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Background/Aims: Four-week treatment of linvencorvir (RO7049389) was generally safe and well tolerated, and showed 
anti-viral activity in chronic hepatitis B (CHB) patients. This study evaluated the efficacy, safety, and pharmacokinetics of 
48-week treatment with linvencorvir plus standard of care (SoC) in CHB patients.

Methods: This was a multicentre, non-randomized, non-controlled, open-label phase 2 study enrolling three cohorts: 
nucleos(t)ide analogue (NUC)-suppressed patients received linvencorvir plus NUC (Cohort A, n=32); treatment-naïve pa-
tients received linvencorvir plus NUC without (Cohort B, n=10) or with (Cohort C, n=30) pegylated interferon-α (Peg-IFN-α). 
Treatment duration was 48 weeks, followed by NUC alone for 24 weeks. 

Results: 68 patients completed the study. No patient achieved functional cure (sustained HBsAg loss and unquantifiable 
HBV DNA). By Week 48, 89% of treatment-naïve patients (10/10 Cohort B; 24/28 Cohort C) reached unquantifiable HBV 
DNA. Unquantifiable HBV RNA was achieved in 92% of patients with quantifiable baseline HBV RNA (14/15 Cohort A, 8/8 
Cohort B, 22/25 Cohort C) at Week 48 along with partially sustained HBV RNA responses in treatment-naïve patients dur-
ing follow-up period. Pronounced reductions in HBeAg and HBcrAg were observed in treatment-naïve patients, while 
HBsAg decline was only observed in Cohort C. Most adverse events were grade 1–2, and no linvencorvir-related serious 
adverse events were reported. 

Conclusions: 48-week linvencorvir plus SoC was generally safe and well tolerated, and resulted in potent HBV DNA and 
RNA suppression. However, 48-week linvencorvir plus NUC with or without Peg-IFN did not result in the achievement of 
functional cure in any patient. (Clin Mol Hepatol 2024;30:191-205)
Keywords: Linvencorvir; RO7049389; Capsid assembly modulator; Chronic hepatitis B; Phase 2

Study Highlights
•	 Linvencorvir plus SoC was generally safe and well tolerated.

•	 Linvencorvir on top of SoC demonstrated potent suppression of HBV DNA and RNA including in patients with high viral 
loads.

•	 Suppression of HBV RNA was partially sustained during off-linvencorvir period in treatment-naïve patients.

•	 Linvencorvir plus SoC durably reduced HBeAg and HBcrAg in treatment-naïve patients.

•	 Linvencorvir on top of Peg-IFN-α and NUC led to an obvious HBsAg decline in treatment-naïve patients including in those 
with HBV genotype C; however, no HBsAg loss was achieved.
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INTRODUCTION

Hepatitis B virus (HBV) infection remains a major global 
health challenge, and is associated with life-threatening con-
sequences.1,2 Functional cure, defined as unquantifiable HBV 
DNA and sustained hepatitis B surface antigen (HBsAg) loss,3 
improves long-term prognosis and is a major therapeutic 
goal for chronic hepatitis B (CHB) therapy.4-7 Currently avail-
able treatments for CHB, including nucleos(t)ide analogues 
(NUCs) and pegylated interferon (Peg-IFN), have limitations. 
NUCs, which inhibit HBV DNA synthesis, are unable to fully 
suppress viral replication in some patients (or do so very 
slowly), especially in hepatitis B e antigen (HBeAg) positive 
patients and those with high viral load.8,9 NUCs must be tak-
en life-long, have no direct effect on HBV RNA or covalently 
closed circular DNA (cccDNA), and rarely lead to functional 
cure.3,5,7,10,11 Peg-IFN therapy is finite, but results in low rates 
of functional cure and is associated with side effects.12 There 
is therefore a need for novel, well tolerated treatments that 
can augment viral suppression and help clear HBsAg in com-
bination with current standard of care (SoC).10

The HBV capsid is involved in multiple steps of the HBV life 
cycle and is an important target of antiviral therapies in de-
velopment.13,14 Several capsid assembly modulators (CAMs), 
which inhibit viral replication by inducing the formation of 
aberrant non-capsid polymers (CAM-A, previously known as 
Class I) or morphologically normal but nucleic acid-free emp-
ty capsids (CAM-E, previously known as Class II),15 have 
reached phase 1 and 2 clinical development.13 Studies to date 
have shown that 24-week treatment with CAM and NUC 
leads to suppression of HBV DNA and RNA, but has limited 
effect on HBV antigens.14,16,17

Linvencorvir (RO7049389) is a novel small molecule CAM 
that induces aberrant capsid assembly, leading to the degra-
dation of viral core protein, thereby inhibiting pregenomic 
RNA (pgRNA) encapsidation and HBV DNA replication. Fur-
ther, linvencorvir also induces the disassembly of nucleocap-
sids, potentially interfering with cccDNA biosynthesis.18 A 
first-in-human, three-part phase 1/2 study of linvencorvir has 
been conducted in healthy volunteers and CHB patients. In 
Part 1 of the phase 1/2 study, linvencorvir showed favourable 
safety and pharmacokinetic profiles in healthy volunteers fol-
lowing single ascending doses up to 2,500 mg, and multiple 
ascending doses up to 1,200 mg/day for 2 weeks.19 In Part 2, 
4-week monotherapy with linvencorvir up to 1,000 mg/day 

was generally safe and well tolerated, and had potent antivi-
ral activity in viremic CHB patients.20 Here, we report Part 3 
(phase 2 stage) of the phase 1/2 study, in which we evaluated 
the efficacy, safety and pharmacokinetics of linvencorvir in 
combination with SoC therapies (NUC with or without Peg-
IFN-α) for 48 weeks in virologically-suppressed and treat-
ment-naïve CHB patients.

MATERIALS AND METHODS

Study design and population

This multicenter, non-randomized, non-controlled, open-
label phase 2 study (Part 3 of the first-in-human linvencorvir 
trial) was performed at 16 sites in Taiwan (n=5), Mainland 
China (n=3), New Zealand (n=2), Thailand (n=2), Australia 
(n=1), Bulgaria (n=1), Hong Kong (n=1) and Singapore (n=1). 
This study comprised three treatment cohorts, in which NUC-
suppressed or treatment-naïve CHB patients received open-
label treatment with linvencorvir plus a first-line NUC (ente-
cavir [ETV], tenofovir alafenamide [TAF], or tenofovir 
disoproxil fumarate [TDF]) with or without Peg-IFN-α for 48 
weeks (Fig. 1). In Cohort A, NUC-suppressed patients received 
linvencorvir plus NUC therapy for 48 weeks. In Cohort B, 
treatment-naïve patients received linvencorvir alone for the 
first 4 weeks of the treatment period, followed by linvencor-
vir plus NUC therapy for the remaining 44 weeks. Treatment-
naïve patients enrolled in Cohort C received linvencorvir plus 
NUC and Peg-IFN-α therapy throughout the 48-week study 
treatment period. After the study treatment period, all pa-
tients were followed up for 24 weeks with NUC monotherapy, 
or without NUC if they met protocol-defined NUC stopping 
criteria (HBsAg below 100 IU/mL and HBV DNA below the 
lower limit of quantification [LLOQ; 20 IU/mL]) at the end of 
study treatment (Week 48). During the off-treatment follow-
up period, if alanine aminotransferase (ALT) >2 times the up-
per limit of normal (ULN; 41 U/L for men and 33 U/L for wom-
en) was accompanied by confirmed virological relapse, NUC 
treatment may be restarted at the discretion of the investiga-
tor and applicable CHB guidelines.

Eligible patients were aged 18–60 years with CHB (a posi-
tive HBsAg or HBV DNA test or HBeAg-positive for more than 
6 months before screening), and HBsAg concentration above 
250 IU/mL at screening. NUC-suppressed patients were re-
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quired to have been treated with NUC monotherapy (ETV, 
TAF, or TDF) for at least 12 months, and must have been on 
the same NUC therapy for at least 3 months before screen-
ing. These patients should have HBV DNA below LLOQ at 
screening, and ALT ≤2×ULN at screening and Day -1. Treat-
ment-naïve patients were required to have previously re-
ceived anti-HBV treatments for less than 30 days in total, and 
to have not received any anti-HBV treatment within 3 months 
prior to the first study dose. Treatment-naïve patients also re-
quired HBV DNA of at least 2×104 IU/mL (HBeAg-positive pa-
tients) or 2×103 IU/mL (HBeAg-negative patients) at screen-
ing, and ALT levels between 1–5×ULN at screening and 
below 5×ULN at Day -1. Full details of the eligibility criteria 
are provided in the Supplementary Material.

The study was conducted in accordance with Good Clinical 
Practice standards and the Declaration of Helsinki. The study 
protocol was approved by the institutional review boards or 
ethics committees from all participating study centres, and 
written informed consent was obtained from each partici-
pant included in the study.

Procedures

In all three treatment cohorts, linvencorvir 600 mg was ad-
ministered orally once a day in the fasted state (≥2 hours af-
ter a meal and ≥2 hours before the next meal). NUC (ETV, TAF, 
or TDF) and Peg-IFN-α therapy were administered according 
to the local label or guidelines. Investigators could refer to 

Peg-IFN stopping rules recommended in major guide-
lines.5,7,21 If Peg-IFN was stopped before the end of the 48-
week treatment period, linvencorvir and NUC were to be 
continued until the end of the treatment period. At the end 
of the study treatment period, NUC therapy was continued 
for 24 weeks unless patients met the NUC stopping criteria. 

Safety-related clinical and laboratory evaluations, and 
blood sample collections for the determination of HBV viral 
dynamic responses were conducted on day-1, during the 
study treatment period (every 2 weeks for the first 4 weeks 
and every 4 weeks thereafter), and during the follow-up (ev-
ery 8 weeks for patients not meeting the NUC stopping crite-
ria; every 2 weeks for the first 12 weeks and every 4 weeks 
thereafter for patients meeting the NUC stopping criteria). 
Details of methodologies for determining HBV genotype, 
and measuring viral dynamic markers are provided in the 
Supplementary Material. In particular, plasma HBV RNA was 
quantitatively assessed at Roche Diagnostic International Ltd 
(for non-Chinese sites) or Q2 Solutions for Chinese sites using 
a COBAS® HBV RNA test on the Roche COBAS®6800 Sys-
tem.22,23 Safety assessments included monitoring and record-
ing the occurrence and severity of adverse events (AEs), 
physical examinations, safety laboratory assessments, vital 
signs, and 12-lead electrocardiograms (ECGs). AEs and ALT 
and aspartate aminotransferase (AST) elevations were grad-
ed according to the Division of AIDS criteria (Supplementary 
Table 1).

Plasma samples for pharmacokinetics (PK) analysis were 

Figure 1. Study design. NUC, nucleos(t)ide analogue; HBV, hepatitis B virus; LLOQ, lower limit of quantification; CHB, chronic hepatitis B; QD, 
once a day; NUC, nucleos(t)ide analogue; Peg-IFN, pegylated interferon; HBsAg, hepatitis B surface antigen.
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collected at the following time points: (1) pre-dose and 1–8 
hours post-dose on day 1 and Weeks 4 (Cohort B only) and 
24, (2) pre-dose and 1–4 hours post-dose at all other sched-
uled visits during study treatment; and (3) before and 1–24 
hours after the last dose of study treatment.

Endpoints

The primary endpoint in this study was HBV DNA below 
the LLOQ (20 IU/mL) with HBsAg loss (<0.05 IU/mL) at 24 
weeks post-treatment (defined as functional cure in the pro-
tocol). Secondary efficacy endpoints included serum HBV 
DNA and RNA below the LLOQ, HBsAg and HBeAg loss and 
anti-HBs and anti-HBe seroconversion, quantitative change 
from baseline for the HBV markers including serum HBV DNA, 
HBV RNA and HBV antigens. Secondary efficacy endpoints 
were assessed in each cohort overall and the following pa-
tient subgroups: HBeAg-positive and HBeAg-negative, and 
low and high baseline HBsAg (cutoff: 4 log10 IU/mL). Relation-
ships between secondary efficacy endpoints and HBV geno-
type and high baseline HBV DNA (>7 log10 IU/mL) were also 
explored. Other secondary endpoints were the incidence of 
AEs and most common AEs, and the PK profile of linvencorvir 
and its metabolites when used in combination with SoC 
therapies. 

Statistical analysis

The sample size for this study was intended to support the 
assessment of the functional cure rate. Individual cohort 
sample sizes of at least 10–30 were planned to ensure that 
the lower 95% confidence interval was above 5–14% if there 
was an observed functional cure rate of 30%, assuming bino-
mial distribution.

All patients who received at least one dose of linvencorvir 
were included in the safety and efficacy analysis populations. 
Efficacy analyses were based on the actual number of pa-
tients with valid results at each study visit. For the PK analy-
sis, patients who significantly violated inclusion or exclusion 
criteria, who deviated significantly from the protocol, or for 
whom data were unavailable or incomplete which may have 
influenced the PK analysis were excluded. 

For continuous variables, descriptive statistics were calcu-
lated. Values below the LLOQ were imputed to numeric val-
ues below the LLOQ value to make a conservative calculation 

of change from baseline values (Supplementary Table 2). For 
categorical data, the number and proportion of study partici-
pants in each category were summarized. Spearman’s rank 
correlation was calculated to determine the relationship be-
tween graded treatment-emergent ALT elevations and cate-
gorized maximal declines in HBsAg. PK parameters were cal-
culated from a non-compartment analysis using Phoenix 
software (WinNonlin models version 6.4). 

RESULTS

Patient characteristics

Between June 14, 2019 and October 19, 2020, 72 (44%) of 
163 screened patients were enrolled in the study: 32 NUC-
suppressed patients in Cohort A, 10 and 30 treatment-naïve 
patients in Cohorts B and C, respectively (Fig. 2). All 72 pa-
tients received linvencorvir, and 68 (94.4%) patients complet-
ed the 72-week study. Linvencorvir treatment was discontin-
ued early for non-safety reasons in four patients (on days 15 
and 62 for two patients in Cohort A, and on days 83 and 237 
for two patients in Cohort C).

Baseline demographics and clinical characteristics are 
shown in Table 1. In Cohorts A and C, patients were predomi-
nantly Asian and male, whereas 5 (50%) patients were Asian 
and 5 (50%) patients were male in Cohort B. HBV DNA levels 
were below the LLOQ in all Cohort A patients, but 15 (46.9%) 
patients had quantifiable HBV RNA. Mean baseline HBV DNA 
levels were 5.73 log10 IU/mL in Cohort B and 6.91 log10 IU/mL 
in Cohort C. Two (20%) and 18 (60%) patients in Cohorts B 
and C, respectively, had a high viral load (HBV DNA >7 log10 
IU/mL). Eight (80%) and 27 (90%) patients in Cohorts B and C, 
respectively, had baseline quantifiable HBV RNA. In Cohort A, 
six (19%) patients had HBV genotype C, as did five patients 
(50%) in Cohort B, and 11 patients (37%) in Cohort C. NUC-
suppressed patients were mainly HBeAg-negative (66% 
[21/32]), but treatment-naïve patients were mainly HBeAg-
positive (63% [25/40]). Mean baseline HBsAg levels across the 
three cohorts ranged from 3.2 log10 IU/mL in Cohort A to 3.96 
log10 IU/mL in Cohort C. More than half of the Cohort C pa-
tients had high baseline HBsAg levels (≥ 4 log10 IU/mL).



196

Clinical and Molecular Hepatology
Volume_30 Number_2 April 2024

http://www.e-cmh.orghttps://doi.org/10.3350/cmh.2023.0422

Primary endpoint

In this study, no patient achieved HBV DNA<LLOQ with HB-
sAg loss at Week 24 post-study treatment (functional cure). 

HBV DNA responses

In NUC-suppressed patients (Cohort A), mean HBV DNA lev-
els remained below the LLOQ throughout the study. In treat-
ment-naïve patients, HBV DNA levels declined by a mean 
(standard deviation [SD]) of 4.45 (1.86) and 5.80 (1.81) log10 IU/
mL at Week 48 in Cohorts B and C, respectively (Fig. 3A). With 
higher baseline HBV DNA levels, HBeAg-positive patients 
achieved larger reductions in HBV DNA than HBeAg-negative 
patients (mean [SD] HBV DNA declines of 5.48 [1.19] vs. 2.90 
[1.62] log10 IU/mL, respectively, in Cohort B; 6.97 [0.74] vs. 3.80 
[1.20] log10 IU/mL, respectively, in Cohort C) (Fig. 3B). All ten 
(100%) Cohort B patients achieved HBV DNA below the LLOQ 
at Week 48, including two HBeAg-positive patients with high 

viral load. By Week 48, HBV DNA levels reached below the 
LLOQ in 86% (24/28) of Cohort C patients who completed 
48-weeks of study treatment, including in 76% (13/17) of 
HBeAg-positive patients with high viral load. All the remain-
ing four patients who had not achieved unquantifiable HBV 
DNA during the study treatment had significantly reduced vi-
ral DNA levels (<150 IU/mL) at Week 48. At the end of study 
treatment, all Cohort B patients entered into the 24-week fol-
low-up with NUC treatment. Five patients in Cohort C met 
the NUC stopping criteria at Week 48, so they were followed 
without NUC. During the NUC-alone follow-up period, 96% 
(26/27) of NUC-compliant Cohorts B and C patients with un-
quantifiable HBV DNA by Week 48 sustained HBV DNA below 
the LLOQ; the four patients who had not achieved unquanti-
fiable HBV DNA by Week 48 attained HBV DNA below the 
LLOQ or maintained low HBV DNA levels. Among the five pa-
tients who entered off-treatment follow-up, four patients ex-
perienced HBV DNA rebound to quantifiable levels at around 
Week 56. Three out of them were not retreated at the investi-

Figure 2. Trial profile.
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Table 1. Baseline demographics and clinical characteristics

Characteristics
NUC-suppressed  
Cohort A (n=32)

Treatment-naïve

Cohort B (n=10) Cohort C (n=30)

Age, years 47.2 (8.3) 43.8 (9.8) 32.8 (7.7)

Sex

Female 13 (41%) 5 (50%) 7 (23%)

Male 19 (59%) 5 (50%) 23 (77%)

Race

Asian 25 (78%) 5 (50%) 28 (93%)

White 6 (19%) 4 (40%) 1 (3%)

Other 1 (3%) 1 (10%) 1 (3%)

Previous NUC treatment, months 98.9 (53.8) 0 (0) 0.1 (0.4)*

Min–max 16.9–213.9 0–0 0–2.0*

HBV DNA

log10 IU/mL <LLOQ 5.73 (1.86) 6.91 (1.89)

>7 log10 IU/mL 0 2 (20%) 18 (60%)

HBV RNA

≥LLOQ 15 (47%) 8 (80%) 27 (90%)

log10 copies/mL‡ 2.58 (1.06) 4.14 (1.41) 5.1 (1.93)

HBsAg, 

log10 IU/mL 3.20 (0.52) 3.48 (0.68) 3.96 (0.9)

≥4 log10 IU/mL 4 (13%) 1 (10%) 16 (53%)

HBeAg

Positive† 11 (34%) 6 (60%) 19 (63%)

Negative 21 (66%) 4 (40%) 11 (37%)

log10 IU/mL§ 0.32 (0.77) 1.06 (0.85) 2.73 (0.60)

HBcrAg

≥LLOQ 25 (78%) 9 (90%) 27 (90%)

log10 U/mL‡ 4.68 (1.04) 5.90 (1.67) 7.29 (1.88)

HBV genotype

A 1 (3%) 0 1 (3%)

B 8 (25%) 0 13 (43%)

C 6 (19%) 5 (50%) 11 (37%)

D 0 5 (50%) 2 (7%)

Unknown 17 (53%) 0 3 (10%)

ALT

U/L 20.66 (7.30) 59.40 (36.57) 94.10 (42.96)

Normal 32 (100%) 1 (10%) 2 (7%)

>1–2xULN 0 7 (70%) 11 (37%)

>2–5xULN 0 2 (20%) 17 (57%)

Data are presented as mean (standard deviation) or number (%).
ALT, alanine aminotransferase; HBV, hepatitis B virus; HBcrAg, hepatitis core-related antigen; HBeAg, hepatitis B e antigen; HBsAg, hepatitis 
B surface antigen; LLOQ, lower limit of quantification; NUC, nucleos(t)ide analogue; ULN, upper limit of normal.
*Only one patient received Lamivudine from Aug to Sep in 2011 (the exact start and end dates were unknown) before screening in 2020. 
†Calculated from patients who were ≥LLOQ (LLOQ=10 copies/mL for HBV RNA, 1,000 U/mL for HBcrAg). ‡Cutoff index value ≥1. §Calculated 
from patients who were HBeAg-positive.
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gators’ discretion and the remaining patient restarted NUC 
treatment from Week 60 with HBV DNA subsequently declin-
ing to below the LLOQ.

HBV RNA responses

Among the patients with quantifiable baseline HBV RNA, 
HBV RNA levels were suppressed to below the LLOQ at Week 
48 in 93% (14/15), 100% (8/8) and 88% (22/25) of patients in 
Cohorts A, B and C, respectively. The mean (SD) 48-week de-
clines in HBV RNA for patients with quantifiable baseline HBV 
RNA were 1.82 (1.05) log10 copies/mL in Cohort A, 3.45 (1.41) 

log10 copies/mL in Cohort B, and 4.20 (1.78) log10 copies/mL in 
Cohort C (Fig. 4). During the follow-up without linvencorvir, 
HBV RNA levels rebounded to approximately the baseline 
levels in Cohort A patients, but mean reductions from base-
line of 2.16 (1.66) and 3.27 (1.71) log10 copies/mL were re-
tained at Week 72 in Cohorts B and C patients, respectively. 
Patients in all three cohorts with unquantifiable baseline HBV 
RNA maintained HBV RNA levels below the LLOQ during the 
study treatment and NUC-alone follow-up periods.

Figure 3. Mean HBV DNA levels over 72 weeks. (A) Three cohorts overall and (B) HBeAg-positive and HBeAg-negative subgroups of treat-
ment-naïve patients in Cohorts B and C. *Excluded one non-compliant patient during the FU period. **One patient was retreated with NUC 
from Week 60. Error bars represent standard deviation. HBV, hepatitis B virus; EOT, end of treatment; FU, follow-up; NUC, nucleos(t)ide ana-
logue; Peg-IFN, pegylated interferon.
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HBsAg responses

No HBsAg loss or anti-HBs seroconversion occurred among 
patients completing the study. No apparent mean declines 
for Cohort A and B in HBsAg were observed during the study 
(Fig. 5A), but two HBeAg-positive patients in Cohort B had 
maximal HBsAg declines of 0.40–0.45 log10 IU/mL. In Cohort C, 
at Week 48, mean (SD) HBsAg decline was 1.39 (0.98) log10 IU/
mL and numerically larger mean (SD) HBsAg declines oc-
curred in HBeAg-positive and patients with baseline HBsAg 
≥4 log10 IU/mL (1.64 [0.90] log10 IU/mL and 1.72 [0.88] log10 IU/
mL, respectively). HBV genotype B and C patients achieved 
mean (SD) HBsAg declines of 1.35 (0.62) and 1.74 (1.13) log10 
IU/mL from baseline levels of 3.80 (0.76) and 4.41 (0.91) log10 
IU/mL, respectively (Table 2, Fig. 5A). At Week 48, 21% (6/28) 
and 68% (19/28) of patients achieved HBsAg levels <2 and 3 
log10 IU/mL, respectively (Table 2). HBsAg declines were con-
current with treatment-emergent grade 2–4 ALT elevations 
which mostly occurred in treatment-naïve patients, with sta-
tistically significant positive correlations between graded ALT 
elevations and categorical maximal HBsAg declines (Spear-
man’s rho 0.432, P=0.017 for Cohort C and 0.697, P=0.025 for 
Cohort B) (Supplementary Fig. 1). 

HBeAg and HBcrAg responses

At Week 48, NUC-suppressed HBeAg-positive Cohort A pa-
tients had mean (SD) HBeAg decline of 0.23 (0.23) log10 IU/mL 

from 0.41 (0.75) log10 IU/mL at baseline. Treatment-naïve, 
HBeAg-positive Cohorts B and C patients had mean (SD) 
HBeAg declines of 1.48 (0.84) and 2.10 (0.90) log10 IU/mL, re-
spectively (Fig. 5B). Among the HBeAg-positive treatment-
naïve patients, 50% (3/6) and 39% (7/18) achieved HBeAg loss 
and anti-HBe seroconversion occurred in 17% (1/6) and 33% 
(6/18) in Cohorts B and C, respectively. At Week 48, HBcrAg 
levels declined from baseline by mean (SD) of 0.13 (0.24), 1.23 
(0.76), and 1.76 (1.1) log10 U/mL in Cohorts A, B, and C, respec-
tively (Fig. 5C). During the follow-up period, levels of HBeAg 
and HBcrAg were generally sustained in treatment-naïve pa-
tients.

Adverse events

AEs occurred in 69% (22/32) of NUC-suppressed patients in 
Cohort A, 90% (9/10) of treatment-naïve patients in Cohort B, 
and all 30 treatment-naïve patients in Cohort C (Table 3). 
Headache, pyrexia, and increased ALT levels were among the 
most commonly reported AEs. Increased ALT levels occurred 
mainly at Weeks 2–8, and resolved within 14 weeks with no 
accompanying bilirubin/indirect bilirubin increase, although 
a mild increase in bilirubin occurred in a NUC-suppressed pa-
tient who had pre-existing liver disease (cholestasis and Gil-
bert syndrome). Moreover, in all five patients with grade 4 
ALT elevations, linvencorvir was interrupted per protocol, but 
no further ALT elevations occurred after re-administering. 
Most AEs were grades 1–2. Grade 3–4 AEs were reported in 

Figure 4. Mean HBV RNA levels over 72 weeks. Error bars represent standard deviation. HBV, hepatitis B virus; EOT, end of treatment; LLOQ, 
lower limit of quantification; NUC, nucleos(t)ide analogue; Peg-IFN, pegylated interferon.
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Figure 5. HBsAg (A), HBeAg (B) and HBcrAg (C) mean changes from baseline* over 72 weeks. *Patients with baseline value below the LLOQ 
were excluded from change from baseline analysis. HBsAg ≥4 log means baseline HBsAg level ≥4 log10 IU/mL; HBsAg <4 log means baseline 
HBsAg level <4 log10 IU/mL. Error bars represent standard deviation. EOT, end of treatment; HBsAg, hepatitis B surface antigen; HBcrAg, hepati-
tis B core-related antigen; LLOQ, lower limit of quantification; NUC, nucleos(t)ide analogue.
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four Cohort A patients (13%), two Cohort B patients (20%), 
and 11 Cohort C patients (37%). There were eight serious AEs 
and one death (due to malignant melanoma), none of which 
were related to linvencorvir. Most treatment-related AEs oc-
curred in Cohort C: 74 related to linvencorvir, 25 related to 
NUC and 266 related to Peg-IFN-α. Four AEs were assessed as 
being related to linvencorvir in each of Cohorts A and B (Ta-
ble 3). There were no trends of clinically significant changes 
in vital signs or ECG data.

Pharmacokinetics

Linvencorvir was rapidly absorbed and eliminated, with 
low accumulation of linvencorvir and its major metabolites in 
plasma after 48 weeks of dosing. The PK profiles of linvencor-
vir, with or without SoC (NUC with or without Peg-IFN-α), 
were considered similar. The plasma concentration of NUCs 
and Peg-IFNs remained stable during the study treatment 
period. 

DISCUSSION

In this study, no patient achieved functional cure at 24 
weeks post-48-week treatment with linvencorvir 600 mg/

day plus NUC with or without Peg-IFN-α. Linvencorvir plus 
NUC with or without Peg-IFN-α did demonstrate potent sup-
pression of HBV DNA and RNA. Linvencorvir plus NUC and 
PEG-IFN-α in treatment-naïve patients led to the greatest 
overall declines in HBV antigens. Linvencorvir was generally 
safe and well tolerated in combination with SoC.

HBV DNA was maintained below the LLOQ throughout the 
study in NUC-suppressed patients and was suppressed below 
the LLOQ in the majority of treatment-naïve patients, includ-
ing HBeAg-positive patients with high viral load. Moreover, 
after linvencorvir cessation, HBV DNA generally remained 
suppressed by NUC monotherapy. While complete suppres-
sion of HBV DNA is an essential part of functional cure, 30% 
to 50% HBeAg positive and/or patients with high viral load 
cannot achieve HBV DNA<LLOQ with 1–3 years NUC mono-
therapy. Furthermore, some CHB patients may develop low-
level viremia even with long-term NUC treatment.7-9 For 
these NUC difficult-to-treat patients, addition of linvencorvir 
to NUC may be a potential therapeutic strategy. Larger and 
longer trials would be necessary to test this hypothesis.

Serum HBV RNA was suppressed to below the LLOQ in the 
majority of NUC-suppressed and treatment-naïve patients 
during study treatment, which reflected target engagement 
by linvencorvir. During the off-linvencorvir follow-up period, 
retained HBV RNA declines were only observed in treatment-

Table 2. HBsAg levels in treatment-naïve patients in Cohort C

HBsAg
Linvencorvir+NUC+Peg-IFN-α (Cohort C)

Overall HBeAg+ HBeAg-

Baseline n=30 n=19 n=11

log10 IU/mL 3.96 (0.90) 4.40 (0.71) 3.19 (0.63)

<3 log10 IU/mL 6 (20%) 1 (5%) 5 (45%)

<2 log10 IU/mL 0 0 0

At Week 48 n=28 n=18 n=10

CFB, log10 IU/mL –1.39 (0.98) –1.64 (0.90) –0.94 (0.99)

Genotype B* –1.35 (0.62) –1.30 (0.64) –1.50 (0.62)

Genotype C† –1.74 (1.13) –2.08 (1.05) –0.84 (0.91)

≥0.5 log10 IU/mL CFB 21 (75.0%) 16 (88.9%) 5 (50.0%)

>1.0 log10 IU/mL CFB 20 (71.4%) 15 (83.3%) 5 (50.0%)

>2.0 log10 IU/mL CFB 7 (25.0%) 5 (27.8%) 2 (20.0%)

<3 log10 IU/mL 19 (68%) 12 (61%) 8 (80%)

<2 log10 IU/mL 6 (21%) 2 (11%) 4 (40%)

Data are presented as mean (standard deviation) or number (%).
CFB, change from baseline; HBsAg, hepatitis B surface antigen; NUC, nucleos(t)ide analogue; Peg-IFN, pegylated interferon. 
*Overall, n=12; HBeAg+, n=9; HBeAg-, n=3. †Overall, n=11; HBeAg+, n=8; HBeAg-, n=3.



202

Clinical and Molecular Hepatology
Volume_30 Number_2 April 2024

http://www.e-cmh.orghttps://doi.org/10.3350/cmh.2023.0422

naïve patients, suggesting that initial HBV RNA declines in 
treatment-naïve patients may be more readily retained than 
secondary declines in NUC-suppressed patients. This partially 
sustained HBV RNA suppression, together with durable de-
clines in HBcrAg and HBeAg, may indicate suppression of 
cccDNA transcriptional activity or a reduction in cccDNA lev-

els,24,25 which is rarely observed in NUC therapy alone.26 Con-
sistent with this hypothesis, CAMs have been shown in vitro 
to induce disassembly of nucleocapsids, thereby interfering 
with cccDNA reservoir establishment and replenishment.26-28

Linvencorvir showed little benefit in HBsAg reduction on 
top of NUC, however, when combined with Peg-IFN-α, HB-

Table 3. Overview of AEs in NUC-suppressed (Cohort A) and treatment-naïve (Cohorts B and C) patients

Linvencorvir+NUC Linvencorvir+NUC+Peg-IFN-α  
Cohort C (n=30)Cohort A (n=32) Cohort B (n=10)

Patients with at least one AE, n (%) 22 (69%) 9 (90%) 30 (100)

Total number of AEs 110 48 468

Total number of treatment-related AEs 4 5 301

Linvencorvir 4 4 74

NUC 0 1 25

Peg-IFN NA NA 266

Most common AEs*, n (%)

Headache 3 (9%) 2 (20%) 14 (47%)

Pyrexia 0 1 (10%) 18 (60%)

ALT increased 1 (3%) 1 (10%) 11 (37%)

Alopecia 0 1 (10%) 11 (37%)

Platelet count decreased 0 0 12 (40%)

Fatigue 1 (3%) 0 9 (30%)

AST elevation 1 (3%) 0 9 (30%)

Decreased appetite 0 0 10 (33%)

Patients with at least one, n (%) 

AE with fatal outcome 0 1 (10%)‡ 0

SAE 1 (3%)† 1 (10%)‡ 2 (7%)§

AE leading to withdrawal 0 0 2 (7%)¶

AE leading to Linvencorvir/Peg-IFN 
interruption‖ or modification

1 (3%)/NA 1 (10%)/NA 5 (17%)/12 (40%)

Related AE 3 (9%) 3 (30%) 30 (100%)

Related to Linvencorvir 3 (9%) 2 (20%) 21 (70%)

Related to NUC 0 1 (10%) 10 (33%)

Related to Peg-IFN NA NA 30 (100%)

Grade 3–4 AE 4 (13%) 2 (20%) 11 (37%)

Non-ALT elevation-associated Grade 
3–4 AE

3 (9%) 1 (10%) 9 (30%)

AEs, adverse events; ALT, alanine aminotransferase; AST, aspartate aminotransferase; NA, not applicable; NUC, nucleos(t)ide analogue; 
Peg-IFN, pegylated interferon; SAE, serious adverse event; ULN, upper limit of normal; URTI, upper respiratory tract infection.
*Occurring with ≥30% incidence in at least one cohort. †Gastroesophageal reflux disease onset on Day 364. ‡The patient died on Day 535 
due to malignant melanoma (SAE) onset on Day 425, with unresolved cellulitis and lymphadenitis (SAE diagnosed on Day 446). §One pa-
tient had SAEs of URTI (Day 185) and cellulitis (Day 251); one patient had SAEs of hypersensitivity (Day 286) and dizziness (Day 472). ¶Peg-
IFN-α. AEs: thyroid disorder; allergic dermatitis. ‖Per protocol, patients with ALT >10×ULN should interrupt linvencorvir and Peg-IFN treat-
ment (Cohort C only).
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sAg declines were observed in treatment-naïve patients. No-
tably, the HBsAg mean decline observed in Cohort C was 
larger than it was in a previous study of TDF plus Peg-IFN 
combination therapy.29 Moreover, HBsAg levels declined 
comparably in Cohort C patients with HBV genotypes C and 
B. It has been reported that HBsAg decline was significantly 
lower in patients with either HBV genotypes C or D than in 
patients with HBV genotypes A and B with one-year Peg-IFN 
plus NUC treatment.30,31 However, due to the limited sample 
size, the baseline differences, and the lack of a control group 
of Peg-IFN plus NUC, any additional benefit to HBsAg reduc-
tion from linvencorvir on top of Peg-IFN and NUC needs to 
be confirmed.

There were no unexpected safety concerns when linven-
corvir was administered in combination with NUC or NUC 
plus Peg-IFN-α. AEs occurring in patients receiving linvencor-
vir plus NUC and Peg-IFN-α were consistent with the safety 
profile of Peg-IFN-α. As the observations seen in the previous 
study with 4-week linvencorvir monotherapy,20 transient 
treatment-emergent ALT elevations were observed almost 
exclusively in treatment-naïve patients but not in NUC-sup-
pressed patients, and were accompanied by declining levels 
of viral antigens, including HBsAg. These ALT elevations are 
consistent with the natural history of CHB patients with ac-
tive viral replication and are considered indicators of the host 
immune response against HBV rather than drug-induced liv-
er injury.32-34

Limitations of this study include its non-randomized, non-
controlled design with no stratification, as well as the small 
sample size. The small sample size and unbalanced baseline 
characteristics detract from the validity of subgroup analy-
ses. 

In conclusion, linvencorvir is generally safe and well toler-
ated when added to SoC therapy for CHB. Linvencorvir on 
top of SoC potently suppresses HBV replication, including in 
HBeAg-positive patients and those with high viral load, how-
ever limited benefit is shown towards HBsAg loss. Next-gen-
eration CAMs with higher potency and greater inhibitory ac-
tivity towards cccDNA reservoir maintenance may result in 
different outcomes towards the achievement of functional 
cure in CHB patients.
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