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Abstract

Phaeoviruses infect the brown algae, which are major contributors to primary production of coastal waters and estuaries.
They exploit a Persistent evolutionary strategy akin to a K- selected life strategy via genome integration and are the only
known representatives to do so within the giant algal viruses that are typified by r- selected Acute lytic viruses. In screening
the genomes of five species within the filamentous brown algal lineage, here we show an unprecedented diversity of viral
gene sequence variants especially amongst the smaller phaeoviral genomes. Moreover, one variant shares features from
both the two major sub-groups within the phaeoviruses. These phaeoviruses have exploited the reduction of their giant
dsDNA genomes and accompanying loss of DNA proofreading capability, typical of an Acute life strategist, but uniquely
retain a Persistent life strategy.
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Introduction

All viruses broadly follow one of two life strategies, Acute or

Persistent [1,2,3]. Moreover, the switch from Persistent to Acute in

animal systems underpins emerging new viral epidemiology,

notable examples being influenza, measles and HIV [2]. This

transformation is often triggered by viruses jumping from one

species to another. Viruses that follow an Acute life strategy have

characteristic features that associate them with a disease pheno-

type; high reproduction and mutation rates, and greater depen-

dency on host population densities for transmission. Many animal

viral infections that are responsible for emerging epidemic diseases

follow this Acute infection dynamic that originated from a

Persistent viral life strategist [2]. Despite their likely prevalence,

Persistent viral life strategies are not well described. Persistence is

defined as a stable coexistence in an individual host, seldom

causing disease, and transmission is often from parent to offspring

[1]. Phaeoviruses infect the Ectocarpales brown algae, which are

major contributors to primary production of coastal waters and

estuaries [4], and separated from the kelps around 100 Ma [5].

Viral infections in protists contribute significantly to the sheer

abundance of viruses in our oceans [6], and have been shown to

play important roles in some of the major oceanic processes, such

as plankton mortality [7,8], nutrient cycling and carbon storage

[9,10]. Their ubiquitous nature means that viruses affect every

aspect of life in the marine environment, and their importance in

such fundamental areas as evolution [3,11], the global food web

and even climate change should not be underestimated [3,9,12].

Protist viruses belonging to the family Phycodnaviridae [13] are

members of the wider grouping of nuclear cytoplasmic large

dsDNA viruses (NCLDVs). The coccolitho-[11,14] and phaeo-

viruses [4,15] are two examples of NCLDVs having opposing life

strategies Acute vs Persistent, respectively. The former are lytic

algal bloom terminators [14], while the latter covertly infect and

integrate their genomes via the gamete and/or spore life stages of

the host, forming a latent provirus which is transmitted to all cells

during adult development [4]. As with most persistent viruses,

phaeoviruses have no noticeable negative impact on the life-cycle

of the host; however, overt symptoms of phaeovirus infection can

be seen when the reproductive organs become deformed and

produce virions, instead of gametes or spores (Figure 1).

To date, phaeovirus identity has only been confirmed for viruses

infecting three species of filamentous brown algae: Ectocarpus

siliculosus (Dillwyn) Lyngbye (Esil), Feldmannia sp. and Feldmannia

irregularis (Kützing) Hamel (Firr); infected by EsV-1, FsV and

FirrV-1, respectively [16]. They vary in genome size from 180–

336 kb (Table 1). In addition, the genome of an Ectocarpus strain

was found to contain a transcriptionally inactive copy of an EsV-1-

like provirus [4]. Complete genome sequences show that EsV-1,

FirrV-1 and FsV-158 contain a limited number of common single

copy core genes, as well as many unique genes [15]. Five

phaeoviruses, identified by morphology and life cycle, infecting

Ectocarpus fasciculatus (Harvey) (Efas), Feldmannia simplex (Crouan &

Crouan) Hamel (Flex), Hincksia hincksiae (Harvey) Silva (Hinc),

Pylaiella littoralis (Linnaeus) Kjellman (Plit) and Myriotrichia

clavaeformis (Harvey) (Mcla) have also been described in the

literature (Table 1) [16]. Here we report on the phylogenetic

placement of these phaeoviruses, using single and multi-gene

phylogenies for three NCLDV core single copy genes, namely the

major capsid protein (MCP), DNA polymerase (DNApol) genes,
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and a hitherto untested viral superfamily III helicase (VACV D5-

like) gene.

Results and Discussion

EsV-1 is the only virus known to infect E. siliculosus, while Ivey

et al.[17] reported the presence of two (and potentially four)

different size variants (158 kb and 178 kb) of phaeoviruses in

cultures of Feldmannia sp. Delaroque et al. [18] reported an

incomplete FirrV-1 genome, with no evidence of multiple variants,

within F. irregularis. Our viral sequences from Esil matched

perfectly with reference gene sequences for EsV-1 (Table 1 &

Figure 2). Notably, no additional sequence variation for EsV-1

could be found. The other available DNApol gene sequences for

the reference genome, FirrV-1, were identified within the

Feldmannia irregularis (Firr 1) isolate (Figure 2); however, at least

one additional variant could also be identified (Table 1). This

result is the likely explanation for the inability of Delaroque et al. to

assemble the FirrV-1 genome [18]. All the other ectocarpoid

strains contained two or more viral sequence variants, with the

Feldmannia simplex (Flex) isolate containing at least eight different

variants (Table 1). Our Bayesian and Maximum Likelihood

inference trees (DNApol or multigene) were largely in agreement

that the phaeovirus sequence variants group should be split into

two distinct sub-groups: a virus sub-group A that infect multiple

species across three families of the Ectocarpales (Figures 3 & 4) and

a second sub-group B containing members that infect the genus

Feldmannia.

Furthermore, there are two unexpected observations from these

phylogenies. Firstly, the Flex 8 variant shares features with both of

the sub-groups, whilst, unsurprisingly, being more closely

connected to sub-group B (Figure 3 & Figure 4). A closer look at

the DNApol sequence (Figure 2) shows not only the overall

conservation of amino acids (32%) across all the phaeoviruses and

the wider eukaryote kingdom as a whole, but also how certain

amino acids can be assigned to either sub-group A (triangles,

Figure 2) or sub-group B (inverted triangles, Figure 2). Moreover,

one important conserved region, Pol III dNTP binding site, is

Figure 1. Epifluorescence microscope images of E. siliculosus. The pink stained individual spores (combination of DAPI stained blue DNA and
red auto-fluorescence from nuclei and chloroplasts, respectively) are clearly visible within the normal zoidangium (A), whereas in (B) the zoidangium
is misshapen and heavily stained showing that the space is filled with densely packed blue viral particles.
doi:10.1371/journal.pone.0086040.g001

Table 1. Ectocarpoid strains used for phaeovirus screening (adapted from Schroeder [16]).

Strain Species Family Location Genome Number of sequence variants * Concatenations**

kb DNApol MCP Helicase

Esil Ectocarpus siliculosus Ectocarpaceae New Zealand 336 1 (1) 1 (1) 1 (1) 1

Efas Ectocarpus fasciculatus Ectocarpaceae France 320 2 (2) 1 (1) 2 (2) 2

Plit Pylaiella littoralis Acinetosporaceae Alaska 280 1 (1) 1 (1) 1 (1) 1

Hinc Hincksia hincksiae Acinetosporaceae France 240 1 (1) - 2 (1) -

Mcla Myriotrichia clavaeformis Chordariaceae Argentina 320 1 (1) 2 (2) - 2

Firr Feldmannia irregularis Acinetosporaceae Canary Islands 180 2 (2) 3 (2) 2 (2) 4

Flex Feldmannia simplex. Acinetosporaceae Ireland 220 9 (8) 6 (4) 8 (3) 22

*: variant in DNA sequence (HG003317 - HG003355) with amino acid variation indicated in parentheses. A negative PCR result is indicated by a minus symbol.
**: possible permutations for DNApol and MCP as seen in Figure 4.
doi:10.1371/journal.pone.0086040.t001
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known to be important for genome stability [19]. Daee et al. found

that a single amino acid mutation was associated with extreme

rates of spontaneous mutation in yeast. Three amino acid

polymorphisms in this region (Figure 2, positions 618, 621, 625)

could be a contributing factor to the large number of variants

observed amongst the Feldmannia viruses. The second key

observation is that Flex 8, at the base of the sub-group B clades

in all the phylogenetic trees, is probably the progenitor virus to the

Feldmannia sub-group B viruses. This, therefore, gives us a unique

insight into the emergence of a new phaeovirus sub-group, which

is likely to be a result of the genome reduction of an ancestral

member from sub-group A. Both FirrV-1 and FsV-158 [15] show

the loss of the DNA proofreading exonuclease gene (EsV-126)

known to be present in EsV-1 [20]. We therefore hypothesize that

these genomic modifications could have resulted in the key life

strategy shift, thereby utilizing the high mutation rates more

associated with acute infections. When and how this happened is

unclear; however, the expansion of localised genomic regions in

poxviruses, causing gene duplications and mutations have been

proposed to be a response to overcoming changing immune

responses after a host switch [21]. Whilst gene duplications have

not yet been discovered in the phaeoviruses sequenced thus far,

these expansions are usually followed by a rapid gene reduction in

order to minimise the burden of replicating and enlarged genome,

therefore a similar mechanism may also be involved here.

A pairwise analysis of the evolutionary divergence in nucleotide

sequences within the various groups of phycodnaviruses (Figure 5)

illustrates the shift by sub-group B to a genome characteristic of an

r-like evolutionary strategy. Sub-group B has a median nucleotide

divergence of 29.3% in the DNApol gene fragment, comparable to

that of the other r- selected lytic phycodnavirus groups (24.3–

47.9%). Sub-group A has maintained the classic K – selection life

strategy with a much lower divergence of 14.9%.

There have been several studies that reported on the host

specificity of phaeoviruses. EsV-1 can successfully infect Kuckuckia

kylinii (Cardinal) producing virions infectious to the original host

[22]. Other cross-species infections do not produce infectious

virions although the virus does induce symptom-like deformities in

the host, for example EsV-1 in F. simplex [22], or EfasV in E.

siliculosus [23] and M. clavaeformis [24]. This demonstrates not only

the potential of phaeoviruses to jump between species but also that

not all jumps result in successful infections. Another example of

this unsuccessful jump can be seen by the presence of an inactive

provirus in the Ectocarpus genome [4]. Here we show that the

Figure 2. Partial nucleotide alignment of cloned fragment of the viral DNA polymerase gene. Numbers refer to amino acid position in the
complete EsV-1 DNA polymerase gene taken from Delaroque et al. 2001 [20] (GenBank accession number NC_002687.1). Boxed regions indicate
conserved polymerase domains [30]. * indicates conserved positions between all sequences, m shows where the Flex 8 variant shares an amino acid
with the larger viruses of sub-group A, . shows where the Flex 8 variant shares an amino acid with the smaller genomed viruses of sub-group B.
doi:10.1371/journal.pone.0086040.g002

Novel Evolutionary Strategy by Latent Virus

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e86040



provirus appears to be more closely related to an E. fasciculatus

variant than to EsV-1 (e.g. Figures 3 & 4). This suggests that an E.

fasciculatus virus infected an Ectocarpus species more closely related

to E. siliculosus [25]. This study also confirmed the life-history and

morphometric data that the viruses infecting Efas, Mcla, Plit and

Hinc do indeed belong in the phaeovirus group. Moreover, there

is also a corresponding grouping which can be created based on

genome sizes (see Table 1); the larger viral genomes from Esil,

Efas, Plit, Mcla and Hinc (240–336 kb) fall within sub-group A

and the smaller viruses from Firr, Flex and Feldmannia sp [15]

(158–220 kb) into sub-group B.

This study provides the first example of an emergent virus

system retaining a Persistent life strategy, but exploiting an Acute

strategist’s high genomic mutation rate. Moreover, unlike current

reports on how emerging acute diseases develop where cryptic

persistent viruses cross species boundaries (e.g. HIV [26], H5N1

[27] and DWV [28]), which can have catastrophic consequences

for new host survival, this study suggests a very different scenario

of one in which the integration and diversification of Persistent

viruses has been stably maintained over a long period of time.

Similarly, due to their evolutionary link to animal viruses this

infection strategy is likely to also occur in these systems, and

further studies in this field may help our understanding of the

spread of new emergent diseases.

Materials and Methods

Isolates & culture conditions
See Table 1 for a list of the phaeovirus-infected cultures

used in this study. Each strain was cultured in a 40 ml petri

dish at 15uC, 16:8 light-dark cycle, approximately 100 mmol

photons m22 s21. The Western Channel Observatory (www.

westernchannelobservatory.org.uk) is an oceanographic time-series

and marine biodiversity reference site in the Western English

Channel. In situ measurements are undertaken weekly at coastal

station L4 (source of water for our study) and fortnightly at open

Figure 3. Maximum Likelihood analysis between variants of the phaeoviral sequences of DNA polymerase. Single value node labels
represent ML bootstrap values. Where nodes are labelled with two values, this indicates that both ML and Bayesian topologies agree (whole numbers
represent ML bootstrap values, decimals indicate Bayesian posterior probability). Sub-group A viruses are labelled in blue, sub-group B viruses are red
and the intermediate Flex virus variant is green. Bold values are those greater than 75% bootstrap or probability.
doi:10.1371/journal.pone.0086040.g003
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shelf station E1 using the research vessels of the Plymouth Marine

Laboratory and the Marine Biological Association. THE DATA

POLICY of the NERC National Capability funded Western

Channel Observatory is to make the data freely available at the

point of delivery. Culture medium was filtered (30 kDa) natural

sea water from the L4 sampling station close to the Eddystone

Lighthouse near Plymouth, enriched with Provasoli’s enrichment

[29]. Sub-culturing into a new dish with fresh media was carried

out every 14 days, when the cultures were pulled apart using

forceps to separate out filaments in order to encourage production

of zoidangia and virions.

DNA extraction method
50–200 mg wet weight fresh algal material was transferred to an

Eppendorf tube, frozen in liquid nitrogen and ground using

Eppendorf grinders with 10 ml saturated #106 microns acid

washed glass bead solution before proceeding with the Qiagen

DNeasy protocol for Genomic DNA purification from cultured

animal cells, starting with the proteinase K treatment. 40 ml

proteinase K and 200 ml Buffer AL were added to the sample and

incubated at 56uC for 30 minutes, before centrifuging for 2

minutes at maximum speed to separate out the beads. 200 ml

ethanol was added to the resulting supernatant, vortexed and

pipetted onto the spin column, to proceed with the first

centrifugation step. For the final step, DNA was eluted using

100 ml water, instead of 200 ml in order to obtain a more

concentrated sample.

Figure 4. Maximum Likelihood analysis between variants of the phaeoviral sequences of concatenations of DNApol and MCP.
Variants are labelled according to DNApol identifier initially, followed by the MCP variant number in brackets. In order to slightly reduce the number
of combinations of sequences, where individual gene phylogenies show a clear separation of individual variants, these are concatenated together
and excluded from the other combinations. Single value node labels represent ML bootstrap values. Where nodes are labelled with two values, this
indicates that both ML and Bayesian topologies agree (whole numbers represent ML bootstrap values, decimals indicate Bayesian posterior
probability). Sub-group A viruses are labelled in blue, sub-group B viruses are red and the intermediate Flex virus variant is green. Bold values are
those greater than 75% bootstrap or probability.
doi:10.1371/journal.pone.0086040.g004
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PCR, cloning & Sequencing
Degenerate primers were designed for three active viral genes

(DNA polymerase (GRGGNCAGCAGATYAAGTG forward,

GARTCCGTRTCSCCRTA reverse), helicase (GTGGCAGGT-

SATYCCYTTC forward, GTTKCCGGCCATGATYCC reverse)

and major capsid protein (MCP) (CVGCGTACTGGGT-

GAACGC forward, AGTACTTGTTGAACCAGAACGG re-

verse)) against a consensus of published sequences from EsV-1,

FirrV-1, FsV-158 and the provirus from the sequenced

Ectocarpus genome. Degenerate PCR was carried out using

Promega GoTaqH Flexi DNA polymerase kit, with an addition

of 0.8 mg/ml bovine serum antigen (BSA). Cycling conditions

were 95uC for 5 minutes, followed by 35 cycles of 95uC for 1

minute, a 30 second annealing step, an extension step at 72uC,

and a final elongation step at 72uC for 10 minutes. Oligonu-

cleotide and magnesium concentrations, annealing temperatures

and extension times varied for each gene: DNApol required

1.25 mM MgCl2, 4 pmol/ml oligonucleotides, 50uC annealing

temperature and 10 second extension time, MCP required

1.5 mM MgCl2, 8 pmol/ml oligonucleotides, 55uC annealing

temperature and 30 second extension time and helicase required

1.5 mM MgCl2, 8 pmol/ml oligonucleotides, 55uC annealing

temperature and 10 second extension time. Post-PCR samples

were run on a 2% agarose gel at 80 V to achieve maximum

separation between the bands. Samples with more than one

product were purified by gel extraction; the band of the correct

size was cut out of the gel and purified using the Qiaex IIH Gel

Extraction Kit. Samples with clean bands were purified using

GenEluteTM PCR Clean-Up Kit from Sigma. Purified PCR

product was cloned into pCRH2.1, incubated overnight at 15uC
before storing at 220uC until used. 4 ml ligation mixture was

added to 0.2 ml competent cells and mixed. The cells were then

incubated on ice for 40 minutes, heat shocked at 42uC for 2

minutes and returned to the ice for 5 minutes. 0.7 ml pre-

warmed LB medium was added to the cells which were then

incubated at 37uC for one hour. The cells were concentrated by

spinning at 8000 g for 5 minutes, removing 0.5 ml supernatant,

and re-suspended gently with a pipette before being plated out

onto LB agar plates containing 5 mg/ml ampicillin, with 40 ml

of 20 X-gal spread on each plate. Plates were incubated

overnight at 37uC.

Single cloned colonies were picked from agar plates into

individual 0.2 ml tubes containing 5 ml molecular grade water and

heated to 95uC for 5 minutes to denature the cells before adding

10 ml 56 buffer, 5 ml 25 mM MgCl2, 5 ml 2.5 mM dNTPs, 2 ml

each of 10 pmol/ml M13 forward and reverse primers, 0.2 ml Taq

polymerase, 20.8 ml molecular grade H2O. Cycling conditions

consisted of 30 cycles of 95uC for 45 seconds, 56uC for 45 seconds

and 72uC for 45 seconds, followed by a final extension step of

72uC for 5 minutes.

PCR products were purified using the Qiaex IIH Gel Extraction

Kit and then sequenced using the BigDyeH Terminator v3.1. The

mix consisted of 3.5 ml 56 BigDye buffer, 1 ml Ready Reaction

Mix, 2 ml template (6–14 ng ml21 concentration), 1 ml primers

(either M13 forward or reverse) at a concentration of 3.2 pmol

ml21 and 12.5 ml dH2O. Cycling conditions were 95uC for 2

minutes, followed by 30 cycles of 95uC for 30 seconds, 50uC for 30

seconds, 72uC for 30 seconds, then a final elongation at 72uC for 5

minutes. Sequenced reactions were precipitated by adding 5 ml

Figure 5. Box and whiskers plot of evolutionary divergence between nucleotide sequences of the DNApol. Identical sequences were
not included more than once. The box represents the interquartile range which shows the middle 50% of the data, the bottom line being the first
quartile, the middle line being the median and the upper line being the third quartile. The whiskers represent the maximum (or minimum) data point
up to 1.5 times the box height above (or below) the top (or bottom) of the box. Outliers beyond the whiskers are shown as a *. Phaeovirus sub-
groups are as shown in Fig. 3 & 4, with Flex 8 being included in sub-group B. Chloroviruses consist of thirteen viral isolates from Paramecium bursaria
Chlorella (AF344202, AF344203, AF344211, AF344212, AF344215, AF344226, AF344230, AF344231, AF344235, AF344238, AF344239, M86837, U32985)
and one from Acanthocystis turfacea Chlorella (AY971002). The other phycodnaviruses group consists of three viral isolates from Emiliania huxleyi
(AF453961, AF453867, AF472534), three from Micromonas pusilla (U32975, U32982, U32976), five from Ostreococcus tauri (FJ67503, FJ884758,
FJ884763, FJ884773, FJ884776), two from Ostreococcus lucimarinus (GQ412090, GQ412099), six from Phaoecystis globosa (A345136-AY345140,
DQ401030), one from Chrysochromulina brevifilum (U32983), one from Chrysochromulina ericina (EU006632) and one from Heterosigma akashiwo
(AB194136).
doi:10.1371/journal.pone.0086040.g005
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125 mM EDTA and 65 ml cold 100% ethanol and incubated in

the dark at room temperature for 15 minutes. They were then

spun for 30 minutes at 2200 g, the supernatant removed and the

pellet washed with 60 ml cold 70% ethanol, and spun for a further

15 minutes at 2200 g. The supernatant was removed again and

the pellet air dried. Sanger sequencing was carried out by Source

Bioscience in Cambridge. Sequences were submitted to the

European Nucleotide Archive with accession numbers

(HG003317–HG003355).

Phylogeny
Bayesian analysis of phylogenetic trees was carried out using

MrBayes v3.2.1, running the analysis until the standard deviation

of split frequencies reached ,0.01 and the number of generations

was .100 000. Maximum Likelihood analysis was carried out

using MEGA5.1 WAG model with 500 bootstrap replications and

the Nearest-Neighbour-Interchange heuristic method. DNApol

and MCP sequences were combined in all possible combinations

(Table 1) in order to create concatenations which were used to

create Figure 4.

Distance analysis
Nucleotide sequences were obtained for the various groups of

phycodnaviruses that have been sequenced to data by carrying out

a BLAST search of known genome sequences from each group.

The phaeovirus sequences obtained in this study were split into

two subgroups according to their phylogenies as shown in Figures 3

& 4. Chloroviruses were considered together with the prasino-

viruses, and the remaining viral groups (coccolithoviruses,

prymnesioviruses, raphidoviruses) were considered together since

they are all lytic viruses of stramenopiles or coccolithophores.

Pairwise distances were computed using Mega 5.05.
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