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Objective: Headache and memory impairment are the primary clinical symptoms of

chronic mountain sickness (CMS). In this study, we used voxel-based morphometry

(VBM) and the amplitude of the low-frequency fluctuation method (ALFF) based on blood

oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) to identify

changes in the brain structure and function caused by CMS.

Materials and Methods: T1W anatomical images and a resting-state functional MRI

(fMRI) of the whole brain were performed in 24 patients diagnosed with CMS and 25

normal controls matched for age, sex, years of education, and living altitude. MRI images

were acquired, followed by VBM and ALFF data analyses.

Results: Compared with the control group, the CMS group had increased gray matter

volume in the left cerebellum crus II area, left inferior temporal gyrus, right middle temporal

gyrus, right insula, right caudate nucleus, and bilateral lentiform nucleus along with

decreased gray matter volume in the left middle occipital gyrus and left middle temporal

gyrus. White matter was decreased in the bilateral middle temporal gyrus and increased

in the right Heschl’s gyrus. Resting-state fMRI in patients with CMS showed increased

spontaneous brain activity in the left supramarginal gyrus, left parahippocampal gyrus,

and left middle temporal gyrus along with decreased spontaneous brain activity in the

right cerebellum crus I area and right supplementary motor area.

Conclusion: Patients with CMS had differences in gray and white matter volume and

abnormal spontaneous brain activity in multiple brain regions compared to the controls.

This suggests that long-term chronic hypoxia may induce changes in brain structure and

function, resulting in CMS.

Keywords: chronic mountain sickness, brain, hypoxia, voxel-based morphometry (VBM), amplitude of low

frequency fluctuation (ALFF), functional MRI

INTRODUCTION

Chronic mountain sickness (CMS) was initially described by Monge in 1928 and was later
replicated by other groups in the early medical literature (1–6). It is a syndrome caused by an
inability of individuals to adapt to high altitudes (altitude >2,500m) and is typically manifested as
hyperhemoglobinemia and hypoproteinemia (7). Common symptoms include headache, dizziness,
insomnia, fatigue, tinnitus, attention deficit, amnesia, and muscle and joint pain. Some patients
may also have cerebral edema, eventually leading to encephalopathy (8). Hypoxia is an important
cause of CMS due to low oxygen levels in high-altitude areas. In recent years, with an increase in
the plateau population, CMS has received greater attention (9, 10). Most published literature has
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focused on the epidemiology, pathophysiology, and genetics (11–
16) of CMS. In contrast, there is little research on imaging,
except for a few studies, such as the one by Bao et al., which
evaluated brain damage in patients with CMS. The authors found
that multiple structural changes occur in the brains of patients
with CMS and are correlated to the severity of the disease and
the impairment of cognitive functions (17). Wei et al. suggested
that the differences in cortical morphometry in the brains of
native Tibetans may reflect adaptations related to high altitudes
(18). Furthermore, imaging studies of plateau residents have been
limited to normal controls. Structural MRI studies of adolescents
migrating from sea level to a high altitude environment
demonstrated the following changes: (a) decreased gray matter
volume in the right postcentral gyrus, right superior frontal
gyrus, bilateral anterior insula, right anterior cingulate cortex,
bilateral pre-frontal cortex, left precentral cortex, and right
lingual cortex, and (b) increased gray matter volume in the right
middle frontal gyrus, right parahippocampal gyrus, right inferior
and middle temporal gyri, bilateral inferior ventral pons, and
right cerebellum crus I (19, 20). A study on adolescents migrating
from a high altitude to sea level environment demonstrated the
following changes: (a) increased gray matter volume in the left
insula, left inferior parietal gyrus, and right superior parietal
gyrus, (b) decreased gray matter volume in the left precentral
cortex and multiple sites in the cerebellar cortex (left lobule VIII,
bilateral lobule VI, and crus I/II), and (c) decreased white matter
volume in the right superior frontal gyrus (21). Studies using
functional MRIs (fMRIs) on long-term high-altitude residents
have indicated that subjects’ brains undergo functional changes
(22, 23); the left pyramis, and left and superior temporal gyrus
were more activated, and the left middle occipital gyrus was less
activated in the high-altitude group than in the control group
(22). High-altitude residents also showed a decreased activation
in the inferior and middle frontal gyrus, the middle occipital and
lingual gyrus, the pyramis of the vermis, and the thalamus (23).
Our research aims to study structural and functional changes
simultaneously, using voxel-based morphometry (VBM) and the
amplitude of low-frequency fluctuation (ALFF) methods, from
resting-state fMRI in patients with CMS. The VBM provides
a quantitative and comprehensive assessment of anatomical
changes in the brain (24). This technique has been widely used
in the study of changes in the brain morphology caused by
various diseases (25–28). Currently, the methods for analyzing
resting-state blood oxygen level-dependent functional magnetic
resonance imaging (BOLD-fMRI) data are regional homogeneity
(ReHo), ALFF, and independent component analysis (ICA). The
ALFF method has been widely used in clinical settings (29–31) to
deduce information about the amplitude of spontaneous activity
of regional neurons (32, 33). To the best of our knowledge, no
studies have used both structural MRI volumetrics and resting-
state fMRI to study CMS.

MATERIALS AND METHODS

Subjects
After being assessed at our institution between May 2017 and
May 2020, 25 patients diagnosed with CMS were selected for

this study. One patient was excluded because of excessive
head motion during the MRI. The currently used international
diagnostic criteria for CMS are the Qinghai criteria (34),
which include indicators for hemoglobin and various clinical
symptoms. None of the patients received any treatment for
CMS before MRI examination. Control subjects (n = 25)
with comparable age, educational background, and high-altitude
exposure were recruited. Physical examination showed no
positive signs of CMS and a normal hemogram and blood
pressure in the control subjects. All subjects included in the study
were right-handed and had lived in a plateau at altitudes above
3,000m for at least 5 years. The subjects were native highlanders
from the Qinghai Province and had no documented drug abuse,
high blood pressure, diabetes, neurological disorders, or history
of head injuries such as loss of consciousness and mental illness.
Men are reportedly more prone to CMS than women (35–37). To
avoid sex-related differences, we recruited only men in our study.
The experimental protocol was approved by the ethics committee
of our institution. All subjects provided written informed consent
before participating in the study.

Equipment and Technical Indicators
The MRI scans were conducted using a Philips Achieva 3.0 TX
scanner with an eight-channel coil. Anatomical MRI scans were
performed on all subjects, including fluid attenuated inversion
recovery (FLAIR), T2-weghted imaging (T2WI), and diffusion-
weighted imaging (DWI). Further scans were performed on
subjects who had no abnormalities on baseline images that could
interfere with quantitative analysis and interpretation of the
resting-state fMRI. A turbo field echo (TFE) sequence was used
to obtain three-dimensional (3D)-T1 images with the following
parameters: TR = 7.5ms, TE = 3.5ms, excitation angle: 7◦,
matrix: 256× 256, transverse scanning, slice thickness: 2mm, 176
images. Using the echo-planar imaging (EPI) sequence (TR/TE
= 2,500/30ms, FOV= 224mm X 224mm, flip angle= 90), axial
slices of 3.5mm thickness covering the whole brain were applied
to each subject to acquire the BOLD fMRI data (scan time: 385 s).

Data Processing
VBM Method

Data were processed using the VBM8 toolbox implemented
in SPM8 (Wellcome Department of Imaging Neuroscience,
University College London, London, UK). The analysis was
performed using MATLAB (MathWorks, Natick, MA, USA).
The following steps were included: (1) Each scan was visually
examined for scanning artifacts and anatomic abnormalities, (2)
The plane of the image was adjusted to the anterior commissure
(AC) and posterior commissure (PC) lines on the transverse
plane (3). Each reoriented image was segmented into gray matter,
white matter, and cerebrospinal fluid. Diffeomorphic anatomical
registration through exponentiated lie algebra (DARTEL)
was used to achieve a high dimension of registration and
standardization, and (4) normalized images were transformed
into Montreal Neurological Institute (MNI) space. Gray matter
images were then smoothed using a Gaussian kernel of 8mm full
width at half maximum (FWHM).
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TABLE 1 | Demographic and physiological data.

CMS group Control group P value

Number of subjects 24 25

Age (years) 41.46 ± 1.77 46.08 ± 1.70 0.083

Body Weight (kg) 75.02 ± 2.65 73.70 ± 2.59 0.467

Altitude (m) 3450 ± 585 3556 ± 432 0.544

Education (years) 10.50 ± 5.93 13.55 ± 4.66 0.1 8

CMS score 12.71 ± 3.07 3.82 ± 1.17 0.07

Hematological measurements

HGB (g/L) 215.13 ± 6.47 178.32 ± 6.09 <0.001

RBC (x1012) 6.91 ± 0.19 5.76 ± 0.19 <0.001

Data are mean ± SD.Chronic mountain sickness (CMS) score based on Qinghai criteria

(reference 32).

ALFF Method

The fMRI data were preprocessed using a data processing
assistant for resting-state fMRI (DPARSF). The first 10 time
points were discarded to stabilize the signals. One patient was
excluded due to head motion of >1.5mm and 1.5 degrees. After
processing, the data for each individual were spatially normalized
to theMNI space. Images were resampled to 3mm and smoothed
with a kernel of 8mm FWHM. The REST package (REST, http://
resting-fmri. sourceforge.net) was used to calculate the ALFF
using a voxel-based approach. The power spectrum was obtained
by square-rooted FFT and averaged across 0.01–0.08Hz at each
voxel. The averaged square root was used as the ALFF. To reduce
the global effects of variability across the participants, the ALFF of
each voxel was divided by the global mean ALFF value obtained
previously within the whole-brain mask.

Statistical Analysis
VBM Analysis

A two-sample t-test was conducted between the patients and
control groups. A statistical parametric map was generated at |t|
> 2.0 1, P < 0.05, cluster > 50.

ALFF Analysis

Two-sample t-test was conducted on the groups. The statistical
parametric map was generated at P < 0.05, cluster >

100 (uncorrected).

RESULTS

Demographic and Physiological
Information
The demographic and physiological data of the CMS and control
groups, including age, body weight, altitude, education, CMS
score, and hematological parameters (HGB, RBC), are shown
in Table 1.

Detailed Information of CMS Patients
Detailed information of the patients with CMS, including the
altitude where they lived (in meters), hematological parameters
(HGB, RBC), CMS score, and duration of residence at
high altitude, is shown in Table 2.

TABLE 2 | Detailed information of the patients with chronic mountain sickness

(CMS).

Names of Altitude HGB REB CMS score Residence time

Patients Meter g/L 1012/L degree year

Subject 1 3,500 223 7.29 Mild Generational residence

Subject 2 3,700 227 8.42 Moderate 6

Subject 3 2,500 220 7.28 Mild Generational residence

Subject 4 4,100 255 7.47 Mild Generational residence

Subject 5 3,800 257 7.76 Moderate 13

Subject 6 3,700 235 7.18 Mild 13

Subject 7 3,700 207 7.16 Mild 10

Subject 8 3,450 220 7.00 Mild Generational residence

Subject 9 4,600 222 7.50 Mild 8

Subject 10 3,550 240 7.10 Moderate Generational residence

Subject 11 2,500 239 8.57 Severe 13

Subject 12 3,000 232 7.83 Moderate Generational residence

Subject 13 3,300 264 8.39 Moderate 7

Subject 14 4,200 211 6.35 Mild 6

Subject 15 3,800 224 6.27 Mild Generational residence

Subject 16 4,000 218 6.90 Mild Generational residence

Subject 17 4,000 242 7.54 Mild Generational residence

Subject 18 4,000 246 8.10 Moderate Generational residence

Subject 19 3,500 215 6.80 Mild generational residence

Subject 20 2,600 230 7.13 Moderate Generational residence

Subject 21 3,200 235 7.40 Moderate Generational residence

Subject 22 2,600 228 7.21 Moderate Generational residence

Subject 23 2,800 230 7.33 Moderate Generational residence

Subject 24 3,000 243 7.60 Severe Generational residence

Generational residence = lifelong resident in the high altitude region.

VBM Result
Compared with the control group, the patients with CMS showed
an increase in gray matter volume in the right cerebellum
crus II area, left inferior temporal gyrus, right middle temporal
gyrus, right insula, right caudate nucleus, and bilateral lentiform
nucleus. Volume was decreased in the left middle occipital
gyrus and left middle temporal gyrus (Table 3, Figure 1). White
matter was decreased in the bilateral middle temporal gyrus and
increased in the right Heschl’s gyrus (Table 4, Figure 2).

ALFF Result
Compared with the control group, the patients with CMS in
the resting state showed increased spontaneous brain activity in
the left supramarginal gyrus, left parahippocampal gyrus, and
left middle temporal gyrus along with decreased spontaneous
brain activity in the right cerebellum crus I area and right
supplementary motor area (Table 5, Figure 3).

DISCUSSION

Physiological and Biochemical Effects of
Hypoxia on Human Brain Tissue
The human cerebral cortex has been shown to have features
of neuroplasticity with a structure and function that can be
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modified and adapted to different stimuli (38). Certain physical
and environmental states can lead to alterations in respiratory
and circulatory function, hemoglobin concentration, and arterial
oxygen saturation with subsequent changes in cerebral blood
flow, thereby leading to cumulative changes in brain structure

TABLE 3 | Regional information of altered gray matter volume.

Regions Voxels MNI coordinates t-score (peak)

X Y Z

Cerebellum crus 2 area_R 506 30 −84 −21 5.3735

Inferior temporal gyrus_L 61 −42 −42 −16 5.393

Insula_R 82 40 −4 −4 3.8444

Middle temporal gyrus_R 52 48 −14 −12 3.7036

Caudate nucleu_R 51 12 14 0 2.7356

Putamen_L 58 −22 14 6 3.1452

Putamen_R 53 26 0 6 3.3476

Middle Occipital gyrus _L 58 −14 −90 −4 −3.435

Middle temporal gyrus_L 115 −42 −62 2 −4.2172

(39). The brain responds to hypoxia by regulating the changes
in the cardiovascular and respiratory systems; therefore, the
physiological response to hypoxia may lead to structural changes
in various brain regions (20). The microstructure of gray matter
is a complex mixture of nerve cells, fibers, neuroglial cells, and
vessels. An increase in gray matter volume may be associated
with neural cell hyperplasia, increased synapses, or changes in the
cerebral vasculature (40). Under hypoxic conditions, however,
the decrease in gray matter volume may be associated with
the byproducts of metabolism and increased glutamate release
from nerve cells (41). The new cortex can regenerate, which can

TABLE 4 | Regional information of altered white matter volume.

Regions Voxels MNI coordinates t-score (peak)

X Y Z

Middle temporal gyrus_R 134 48 −12 −12 −3.452

Middle temporal gyrus _L 125 −48 −60 10 −4.3143

Heschl_R 55 42 −20 10 3.0061

FIGURE 1 | Maps of changed brain regions of gray matter in patients with chronic mountain sickness (CMS) compared with the control group. Areas in red are

regions where gray matter volume was significantly increased: left cerebellum crus II area, left inferior temporal gyrus, right insula, right caudate nucleus, bilateral

lentiform nucleus. Areas in blue are regions where gray matter volume was significantly decreased: left middle occipital gyrus, left middle temporal gyrus.
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FIGURE 2 | Maps of changed brain regions of white matter in patients with CMS compared with the control group. Areas in blue are regions where white matter

volume was significantly decreased in the bilateral middle temporal gyrus. Areas in red are regions where white matter volume was significantly increased in the right

Heschl’s gyrus.

TABLE 5 | Regional information of changed amplitude of the low-frequency

fluctuation (ALFF).

Regions Voxels MNI coordinates t-score (peak)

X Y Z

Supramarginal gyrus_L 2,881 −48 −33 30 5.2726

Parahippocampa gyrus_L 164 −30 −24 −18 3.9926

Middle temporal gyrus_L 110 −48 −45 10 3.0787

Supplementary motor area_R 665 3 6 75 −3.6227

cerebellum crus 1 area _R 834 54 −66 −33 −3.0982

be induced by hypoxia and cerebral ischemia, stimulating the
proliferation of microglia and macrophages (42, 43).

The Implications of Changes in Gray Matter
In this study, we investigated the brain structure and functional
changes in patients with CMS using VBM and resting-state
fMRI. Our results demonstrate that the patients with CMS had
increased gray matter in the right cerebellum crus II area, left
inferior temporal gyrus, right insula, right caudate nucleus, and
bilateral lentiform nucleus along with decreased volume in the

left middle occipital gyrus and left middle temporal gyrus. These
findings were similar to the results of a study by Zhang et al.,
which found increased gray matter in the right cerebellum crus II
area and rightmiddle temporal gyrus. The insular cortex has been
shown to be associated with the control of cardiovascular disease,
while the frontal island plays an important role in dyspnea, which
is a symptom demonstrated by most patients with CMS (44–47).
Several studies have shown that the frontal island is necessary
to maintain homeostasis in high-altitude environments. There
is a strong correlation between the right frontal insula gray
matter and aerobic capacity and significant activation of the
insula with dyspnea on fMRI (48–50). In our study, the CMS
group showed increased gray matter volume in the insula, which
could explain the dyspnea symptoms in patients with CMS. Other
brain functional studies on hypoxic patients suffering from a
chronic obstructive pulmonary disease (COPD) or obstructive
sleep apnea (OSA) also revealed changes in gray matter volume,
similar to the findings of our study (51–53).

The Implications of Changes in White
Matter
Our results demonstrated decreased white matter volume in the
bilateral middle temporal gyrus. There was a decrease in gray
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FIGURE 3 | Maps of the amplitude of the low-frequency fluctuation (ALFF) changes in patients with CMS compared with the control group. Areas in red are regions

where ALFF value was significantly increased: left supramarginal gyrus, left parahippocampal gyrus, left middle temporal gyrus. Areas in blue are regions where ALFF

value was significantly decreased: right cerebellum crus I area, right supplementary motor area.

matter volume in the left middle temporal gyrus. These findings
suggest that the middle temporal gyrus may be more sensitive to
long-term hypoxia, as seen in patients with CMS. In this study,
changes in gray matter were greater than those in white matter,
indicating that gray matter was more sensitive to hypoxia in
patients with CMS than white matter (38).

The Implications of Changes in ALFF
The resting-state analysis of patients with CMS showed increased
spontaneous brain activity in the left supramarginal gyrus, right
central sulcus cover, left parahippocampal gyrus, and left middle
temporal gyrus, while the right cerebellar amygdala and right
supplementary motor area showed decreased spontaneous brain
activity. Hypoxia has been shown to increase nerve cell activity
and volume in the hippocampus, which suppresses the normal
physiological response to hyperventilation, thereby aggravating
the hypoxic state (47, 54–57). One study showed that adolescents
migrating from sea level to high-altitude environments had
increased graymatter in the hippocampus (19). Our results, using
resting-state fMRI, showed increased spontaneous brain activity
in the hippocampus of patients with CMS, inducing memory
decline (19). Recent research has shown that the cerebellum is
also involved in cognition, language, and emotion regulation

(58, 59). Our study demonstrated increased ALFF activity and
altered gray matter volume in the right cerebellum crus I area,
which may be associated with changes in cognitive function,
emotional disorder, and irritability in patients with CMS. Future
studies with neuropsychological testing in our patient cohorts
may be helpful to correlate the posterior fossa findings with
altered resting-state fMRI and volumetrics compared to controls
in terms of the neuropsychological changes described above.

Our study has multiple limitations. First, we investigated a
small sample size of patients with CMS, and thismay have skewed
the results. Second, we did not perform neuropsychological tests
in our patient cohorts to correlate our imaging findings with
clinical manifestations. Third, white matter tract integrity may
also be affected by hypoxia in patients with CMS. Future studies
can also study white matter integrity using DTI tractography in
patients with CMS.

In conclusion, the purpose of this study was to investigate
changes in the brain structure using volumetrics and brain
function using resting-state fMRI in patients with CMS due to
long-term hypoxia. The results demonstrated altered gray matter
volume, white matter volume, and brain function in patients with
CMS compared to the controls, which were most likely related
to long-term hypoxia. Therefore, this study shows the effects
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of long-term hypoxia on brain tissue from the perspective of
imaging using volumetrics and resting-state fMRI.
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