refer
to the independent variables and samples provided to the algorithm. The inputs are
multiplied by weights to calculate the summation function. The higher the weight an input
has, the more significant the input is to predict the final output. The activation function
predicts the probabilities from the training data and generates a final outcome. This is
known as a single-layer perceptron. There are three types of layers in ANN, which are
input layer, hidden layer and output layer.

Model evaluation is followed by variable importance in machine learning. Variable
importance (importance score) is an alternative to identifying the significant factors (p-
value) in conventional statistics using confidence interval measure and hypothesis testing.
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After performing model evaluation, the elements (variables) of the input data need to be
explored further in regard to how they contribute to the accuracy measure. Hence, machine
learning algorithms are built-in with a technique called variable importance or feature
importance to analyze the variables or features in the input data. The distribution of these
variables contributes to the prediction of the final outcome using machine learning models.

4. Discussion
4.1. Integration of Conventional Statistics with Machine Learning

Statistics is a branch of mathematics that consists of a combination of mathematical
techniques to analyze and visualize data 90. On the other hand, machine learning is a
branch of artificial intelligence that is composed of algorithms performing supervised and
unsupervised learning. The comparison or integration between conventional statistics and
machine learning has gained momentum over the last few years [94,95]. It is plausible that
data integrity with protection is the most challenging task in healthcare analytics [96–98].
Hence, from this review, it is found that the integration between these two fields could
unlock and outline the key challenges in healthcare research, especially in handling the
valuable asset called data. Individuals should not be subject to a final decision based solely
on automated processing or machine learning using algorithms, but integration of statistics
and human decision making is essential at an equal rate. The integration between statistics
and machine learning is shown in Figure 4.
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4.2. Significance of Machine Learning to Healthcare, Education and Society

The review on the integration between conventional statistics and machine learning
is the key factor to convince clinicians and researchers that machine learning algorithms
are based on core conventional statistical ideas; thus, they could be used to supplement
data analysis using conventional statistics. From this review, we believe that machine
learning, which follows the fundamentals of conventional statistics, has a positive impact
on healthcare. The significance of machine learning to healthcare is explained (Figure 5).
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Prior to the emergence of the data deluge, healthcare providers made clinical decisions
based on formal education and their experience over time in practice. Decision analysis in
healthcare has been criticized because the experience and knowledge of the decision makers
(clinicians) on patient characteristics are not the same or standardized. The linear process
of the decision-making model involves four steps, which are data gathering, hypothesis
generation, data interpretation and hypothesis evaluation. All four steps require data
from different departments, clinicians from different expertise and various data analytical
methods to make the final decision. Experienced clinicians may not deliberately go through
each step of the process and may use intuition to make decisions, instead of facing obstacles
handling several hypotheses with different personnel. As this is applied to experienced
clinicians, a novice clinician would have to understand and rely on the analytical principles
and theory behind a decision analysis process in a particular situation handling a patient.
In this case, the healthcare sector is in need of clinical decision support tools to enhance
and standardize clinical decision making.

Machine learning algorithms are widely used to develop clinical decision support
tools. These algorithms compile the four steps (data gathering, hypothesis generation, data
interpretation and hypothesis evaluation) of traditional decision making into one. The
advantages of machine learning algorithms in medical informatics depend on the objectives
of the research and the types of data used. ML algorithms such as decision tree, random
forest, gradient boosting, regression, support vector machine and artificial neural networks
are suitable for medical informatics, as they are able to handle big data, a combination of
numerical and categorical data and missing values. Moreover, these algorithms generate
visualizations, which could be transformed automatically (integrated into tools) to be used
by the clinicians as guidelines for patients.

In any machine learning analysis, domain experts are still required to enhance the
reliability of the machine and make sense of the results. In medical informatics specifically,
the decision of clinicians on a particular patient’s health condition plays an important
role in giving suggestions to the patient. The automated decision support tools may help
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clinicians in decision making to save time and costs, and to follow a standard procedure to
prevent conflict in final decisions.

The field of medicine relies heavily on knowledge discovery and understanding of
diseases associated with the growth in information (data). Diagnosis, prognosis and drug
development are the challenging key principles in medicine, especially in complex diseases,
such as cancer [91]. Based on the principal of evidence-based medicine, decision making
based on data and validation should be more agile and flexible to better translate the
basic knowledge of complexities into growing advances. The integration of conventional
statistics and machine learning to clinical applications should be carefully adopted with
a collaborative efforts that includes all major stakeholders for the positive influence of
machine learning in medicine [91].

Comparison between the basic workflow of conventional statistics and machine learn-
ing is explained in Figure 6.
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4.3. Automation of Machine Learning in Healthcare Research

The machine learning approach could be transformed into an updated guideline for
academicians and researchers. The medical academic sector may use the methodologies for
teaching and learning programs to educate medical students on the importance of machine
learning. Moreover, researchers in the same field can follow the techniques and machine
learning models to conduct research and cohort studies in any healthcare domain.

Biostatisticians may consider using machine learning techniques and automated
tools [92,93] together with conventional statistics in order to improve the performance of
analytics and reliability of results. The integration between statistics and machine learning
may assist biostatisticians to provide novel research outcomes.

The automation of machine learning in healthcare analysis has been applied in a recent
study by our research group [99]. The automated tools may assist biostatisticians to provide
novel research outcomes.

A guideline to transform statistics and machine learning (derived from the funda-
mental mathematics of conventional statistics) into an automated decision support tool is
illustrated in Figure 7.
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This guideline could be a standardized pipeline for the data science community to
analyze medical data and to develop artificial intelligence-enabled decision support tools
for clinicians and researchers.

In a decision support tool, (i) the data gathering is replaced by the automated data
capture from electronic medical records (EMR) or databases from multiple heterogeneous
sources, concomitantly; (ii) hypothesis generation is the specification of input variables
(independent and target) and the final outcome based on the research question or a question
for clinical decision (output); (iii) data interpretation is done using algorithms such as
random forest, support vector machine and neural networks, which have their specific
formulas to read the data, clean the data, capture the required variables, analyze the data
based on the specified requirements and perform comparative analytics automatically using
different algorithms; (iv) finally, hypothesis evaluation is done by producing interactive
charts to visualize the final outcomes to make decisions efficiently. All these steps are
performed in a streamlined environment often referred to as automated clinical decision
making, which saves the effort of engaging different experts and analytical platforms. The
experience which clinicians traditionally use to make decisions is replaced by the legacy
data the algorithms leverage to make decisions.

Most important of all, the data management or completeness of data for automated
decision making plays an essential role when it comes to statistics and machine learning.
The integration between statistics and machine learning can be used to train automated
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models with imputed missing values in the data, which would improve the generalizability
and robustness of models [100].

The integration between statistics and machine learning does not only contribute to
data augmentation, but also to medical diagnostics using multi-model data. In the future,
this approach together with deep learning methods is suggested to be used in bioinformatics
analysis using genomic data or a combination of genomic and clinical data to enhance
the automated decision-making process. Deep learning, being one of the unprecedented
technical advances in healthcare research, assists clinicians in understanding the role of
artificial intelligence in clinical decision making. Hence, deep learning could serve as a
vehicle for the translation of modern biomedical data, including electronic health records,
imaging, omics, sensor data and text, which are complex, heterogeneous, poorly annotated
and generally unstructured, to bridge clinical research and human interpretability [101,102].

5. Conclusions

Conventional statistics are the fundamentals of machine learning, as the mathematical
concepts are encapsulated into simplified algorithms executed using computer program-
ming to make decisions. Machine learning has the added benefit of automated analysis,
which can be translated into decision support tools, providing user-friendly interfaces
based on interactive visualizations and customization of data values. Such tools could
assist clinicians in looking at data in different perspectives, which could help them make
better decisions. Despite the debate between conventional statistics and machine learning,
the integration between the two accelerates decision-making time, provides automated
decision making and enhances explainability. This review suggests that clinicians could
consider integrating machine learning with conventional statistics for added benefits. Both
machine learning and conventional statistics are best integrated to build powerful au-
tomated decision-making tools, not limited to clinical data, but also for bioinformatics
analyses.
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