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Abstract

Background: Community-acquired pneumonia is one of the most common infectious diseases in children and is a leading
cause of death among children under 5 years of age, resulting in high rates of antibiotic usage and hospitalization. It is of
extremely practical significance to make full use of the existing electronic medical records to study pneumonia and to estab-
lish automatic diagnosis models for pneumonia.

Methods: We established pneumonia diagnosis models of Bayesian network using a total of 13,448 electronic medical
records. We investigated learning network structure and parameter estimation and evaluated different structure learning
strategies and various modeling methods. By identifying the key predictors of model, the pneumonia status was analyzed.

Results: The performance of the proposed Bayesian network was evaluated using a set of 3361 cases with a precision of
0.7861, a recall of 0.9889, and an F1-score of 0.8759. On an independent external validation set containing 4925 cases,
Bayesian network achieved a precision of 0.7382, a recall of 0.9947, and an F1-score of 0.8475. Our proposed Bayesian net-
work outperformed all other methods, including CatBoost, XGBoost, LightGBM, logistic regression, and ridge classification.

Conclusion: The appropriate feature selection improved the performance of Bayesian networks. The proposed Bayesian network
had good generalizability and could be directly applied to clinical research centers. And the key predictors identified by the net-
work demonstrated good clinical interpretability, allowing for a better understanding of pneumonia status and complications. This
study had important clinical value and practical significance for the research and diagnosis of pediatric pneumonia.
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Introduction

Community-acquired pneumonia (CAP), defined as pneumo-
nia acquired outside of a hospital or health care setting, is a
common infectious disease and a leading cause of death
among children under 5 years of age, resulting in high rates
of antibiotic use and hospitalization."* The annual incidence
of CAP requiring hospitalization was 15.7 per 10,000 children,
with the highest incidence in children under 2 years of age in
the United States.” Pneumonia also imposes a heavy economic
burden on both developed and developing countries. In the
United Kingdom, potential direct medical costs for children
aged 0 to 16 years hospitalized with CAP range from £12 to
£18000 per year.* Current management strategies remain sub-
optimal, in part due to insufficient technology to determine eti-
ology, triage patients, and predict their outcomes.”

With recent advances in machine learning technology,
machine learning models have been increasingly applied
to the analysis of large-scale electronic medical record
(EMR) data, helping to learn effective patterns, discover
knowledge, and build disease diagnosis models from the
data. Prosperi et al.® used logistic regression, random forests,
and AdaBoost to identify asthma, wheezing, and eczema.
Sun et al.” developed pneumonia prediction models using
classification and regression trees, and analyzed that older
age, comorbidities, and initial presentation of lower respiratory
tract infections were the main predictors of pneumonia. Giang
et al® attempted to build a model to predict ventilator-
associated pneumonia from EMR data. Yu et al.” evaluated
a range of machine learning methods on a dataset of 16 fea-
tures from EMR, with the CatBoost model achieving the
best performance. Existing methods have achieved excellent
prediction ability and can well express the relationship
between input and output variables, but they fail to take into
consideration the underlying relationship between input vari-
ables.'® In certain clinical scenarios, the ability to capture
inherent intrinsic relationships between input variables has a
far greater clinical value for disease analysis.''

Bayesian network modeling has attracted considerable
attention in medical diagnosis due to its ability to establish
probabilistic relationships between diseases and their asso-
ciated symptoms.'*"? Zhao et al.'"* proposed a hybrid neuro-
probabilistic reasoning algorithm that integrated Bayesian net-
works with graph convolutional networks to discriminate
benign and malignant pulmonary nodules in computed tomog-
raphy images. Spyroglou et al."” evaluated the performance of
a Bayesian network classifier in predicting asthma exacerba-
tions based on multiple patient parameters, including objective
measurements and medical history data. Sanders and
Aronsky'® also developed and evaluated a Bayesian network
to identify patients who met asthma care guidelines using
only electronically provided data at patient triage.

In this study, we established a Bayesian network pneu-
monia diagnosis model based on EMR data. The applica-
tion of feature selection based on odds ratio (OR) values

proved that the classification performance of Bayesian net-
works is as good as that of popular machine learning algo-
rithms. In addition, the key predictors identified by the
network demonstrated good interpretability, allowing a
better understanding of pneumonia status and complica-
tions. Through independent external validation, we demon-
strated that our proposed Bayesian network has good
generalizability and can be directly applied to EMRs in clin-
ical research centers. In summary, this study had incredibly
important clinical value and practical significance for the
research in the field of pediatric pneumonia and the rapid
automated diagnosis of pneumonia.

Materials and methods

Data collection and preparation

In this study, we retrospectively collected EMRs of 33,571
consecutive patients with a mean age of 3.81 (standard
deviation (SD) =2.41) admitted to the Department of
Pulmonology, Children’s Hospital of Zhejiang University
School of Medicine, China from 2012 to 2020, as an
internal dataset for model training and validation. EMRs
consisted of the first course records, admission records,
discharge records, etc. Among them, the discharge diag-
nosis recorded the patient’s final confirmed diseases, and
the text in the first course records and admission records,
such as the history of present illness, physical examin-
ation, and auxiliary examination, recorded the details
of the clinician’s inquiry and observation of the patients’
statuses. We constructed an experimental dataset using
texts from these domains. Specifically, the information
of history of present illness, physical examination, and
auxiliary examination were taken as feature corpus X,
and the information of discharge diagnosis was taken
as target y. Notably, statistics showed that the vast major-
ity of patients had more than one diagnosed disease due
to complications. Table 1 provides a sample English
translation to illustrate the EMR types and corresponding
fields used in our study.

Independent external validation data

In addition, we also collected EMR data of 6573 patients
with a mean age of 2.27 years (SD=2.16) from the
Department of Pulmonary Medicine, Zhengzhou
Children’s Hospital, China, as an independent external val-
idation dataset to evaluate the clinical generalization per-
formance of the proposed Bayesian network.

Tabular dataset building

The texts of history of present illness, physical examin-
ation, and auxiliary examination of each patient were
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concatenated as characteristic corpus records. First,
HanLP,'” an open-source multilingual language processing
toolkit, was used to automatically split each corpus record
into a series of keywords through an entropy-based key
phrase extraction method. Considering Chinese grammat-
ical expressions, key phrases were defined in 2-gram and
3-gram forms. After filtering phrases based on the stopword
list, 53,719 key phrases remained. Among them, the top
500 key phrases with the highest frequency accounted for
68.43% of the total frequency (approximately within the
range of +o of the probability mass function). Based on
the sigma principle, the top 500 key phrases with the
highest frequency were selected. Then, a knowledge graph-
driven search engine was utilized to distinguish whether
key phrases were relevant to the medical domain and
whether they had more canonical counterparts. For
example, “tonsil infection” would be considered a term in
the medical field and would be aligned with the more
formal scientific name (tonsillitis). Finally, those aligned
terms were confirmed through human expert review. As a
result, 47 designated terms were reserved. In this study, a
lookup table was used to map nonstandard terms occurring
in the datasets to 47 designated terms.

Inspired by NegEx,'® 58 regular expressions were
adopted to find the positive and negative scopes of 47 desig-
nated terms in each corpus record, respectively. An example
of a common negative mention pattern follows the structure of
“(no | not | there is no) key phrase (not seen | not found).”
Using regular expressions, we were able to determine the
exact value of each term in each record, including positive
mentions (1), negative mentions (0), and no mentions (0).
According to whether pneumonia was recorded at the time
of discharge diagnosis, cases of pneumonia were defined as
positive samples (1) and cases without pneumonia were
defined as negative samples (0). All of which were binary
terms that should be coded as either positive (1) or negative
(0), that is, bi-values are not allowed.

Finally, a tabular dataset named DataSet-PT was gener-
ated from the internal dataset containing 47 features and 1
target. By eliminating duplicate data, a total of 16,809
case records were retained, including 11,640 cases of pneu-
monia, accounting for 69.25% of the total, and 5169 cases
of non-pneumonia, accounting for 30.75% of the total.
Figure 1 illustrates the detailed statistics of DataSet-PT, in
which Figure 1(a) shows the distribution of diseases
included in the discharge diagnosis field, Figure 1(b) presents

Table 1. An example of the texts in four fields from raw EMRs in English translation.

The child had cough without obvious inducement 1 month ago, occasional cough, sputum, no
barking cough and whoop, with wheezing, obvious in the morning awaking and at night. The
child had no obvious dyspnea, no fever, no chill, no convulsions, and no diarrhea hence he
was brought to the outpatient clinic of the local hospital. After the local hospital gave
cefotaxime sodium intravenous drops to fight infection, methylprednisolone intravenous drops
to fight inflammation and aerosol inhalation to relieve wheezing, the symptoms were slightly
improved, but there was still cough and wheezing. The child has been given ongoing aerosol
inhalation treatment in past 1 month. The child came to our hospital today for further
treatment. At present, the child was in normal state, had a little poor appetite and normal
sleep. There was no abnormal in stool and urine, and no significant weight gain or loss

T 37°C, P 130 beats per min, R 36 breaths per min, BP 107/67 mmHg, Sp0, 96%. The spirit is
conscious, throat has no inflammation and breathing is smooth. There was no three concave
sign, no nodding respiration, but coarse breath sound and wheezing rale could be heard in
both lungs. The child had no arrhythmia, no obvious pathological murmurs, and had no liver,
spleen, and subcostal enlargement with soft abdomen. The neurological examination was
negative. There was no rash and the temperature of the extremities was normal

The chest X-ray: the color of texture in both lungs was thickened; Cardiac color Doppler

Admission History of present
records illness
Admission Physical
records examination
First course Auxiliary
records examination ultrasound: no abnormalities were observed
Discharge Discharge diagnosis (1) Pneumonia
records (2) Mycoplasma infection

(3) Streptococcus infection
(4) Stomach twist
(5) Laryngopharyngeal reflux (suspected)

Note: The italic bold phrases are the key phrases with high information entropy. BP: blood pressure; EMR: electronic medical record; P: pulse rate; R:
respiration rate; Sp0,: oxygen saturation; T: temperature.
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the proportion of pneumonia cases and non-pneumonia cases,
and Figure 1(c) illustrates the feature distribution. Using
random shuffling, DataSet-PT were further split into a training
set TrainSet-PT for modeling and an internal validation set
TestSet-PT for performance evaluation at a ratio of 4:1, that
is, 13,448 cases in TrainSet-PT and 3361 cases in TestSet-PT.
For the independent external validation dataset, a tabular
dataset named ExternalSet-PT was obtained following the
same pipeline, retaining 4925 case records, including 3564 pneu-
monia cases (72.37% of the total) and 1361 non-pneumonia
cases (27.63% of the total). The data distribution of
ExternalSet-PT is shown in Figure 2, where Figure 2(a) and
(b) present the disease and feature distributions, respectively.

Bayesian network modeling

A Bayesian network denoted by N(G, P) consists of a direct
acyclic graph (DAG), denoted by G, and a set of conditional
probability distributions P. Each node of G represents a

unique discrete random variable X with mutually exclusive
states xy, - - -, xx. Each node also has a conditional probability
table (CPT) that quantifies the influence of the parent node (all
nodes with arrows pointing to it) on it. Building a Bayesian
network typically requires the following steps. First, the struc-
ture of Bayesian network is constructed through structure learn-
ing (i.e. the DAG is formed). Second, parameter estimation is
used to calculate the CPT of each node (i.e. establish the
strength relationship between node dependencies). Third,
using methods such as variable elimination, the Bayesian
network is Inferred to output prediction results. In this study,
we used probabilistic graphical models using python
(pgmpy)'? to build and evaluate Bayesian networks.

Structure construction

Feature correlation. Inspired by previous works,?**' we

used the OR values to measure the correlation between fea-
tures, where an OR value is a measure of the association
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Figure 1. Data distribution. (a) Pie chart of disease distribution contained in the discharge diagnosis text in the electronic medical records
(EMRs). There were 35 types of diseases with pneumonia being the most diagnosed disease. (b) Proportion pie chart of pneumonia cases
and non-pneumonia cases in the DataSet-PT after removing duplicate records. (c) Feature distributions in the DataSet-PT. The total amount
for each feature was 16,809.
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Figure 2. Distribution of independent external validation data. (a) Bar chart of the disease contained in external electronic medical
records. There were 17 diseases and others. Some cases had more than one disease. (b) Feature distribution in ExternalSet-PT. The total

for each feature was 4925.

between exposure and outcome. The OR value between
feature N; and N; is calculated as follows:

P(N; = 1|N; = 1) X P(N; = O|N; = 0)
P(N; = O|N; = 1) X P(N; = 1|N; = 0)

ORW;, N)) = (M

OR > 1, feature N; is strongly correlated with N; and
OR < 1, feature N; is weakly correlated with N;.

Features selection. Given that the purpose of our
Bayesian network modeling was to predict the occurrence
of pneumonia, it was necessary to determine whether a
feature node should be connected to the target pneumonia
node. It was also meaningful to distinguish nodes that had
direct or indirect connections to the pneumonia node.
This process was considered as a feature selection
process, resulting in two sets of features, among which
the feature set containing only directly connected nodes

was named as Fine-Features and the feature set containing
all features including both directly and indirectly connected
nodes were named as All-Features.

Network structure search. The DAG was constructed
using a heuristic, asymptotic, greedy, hill climbing algo-
rithm. In the step of adding each node, three operations
(namely, adding edges, subtracting edges, and reversing
edges) were performed to reduce the score of the entire
network structure, where K2 score>? was used to measure
the structure score.

Initial graph. In greedy search, the initial graph is an
important factor.”> We used two initial graph configura-
tions, including a configuration without an initial graph
and a configuration with an initial graph generated based
on OR values.

Ranking strategy. The order in which nodes are added is
also an important factor in greedy search. We applied four
ranking strategies®': (1) Random, (2) Global impact, (3)
Descending, and (4) Ascending.
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Figure 3 shows the resulting Bayesian network architec-
tures, where Figure 3(a) demonstrates an undirected graph
with 478 edges, while Figure 3(b) and (c) shows the
Bayesian network structure based on All-Features and
Fine-Features, respectively. The feature correlation heatmap
based on the OR value was shown in Figure 4a, where each
point represented the logarithm of the OR value between the
features on the x-axis and y-axis. Clearly, points with a
value >0 (i.e. colors close to the red band) represented a
strong correlation between the two features, while points
with a value < O (i.e. colors close to the blue band) indicated
a weaker correlation between the two features.

Parameter estimation and model inference

In the parameter estimation stage, we used a Bayesian esti-
mator to estimate the CPT of each node. Bayesian—Dirichlet
equivalence consistent prior was applied to compute an initial
CPT for each node. Starting with the initial CPT, we updated
each CPT wusing state counts from observations of
TrainSet-PT. In the inference stage, the input to the
Bayesian network is usually in the form of a series of observed
evidence. Specifically, predicting the likelihood of pneumonia
using All-Features is equivalent to computing the posterior
probability of the Bayesian network P(X ., |E = e), where

14)(13 (12
15 1"
16 10

2 s i@

(b)

Figure 3. Bayesian network architecture. (a) Undirected graph generated based on odds ratio values. Colored circles represent specific
nodes in the network. The lines between the circles represent the connections of the nodes. The red dashed lines are the connections
associated with the pneumonia node, and the gray lines are the connections not associated with the pneumonia node. (b) Bayesian
network generated from the All-Features set. The red dashed line represents the parent node of pneumonia, while the green dashed line
represents the child node of pneumonia. Gray lines indicate relationships that are not directly related to the pneumonia node. Arrows on
the lines indicate causal relationships between nodes. (b) Bayesian network generated from the Fine-Features set.
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Figure k. Feature analysis. (a) Heatmap of correlations between features. Each point represents the logarithm of the OR value between the
feature on the x-axis and y-axis. Clearly, points with a value >0 (i.e. colors close to the red band) represent a strong correlation between the
two features. Points with a value <0 (i.e. colors close to the blue band) indicate a weaker correlation between the two features. Features
marked with * are closely correlated with pneumonia. (b) An example of a CPT of the dyspnea node from Bayesian network using
Fine-Features. For inference, the probability of dyspnea P(Ygyspneal Xuheezingratle = 1, Xitroat stridor = 15 Xdry rales = 1) when the evidence is
{Xuheezingratle = 1, Xthroat stridor = 1, Xary rales = 1} is equivalent to the sum of the joint probability, i.e.

ZP (Xuwheezingratle = 1, Xitroat stridor = 1, Xaryrales = 1). (c) Feature importance ranking of CatBoost in All-Features. Features were ranked
according to the average absolute value of SHAP values and the SHAP values, respectively. The two rankings were consistent. SHAP:
SHapley Additive exPlanations; CPT: conditional probability table; OR: odds ratio.
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X pney 18 the pneumonia variable, £ = {E|, E», --
47 non-pneumonia variables, and e = {ej, €3, --
observed values of 47 variables.

Figure 4(b) illustrates an example of CPT of the dyspnea
node in the Bayesian network using Fine-Features. The
Bayesian network can also be viewed as a joint probability dis-
tribution P(X ., E) consisting of a pneumonia variable and
47 non-pneumonia variables. The sum-product variable elim-
ination algorithm can be used for inference, which eliminates
the influence of non-pneumonia variables by continually
summing the probabilities of the variables in the joint distribu-
tion until all non-pneumonia variables are eliminated, leaving
only the marginal probability of the pneumonia variable, that
i8, PX pnew) = D P(X pnews E1, Es, -+ -, Ey7). Hence, for actual
inference, E is%et to the exact value set {e;, e;, - -
and P(Xpneu|E =e)= ZP(Xpnem e1, e, -+, eq7).

e

-, Eq7} the
-, eq7} the

bR} 647},

Other modeling approaches

We applied five other machine learning models, namely
CatBoost, XGBoost, LightGBM, logistic regression, and
the ridge classifier™ 2’ for performance comparison. A
grid search strategy was used to determine model hyper-
parameters. For CatBoost, the number of iteration was
2000, the learning rate was 0.01, the max depth was 7,
and the objective was binary log loss. For XGBoost, the
number of estimators was 2000, the learning rate was
0.005, the max depth was 7 and the objective was binary
log loss. For LightGBM, the number of estimators was
2000, the learning rate was 0.01, the max depth was 10,
the max number of leaves was 50, and the objective was
binary log loss. For logistic regression, the penalty was
the L2 distance, the max iteration was 1000, and solver
was L-BFGS. For the ridge classifier, the alpha was 0.5,
the tolerance was 1><10_3, and the solver adopted L-BFGS.

Results

Performance evaluation metrics

In this study, three metrics, including precision, recall, and
Fl-score, were used to evaluate the performance, and
defined as follows:

.. TP
Precision = ——— 2)
TP + FP
TP
Recall = —— 3
T TP RN ®)

2 X Precision X Recall
F1- = 4
score Precision + Recall )

where TP, FP, TN, and FN are the true positive, false
positive, true negative, and false negative rates, respect-
ively. TP and TN denote correctly predicted positives and

negatives with respect to the ground truth labels. FP and
FN represent incorrectly predicted positives and negatives
with respect to the ground truth labels. Statistical analysis
of model performance was based on bootstrap and #-test.

Statistical analysis

Statistical #test analysis between the pneumonia-positive and
pneumonia-negative groups was analyzed. As shown in
Table 2, most features showed statistically significant differences
*(p<0.05) between the pneumonia-positive and pneumonia-
negative groups. Specifically, 40 features showed statistically
significant differences between positive and negative groups in
TrainSet-PT, and 30 features showed statistically significant dif-
ferences in TestSet-PT. Of these features, 30 features showed
statistically significant differences in both the sets, which con-
firmed that the extracted features were indeed discriminative.
There was no statistically significant difference between
TrainSet-PT and TestSet-PT in all features (all p > 0.05),
which was in line with common sense, indicating that the split-
ting of DataSet-PT was reasonable. In ExternalSet-PT, there
were 25 features showed statistically significant differences
between positive and negative groups. Most importantly, only
seven features showed no statistically significant differences
with TrainSet-PT, which indicated a large feature distribution
difference between these two datasets.

Experimental results

Table 3 showed the performance of Bayesian network mod-
eling. It is clear that models without initial graphs generally
performed better than models with initial graphs. The
Ascending strategy worked best on both feature sets, and
the Global impact strategy achieved a better recall on
All-Features. The best performances for precision, recall,
and Fl-score achieved with Bayesian networks were
0.7746, 0.9722, and 0.8344 with All-Features, and
0.7861, 0.9889, and 0.8759 with Fine-Features.

Table 4 demonstrated the performance comparison of differ-
ent modeling approaches on TestSet-PT. Using All-Features,
the CatBoost achieved the best precision and Fl-score with
0.7852 and 0.8471, and the XGBoost and ridge classifier
achieved the best recall of 0.9243. The Bayesian network,
which without initial graph and using Ascending ranking strat-
egy, outperformed other models, with the highest precision
(0.7861), highest recall (0.9889), and the highest F1-score
(0.8759) using Fine-Features. The metrics of other modeling
approaches were shown significant differences with the per-
formance of Bayesian network when Fine-Features was used.

Table 5 demonstrated the performance comparison of dif-
ferent modeling methods on ExternalSet-PT. The ridge classi-
fier achieved the best recall and Fl-score with 0.9837 and
0.8382, respectively, while the logistic regression achieved
the best precision of 0.7459 with All-Features. The Bayesian
network outperformed other models with the highest precision
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Table 3. Performance of Bayesian networks modeling on TestSet-PT.

All-Features (N =47)

Bayesian network w/o initial graph

Bayesian network w/ initial graph

Fine-Features (N=23)

Bayesian network w/o initial graph

Bayesian network w/ initial graph

Random 0.7559 0.8011 0.7778
Global impact 0.7239 0.9722 0.8299
Descending 0.7356 0.8841 0.8030
Ascending 0.7746 0.9042 0.8344
Random 0.7062 0.7126 0.7094
Global impact 0.7519 0.7207 0.7360
Descending 0.6915 0.7730 0.7300
Ascending 0.7309 0.8191 0.7725
Random 0.7730 0.9145 0.8378
Global impact 0.7390 0.9773 0.8416
Descending 0.7162 0.9577 0.8195
Ascending 0.7861 0.9889 0.8759
Random 0.7304 0.6848 0.7068
Global impact 0.7140 0.8969 0.7951
Descending 0.7282 0.6647 0.6950
Ascending 0.7386 0.8627 0.7958

Note: The numbers in bold are the best performance of models using different features in three metrics. w/ : with; w/o: without.

(0.7382), highest recall (0.9947), and the highest F1-score
(0.8475) using Fine-Features. The metrics of other modeling
approaches were shown significant differences with the per-
formance of Bayesian network.

Table 6 illustrated the key predictors found by different
models. For ease of comparison, we sorted the features of other
models according to SHAP (sHapley Additive exPlanations)™®
values, taking the same number of features as the parent nodes
of the pneumonia node, which were 11 and 6 features from
All-Features and Fine-Features, respectively. Features were
also ranked using SHAP to discover explanatory predictors
for model interpretation as shown in Figure 4(c).

Discussion

Implications and findings

Our results revealed that feature selection based on OR
values improved the performance of Bayesian networks
(F1-score of 0.8759 vs. 0.8344 as shown in Table 3).

However, feature selection did not show the same advan-
tages in other methods. For example, the performance of
CatBoost decreased slightly (Fl-score of 0.8471 ws.
0.8351 as shown in Table 4). One possible reason is that
linear models and additive tree models treat variables and
outputs as directly related, which is easier than Bayesian
networks to eliminate the influence of noncritical variables,
so they performed roughly the same on both feature sets.
However, feature selection based on OR value does
reduce the search space of Bayesian network. Therefore,
the selected variables have greater mutual information
with the pneumonia node.

In this study, we also found that in the absence of the
initial graph, the Bayesian network model outperformed
models built with the initial graph. We believe this is due
to redundant edges in the initial graph misleading the opti-
mizer into local optima since the heuristic hill-climbing
algorithm is very sensitive to the search starting point.
The results shown in Table 3 also demonstrated that the
effect ranking strategy roughly followed the following
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Table &. Performance comparison on TestSet-PT.

All-Features (N=147)

Fine-Features (N=23)

Bayesian network
CatBoost

XGBoost
LightGBM

Logistic regression
Ridge classifier
Bayesian network
CatBoost

XGBoost
LightGBM

Logistic regression

Ridge classifier

0.7746/-

0.7852/<0.0001*

0.7804/<0.0001*

0.7811/<0.0001*

0.7756/<0.0001*

0.7561/<0.0001*

0.7861/-

0.7726/<0.0001

0.7710/<0.0001

0.7752/<0.0001

0.7621/<0.0001

0.7547/<0.0001

0.9042/-

0.9196/<0.0001*

0.9243/<0.0001*

0.9063/<0.0001*

0.9239/<0.0001*

0.9243/<0.0001*

0.9889/-

0.9085/<0.0001*

0.9187/<0.0001*

0.8879/<0.0001*

0.9192/<0.0001*

0.9277/<0.0001*

0.8344/-

0.8471/<0.0001*

0.8463/<0.0001*

0.8390 <0.0001*

0.8433/<0.0001*

0.8318/<0.0001*

0.8759/-

0.8351/<0.0001*

0.8384/<0.0001*

0.8278/<0.0001*

0.8333/<0.0001*

0.8323/<0.0001*

Note: The numbers in bold are the best performance of models using different features in three metrics. *: p < 0.05, showing a statistically significant

difference.

Table 5. Performance comparison on externalSet-PT.

All-Features (N=147)

Fine-Features (N=23)

Bayesian network
CatBoost

XGBoost
LightGBM

Logistic regression
Ridge classifier
Bayesian network
CatBoost

XGBoost
LightGBM

Logistic regression

Ridge classifier

0.7378/-

0.7448/<0.0001*

0.7447/<0.0001*

0.7502/<0.0001*

0.7459/<0.0001*

0.7301/<0.0001*

0.7382/-

0.7380/<0.0001*

0.7363/<0.0001*

0.7440/<0.0001*

0.7341/<0.0001*

0.7288/<0.0001*

0.9346/-

0.9450/<0.0001*

0.9501/<0.0001*

0.9220/<0.0001*

0.9537/<0.0001*

0.9837/<0.0001*

0.9947/-

0.9672/<0.0001*

0.9739/<0.0001*

0.9588/<0.0001*

0.9790/<0.0001*

0.9863/<0.0001*

0.8246/-

0.8330/<0.0001*

0.8349/<0.0001*

0.8273/<0.0001*

0.8371/<0.0001*

0.8382/<0.0001*

0.8475/-

0.8372/<0.0001*

0.8386/<0.0001*

0.8377/<0.0001*

0.8390/<0.0001*

0.8382/<0.0001*

Note: The numbers in bold are the best performance of models using different features in three metrics. *: p < 0.05, showing a statistically significant difference.
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Table 6. Results of the key predictors discovery.

All-Features (N=47) Fever v Vv Vv V vV
Chill y
Runny nose vy
Cough v voovv v
Expectoration Vv Vv Vv V v
Sore throat o
Dyspnea vV v v
Throat stridor v v V V Vv o
Three concave sign v v v v
Moist rale Vv Vv Vv
Wheezing v VoYV Y
Whoop Vv v
Apatheia vV \ of v
Convulsions Vv
Nodding respiration 1/ v V V Vv \
Eyes on the turn Vv
Ear discharging \V
Nasal mucosa V

hyperemia

Pruritus Vv
Jaundice o

Fine-Features (V= Fever V V ]

23) Cough J J J y y y

Expectoraion voovv v
Oyspres v v ooV v
Throat stridor v Vv

(continued)
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Table 6. Continued.

Three concave sign

Wheezing rale \/

<

Wheezing
Nasal blockade \/

Nodding respiration

order, Ascending > Global impact > Descending =~
Random. We argue that for hill climbing, the later the pneu-
monia node is added, the easier it is to traverse and optimize
the edges connected to the pneumonia node in a global
view. The clearer the dependency between the pneumonia
node and other nodes, the better is the prediction effect.
Global impact is not as effective as Ascending, probably
because its original intention is to find a reasonable global
network structure rather than infer-specific nodes.

As shown in Tables 2 and 5, although the characteristics
of TrainSet-PT and ExternalSet-PT have significant statis-
tical differences, the proposed Bayesian network still exhib-
ited strong performance and outperformed all other models
with Fine-Features. Table 5 demonstrated that our Bayesian
network achieved good performance in EMRs from the
independent external research center (Fl-score of 0.8246
with All-Features and 0.8475 with Fine-Features). The
impact of feature selection based on OR values on the exter-
nal validation data was also significant, and the F1-score of
the Bayesian network using Fine-Features was the highest.

Clinical significance of the identified key predictors

As shown in the All-Features rows of Table 6, all models
considered cough, throat stridor, three concave sign, wheez-
ing, and nodding respiration as significant predictors. The
occurrence of pneumonia is accompanied by cough, so
cough is very reliable as a key predictor of confirmed pneu-
monia. The throat stridor is a typical clinical manifestation of
laryngeal obstruction. When this symptom occurs, it often
indicates that the larynx has been narrowed due to infection.
Laryngeal infections are often accompanied by lower respira-
tory tract infections. While throat stridor is not a typical
symptom of pneumonia, throat infection often accompanies
infections. This may reflect some characteristics of the
cases in our data, that is, a large proportion of pneumonia
cases also have symptoms of throat infection, and pneumonia
is likely caused by aggravation of throat infection. The three-

concave sign, also known as the intercostal retraction sign,
appears in patients with severe pneumonia and is a
common manifestation of severe pneumonia. It is therefore
not surprising that the models found three concave signs to
be strong predictors of a pneumonia diagnosis. Nodding res-
piration is also a typical symptom of severe pneumonia, and
its presence is the diagnosis of pneumonia. Wheezing is a
gasping sound during the exhalation phase. It is usually
caused by the stenosis below the tracheal carina. It is a
typical manifestation of lower respiratory tract infection
with stenosis. Wheezing not only indicates lower airway
infection, but also lower airway narrowing.

In the All-Features rows of Table 6, there were several
predictors (i.e. convulsions, eyes on the turn, ear dischar-
ging, nasal mucosa hyperemia, and pruritus) selected by
the Bayesian network only. Convulsions are not typical
symptoms of pneumonia, but in children with pneumonia,
repeated high fever may cause symptoms of systemic con-
vulsions. Eyes on the turn is a typical symptom of febrile
convulsion in children. Common causes of febrile convul-
sions include upper respiratory tract infection, tympanitis,
and pneumonia. As shown in Figure 1(a), our data included
at least 1073 children with febrile convulsions. The Bayesian
network identified the eyes on the turn as a key predictor,
probably because in our case most of the children with
febrile convulsion also had pneumonia. Streptococcus pneu-
moniae frequently causes both tympanitis and pneumonia,
which maybe the reason why ear discharge is considered a
key predictor. This appears to indicate insufficient pneumo-
coccal vaccination coverage in the region, in fact, where at
least 202 children were diagnosed with tympanitis as shown
in Figure 1(a). Nasal mucosa hyperemia often refers to
upper respiratory tract infections, caused by rhinitis, nasosinu-
sitis, and other diseases. It is not uncommon for upper respira-
tory tract infection to develop into pneumonia. Pruritus is a
typical symptom of rash. Figure 1(a) showed that our data con-
tained 194 rash cases. Symptoms of skin rash, which is not a
typical symptom of pneumonia, have been reported in cases of
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coronavirus disease 2019 (COVID-19) at times.?? The identi-
fication of pruritus as a key predictor by the Bayesian network
may be caused by these atypical cases, which may also explain
why dermatology patients are referred to respiratory depart-
ments. Rash was also a feature extracted from EMR in our
dataset. However, it had a low OR value with pneumonia,
likely due to rash, as a disease name, being rarely mentioned
in descriptive text.

In the Fine-Features rows of Table 6, the consistency of
the model predictors was not as strong as the All-Features row,
while coughing and wheezing were still consistently identified
as key predictors. The identification results of the tree models
(CatBoost, XGBoost, and LightGBM) and linear models
(logistic regression and ridge classifier) showed a high
degree of agreement. Figure 3(c) showed that the child
nodes of the pneumonia node were expectoration, moist
rales, barking cough, fever, dyspnea and apathy, respectively.
A comparison with the Fine-Features of Table 6 showed that
these features were also key predictors for other models,
except for barking cough. The difference is that other
models treat these features as causes of pneumonia, while
Bayesian networks treat them as effects of pneumonia. What
they have in common is that they all revealed a correlation
between these features and pneumonia.

Advantages and clinical significance of the Bayesian
network

Currently, the first step in screening children with suspected
CAP is arapid assessment to identify signs and make a sub-
jective diagnosis based on expert experience. Our proposed
Bayesian network will provide automated, rapid, and
objective assessment while reducing the workload of spe-
cialists. CAP in children often appears as a complication
of diseases, such as pertussis and influenza, and the pres-
ence of multiple symptoms can make it difficult to identify.
Our proposed Bayesian network provides a second opinion,
increasing the number of accurate diagnostics and yielding
additional new insights. The most significant advantage of
Bayesian network modeling is that it is far easier to visually
understand than other common classical methods.

Existing research suggests that linear or additive tree
models may yield more accurate classifications as they only
consider direct relationships between input and output vari-
ables. However, the variable relationship-capture capability
of the Bayesian networks has greater value for data exploration.
Interpretability of tree and linear models often depends on the
SHAP interpreter and SHAP value ranking. The structure of
the Bayesian network is far more intuitive and easier to inter-
pret due to causal relationships between nodes. Furthermore,
Bayesian network modeling reveals relationships between
various symptoms and complications in addition to direct
input—output connections, which is extremely valuable for
common clinical applications and research.

Limitations and future expectations

Although our experiments on the external validation set
demonstrated the generalizability of the model, more valid-
ation is necessary for extrapolating to more centers. One of
the future objectives is to collect more data from different
individual hospitals and conduct a multicenter study. As a
feasibility study, this work only included hospital admis-
sion, inpatient, and discharge records. Additional informa-
tion such as epidemiology, past history of respiratory
diseases, and comorbidities should also be included for a
complete and accurate diagnosis.

Furthermore, the use of the proposed method is limited
by the scope of the specification written by EMR. This spe-
cification means following a pre-arranged structure and
using a standard vocabulary. In practice, the method relies
on a pre-built lookup table to identify and align nonstandard
terms to designated terms, and uses regular expressions to
extract the values of 47 or 23 features from the EMR (i.e.
whether the term is mentioned). Hence, future directions
should inevitably include additional regular expressions to
accommodate the EMR of specific centers.

For clinical application, one of the purposes of rapid
assessment is to diagnose pneumonia in children as mild or
severe. This diagnostic difference has critical implications
for the course of treatment. Mild cases only require a pre-
scription, whereas severe cases require routine blood tests
and lung X-rays. One of our future directions is to extend
our model to the diagnosis of mild and severe pneumonia.

Additionally, while models built with Fine-Features per-
formed better in predictions, models constructed with
All-Features were more interpretable. Therefore, we
believe that combining large networks with higher inter-
pretability with small networks with higher classification
accuracy is another promising future approach.

Conclusions

In this study, EMR data were used to construct a Bayesian
network for pneumonia diagnosis. The application of
feature selection based on OR values proved that the classifi-
cation performance of the Bayesian networks matches the per-
formance of commonly used machine learning algorithms.
The performance on independent external validation data
demonstrated the clinical generalizability of our Bayesian
network. Analysis of the key predictors identified by the
network further increases our understanding of the conditions
and complications of pneumonia patients. The findings of this
study have important clinical value and practical significance
for the study of pediatric pneumonia in the field and the rapid
and automated diagnosis of pneumonia.
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