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Abstract: Histones are the main structural proteins of eukaryotic chromatin. Histone acetylation/

deacetylation are the epigenetic mechanisms of the regulation of gene expression and are catalyzed
by histone acetyltransferases (HAT) and histone deacetylases (HDAC). These epigenetic alterations
of DNA structure influence the action of transcription factors which can induce or repress gene
transcription. The HATs catalyze acetylation and the events related to gene transcription and are
also responsible for transporting newly synthesized histones from the cytoplasm to the nucleus.
The activity of HDACs is mainly involved in silencing gene expression and according to their
specialized functions are divided into classes I, II, III and IV. The disturbance of the expression and
mutations of HDAC genes causes the aberrant transcription of key genes regulating important cancer
pathways such as cell proliferation, cell-cycle regulation and apoptosis. In view of their role in cancer
pathways, HDACs are considered promising therapeutic targets and the development of HDAC
inhibitors is a hot topic in the search for new anticancer drugs. The present review will focus on
HDACs I, II and IV, the best known inhibitors and potential alternative inhibitors derived from
natural and synthetic products which can be used to influence HDAC activity and the development
of new cancer therapies.

Keywords: histone deacetylases; histone deacetylase inhibitors; histones; cancer; curcumin; chalcones;
histone acetyltransferase

1. Introduction

The mechanisms regulating gene expression involve a series of molecular modifications in DNA
and chromatin and are responsible for the response to any type of physiological signaling in the
organism [1]. This constant maintenance requires specific levels of control, and is undertaken by
transcriptional regulators which bind to selected sequences in the DNA, inducing the production
of proteins responsible for the structural modifications in chromatin and the consequent binding of
regulators to DNA, causing epigenetic modifications [2]. Chromatin consists of the association of
double-stranded DNA and proteins whose basic unit is the nucleosome. Chromatin can be divided into
euchromatin, which corresponds to transcriptionally active DNA, and heterochromatin, which consists
of inactive DNA and appears to exert structural functions during the cell cycle, allowing the cell to
have control of the genes present in its nucleus [3,4]. The nucleosome core consists of 146 bp of DNA
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wrapped around a histone octamer. Histones are the main structural proteins associated with DNA in
eukaryotic cells [5]. These proteins are divided into two groups: core histones, including H2A, H2B,
H3 and H4, and linker histones (H1/H5) [6]. The four core histones H2A, H2B, H3 and H4 are assembled
into H2A/H2B dimers and H3/H4 tetramers, forming the octamer complex composed of two H2A/H2B
dimers and one H3/H4 tetramer, while the linker histone H1 binds to the DNA entry or exit sites on the
surface of the nucleosomal core particle and completes the nucleosome [6,7]. These nuclear histones
are small basic proteins composed of a large number of amino acids, mostly lysines and arginines [8].
Histones possess side chains that can be the target of covalent modifications such as acetylation,
the mono-, di- and tri-methylation of lysins and the phosphorylation of serines [9]. Several of these side
chain modifications can occur in the N-terminal tail domains of histones located outside the nucleosome,
thereby weakening the binding between histones and DNA [10] and between regulatory proteins and
histones [11,12]. This weakened binding can facilitate the action of transcription factors in this altered
region, inducing or repressing gene transcription [13]. Specific modifications can also occur in the side
chains of the internal histones of the nucleosome [14]. Histone modifications catalyzed by enzymes
use the energy of ATP hydrolysis to modify nucleosomes [15] and this recruitment of complexes with
specific enzymatic activities can influence gene transcription, replication, repair and recombination [14].
The tail domains of core histones can be modified by acetylation, phosphorylation, methylation,
ubiquitination and sumoylation and less frequently, by citrullination and ADP-ribosylation [16].
These post-translational modifications alter the interactions between DNA and histones or the binding
of proteins and transcription factors to chromatin [17]. Histone acetylation is a post-translational
modification with functional implications for different cellular processes [18]. The presence of
acetylated lysine in the histone tail results in a relaxed chromatin state, allowing the activation of gene
transcription in that region. On the other hand, the deacetylation of lysine residues is associated with
condensed chromatin, which impedes the transcription of genes present in that chromatin region [19,20].
The acetylation and deacetylation of lysine residues is controlled by two enzymes with opposite
activities involved in gene regulation [21]. These reactions are catalyzed by enzymes with “histone
acetyltransferase” (HAT) or “histone deacetylase” (HDAC) activity, which add or remove acetyl groups,
respectively [22] (see Figure 1).
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Different forms of HAT and HDAC have been identified, including coactivators that can interact
with transcription regulators [23]. Deacetylation increases the ionic interactions between positively
charged histones and negatively charged DNA, which produces a more compact chromatin structure,
repressing gene transcription by preventing the access of the transcription machinery to the site.
On the other hand, histone acetylation has been associated with other functions of the genome,
such as producing a looser chromatin assembly that influences DNA repair and recombination [24,25].
The modifications in the histone chains define the compaction or relaxation of chromatin through
the recruitment and binding of various specific proteins, functioning as an epigenetic machinery [26].
This epigenetic information is an important component in the regulation of gene expression since the
breakdown of epigenetic integrity has been associated with different diseases, including cancer [27,28].
The addition of an acetyl group to a lysine residue neutralizes its positive charge on the nitrogen
atom, alters the structure of the amino acid and blocks other modifications at this specific site [29].
This epigenetic alteration is related to disorders and diseases because of its participation in various
physiological processes, acting in synergy with transcription factors, oncoproteins and kinases, affecting
protein stabilization and activating or inhibiting gene transcription and DNA repair [30].

The HATs are divided into two classes (type A and type B) according to their localization and
function in the cell. Their activity can be modulated by several protein–protein interactions, protein
cofactors and autoacetylation. Type A HATs are nuclear enzymes which contain acetyl-CoA binding
sites. This class of HATs probably catalyzes acetylation and events related to gene transcription.
Type B HATs are believed to have a maintenance role in cell functioning as cytoplasmic enzymes
that modify free histones in the cytoplasm after their synthesis and transport them to the nucleus,
where they can be deacetylated and incorporated into chromatin [31]. In addition, HATs can be
divided into four families based on their primary structure: GNAT (Gcn5, PCAF, Hat1, Elp3 and Hpa2);
p300/CBP (p300 and CBP); MYST (Esa1, MOF, Sas2, Sas3, MORF, Tip60 and Hbo1) and Rtt109 [31,32].
One specific HAT can acetylate several lysine residues of a histone. Many HATs contain bromodomains
for the recognition of the acetylated lysine. The acetyl lysine residues in the histone tails form
bromodomain binding sites where the adjacent amino acids determine specificity. This indicates that
acetylation, like many protein phosphorylation events, and creates a new binding surface to recruit
other proteins to the nucleosome [33]. Histone acetylation occurs throughout the cell cycle and differs
from histone methylation, which has greater activity in the G2 phase [34]. The acetylation pattern of
certain lysine residues in the histone tails appears to result from the opposite activities of HATs and
HDACs. These changes in the acetyl group can be quickly reversed in some chromatin environments,
suggesting that the ‘transient’ nature of gene expression may be linked to the degree of acetylation.
Even though acetylation and histone methylation are dynamic and involved in several biological
processes, little is known about how the different functional domains of chromatin are established and
maintained [35]. Finally, the activity and specificity of these acetyltransferases can be altered by factors
such as autoacetylation proteins and chaperones [36,37].

HDACs are a family of enzymes that play important roles in different biological processes, mainly
because of their gene transcription-repressing activity [38]. These enzymes are able to remove acetyl
groups (O=C-CH3) from an ε-N-acetyl lysine in a histone, an event that confers to histones the
capacity to compact DNA [39]. The enzymatic activity that catalyzes the deacetylation of histones was
discovered for the first time in 1969 [40]. HDACs possess a catalytic domain that requires a Zn2+ ion
(classes I, II and IV) [41] or NAD+ (class III) [41] (see Figure 2).

Eighteen HDACs have been identified in humans (Table 1), which are divided into four classes:
class I Rpd3-like proteins (HDAC1, HDAC2, HDAC3, and HDAC8) which have a nuclear localization.
Class IIa (HDAC4, HDAC5, HDAC7, and HDAC9) and IIb (HDAC6 and HDAC10) Hda1-like proteins
which show a specific expression in tissue and can be transported between the nucleus and cytoplasm,
suggesting the involvement of this HDAC class in the acetylation of non-histone proteins [42]. Class III
are Sir2-type proteins (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7). The specific expression
pattern of this class is unknown, and its mechanisms differ from those of the other two classes and are
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not in the scope of this review. The protein of class IV (HDAC11) shows homology to both class I and
class II members [43]. Table 1 summarizes these three related classes. Evidence suggests that HDACs
can also deacetylate non-histone proteins such as hormone receptors, chaperones and cytoskeletal
proteins that regulate cell proliferation and death [43–46]. The HDACs can form gene silencing
complexes with nuclear receptors when a specific ligand is absent [47]. Studies have indicated that
HDACs can regulate the expression of various genes through the interaction with transcription factors
such as E2f, Stat3, p53, NF-κB and TFIIE [48]. The absence of HDAC1 leads to reduced deacetylase
activity and the hyperacetylation of other histones. In addition, an increase in HDAC2 and HDAC3
expression is observed in HDAC1-deficient cells, which is unable to compensate for the loss of HDAC1,
suggesting a unique function of this enzyme [49]. HDAC4 has been described as an important regulator
of chondrocyte hypertrophy during skeletogenesis and a general role of class II HDACs in the control
of cellular hypertrophy has also been suggested [50,51].
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Table 1. Type, class, protein size and localization of histone deacetylases (HDACs).

HDAC Type HDAC Class Amino Acids Cellular Localization Cancer Type Referencers

HDAC1 I 482 Nucleus
Lung, gastric, liver, breast,

ovarian, prostate, renal,
bladder, hematological tumors

[52–59]

HDAC2 I 488 Nucleus

Medulloblastoma, gastric,
pancreatic, colorectal, breast,

ovarian, prostate, renal,
bladder, hematological tumors

[54–58,60–63]

HDAC3 I 428 Nucleus and cytoplasm
Lung, gastric, breast, ovarian,
prostate, bladder, melanoma,

Hematological tumors
[54,55,57,58,62,64,65]

HDAC4 IIa 1084 Nucleus and cytoplasm Hematological tumors [58]
HDAC5 IIa 1122 Nucleus and cytoplasm Hematological tumors [58]
HDAC6 IIb 1215 cytoplasm Hematological tumors [58]
HDAC7 IIa 912 Nucleus and cytoplasm Hematological tumors [58]

HDAC8 I 377 Nucleus, Mitochondria
and cytoplasm

Neuroblastoma, melanoma,
hematological tumors [58,65,66]

HDAC9 IIa 1011 Nucleus and cytoplasm Hematological tumors [58]

HDAC10 IIb 669 Cytoplasm Cervical, chronic
lymphocytic leukemia [59,67]

HDAC11 IV 347 Nucleus Lung [68]
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HDAC1 and HDAC2 were discovered in 1996 [69,70], while HDAC3 was described in 1997 [71].
HDAC4, 5 and 6 were characterized in the same year, HDAC7 in 1999 [72] and HDAC8 in 2000 [73,74].
Many different forms of HDACs can arise from nucleotide polymorphisms or alternative splicing.
For example, different isoforms of HDAC9 have been described [75]. Although HDAC4, HDAC5,
HDAC7 and HDAC9 have similar functions in the regulation of cytoplasmic-nuclear transport and
DNA binding, they are encoded by different genes and are not isoforms [41,76]. HDAC10, on the other
hand, has no association with other proteins forming complexes, which indicates that the involvement
in the transcription control occurs by other means [77]. Like HDAC10, HDAC11 was discovered in
2002 [78] and so far they are the least studied and understood HDACs.

2. Class I HDACs

Class I HDACs are multiprotein complexes (except for HDAC8) that can be expressed
simultaneously at different sites [39]. Enzymes of this class are involved in cell proliferation and
survival [38,79]. HDACs 1 and 2 are found in the complex that represses the expression of neuronal
genes in non-neuronal tissues [80]. HDAC1 was found to exert a protective function against the
formation of teratomas with malignant potential in mice and human patients [81]. HDAC2 negatively
regulates memory formation and synaptic plasticity [82]. HDAC1 and HDAC2 repress the expression
of proteins p21 and p57 which regulate the transition from the G1 to the S phase of the cell cycle
in fibroblasts [83]. HDAC3 also has a repressive function when it interacts with other molecules
forming an enzyme complex, in addition to playing an important role among class I HDACs in gene
expression in inflammation [84]. The activity of HDAC8 was found to be dependent on oxidoreduction
reactions [85].

2.1. The HDAC1/2 Functional Complex

HDAC1 and HDAC2 are homologous proteins (82–85% similar in human proteins) and are part
of stable multiprotein complexes [86,87]. These complexes account for about 50% of all deacetylase
activity in embryonic stem cells [88] and T cells [89]. HDAC1/2 cannot bind directly to DNA without
interacting with other specific molecules and its activity was reduced in the absence of this binding [90].
These molecules can be transcription regulators, transcription factors and DNA-binding factors, as well
as coactivator and corepressor complexes that alter the chromatin structure [91]. Corepressors act on
transcriptional silencing by recruiting promoters of chromatin remodeling that can inhibit or silence
the basal transcription mechanism [92]. Some of the known HDAC1/2 corepressor complexes are
Sin3A, nucleosome remodeling and deacetylase (NuRD), CoREST, mitotic deacetylase (MiDAC) and
SMRT/NCor, which are recruited to chromatin by transcription factors [2,9,93–95]. As described below,
the structures of Sin3A and NuRD exemplify the diversity of sizes and the number of subunits of
these complexes. This diversity and the incorporation of sequence-specific DNA-binding proteins
can modulate their function and cellular context activity [96]. It is extremely important that the
machinery involved in the deacetylation of histones is not only mechanically regulated but also with
high specificity. Even today, little is known about how this specificity is achieved; however, studies
have indicated that different multiprotein complexes are involved in this regulation.

2.2. Sin3A Complex

The Sin3/HDAC corepressor complex is a multiprotein complex that mediates gene repression
by recruiting HDACs (class I, especially HDAC1 and HDAC2) and other chromatin-modifying
enzymes [97] and also acts as a coactivator and general transcription factor [98]. The Sin3A core
complex includes HDAC1, HDAC2, Sin3a, RbAp46 and RbAp48, RbAp4, RbAp7, SAP30, SAP18
and SDS3 [96,99,100]. Besides these core proteins, several other proteins have been associated to
this core complex and include SAP180 [101], RBP1 [102], BRMS1 [103], SAP130 [101], SAP25 [104],
MeCP2 [105] and ING1/2 [100] (see Figure 3A). These factors are essential for the Sin3A complex and
exert their function through different types of interaction mediated by amphipathic helical domains
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that contain a polar and an apolar end and conserved segments [106]. Although structurally similar,
the amphipathic helical domains and conserved segments have binding specificity [107]. The Sin3A
complex has also been associated with other enzymatic activities depending on the molecules of the
interaction [87,108,109]. This complex plays an important role in maintaining the pluripotency of
embryonic stem cells [110]. On the other hand, the acetylation of STAT3 and its association with Sin3A
contribute to the oncogenic potential of STAT3 [111]. The absence of the Sin3 complex can result in
positive and negative gene regulation [112,113]; however, its interaction mode with these regulators
still remains unknown.

2.3. NuRD Complex

The nucleosome remodeling deacetylase complex (NuRD), also known as Mi-2, according to
stoichiometry data [114,115], is composed of one copy of the CHD3 (Mi2α) or CHD4 (Mi2β) proteins
(chromodomain, helicase, DNA binding domain), one HDAC1 or HDAC2, three MTA1/2/3 (metastasis
associated), one copy of MBD2 and MDB3 proteins (Methylated CpGBinding), six copies of RbAp46/48
proteins (retinoblastoma associated protein), two GATAD2a/b (p66a/b) and two DOC-1 (deleted in oral
cancer) [115]. Other studies have also indicated that four molecules of RBBP4/7 (4/7 retinoblastoma
binding protein) integrate the NuRD core complex [116,117] (see Figure 3B). This protein complex
is conserved in animals and is widely expressed in most tissues, influencing gene transcription,
chromatin assembly, cell cycle progression and genomic stability [118]. The role of the NuRD complex
is determined by the combination of the six main protein subunits that make up this complex [119].
Several functional differences exist between the enzymes that form the NuRD complex, a fact that
interferes with the specialized functions of the complex, which can act in different types of cells and
biological systems. For example, MBD2 and MBD3 are related proteins with a methyl-CpG consensus
binding domains that are found exclusively in NuRD complexes [120]. MBD2 recognizes and binds to
methylated DNA, while MBD3 contains an amino acid alteration that prevents this binding [121,122].
In addition to their functions within the NuRD complex, some subunits of this complex such as MBD3
can serve as a protein interaction domain and bind to other protein complexes, for example the JUN
oncoprotein [123]. The NuRD complex also regulates how DNA is read in different cells. This feature is
extremely important to transform adult cells into induced pluripotent stem cells (iPSCs), an epigenetic
change that may be used to treat different diseases [124].

Cancers 2020, 12, x FOR PEER REVIEW 7 of 29 

 

 

Figure 3. Structure of class I HDAC co-repressor Complexes. HDAC1 and HDAC2 are recruited to 

the (A) SIN3 and the (B) NuRD. Adapted from [96,100,115]. 

These complexes show a diversity in the sizes and numbers of subunits. Larger complex 

formation is required for better activity. The MiDAC and CoREST complexes also contain HDAC I 

and II enzymes. MiDAC is a tetrameric complex that is composed of HDAC1/2, DNTTIP1 

(deoxynucleotidyltransferase terminally interacting protein 1) and the protein co-repressor MIDEAS 

(SANT domain associated with mitotic deacetylase) [125,126]. The CoREST complex contains a single 

copy of CoREST1/2/3, LSD1 demethylase (specific lysine demethylase 1) and HDAC1/2 proteins 

[127]. NCoR/SMRT is associated with HDAC3 and contains transducin β-like protein 1 (TBL1)/ TBL1-

related protein 1 (TBLR1) and G-protein pathway suppressor 2 (GPS2) [96]. Class II HDAC activity 

is dependent on the interaction with the SMRT/NCoR–HDAC3 complex [128]. 

3. Class II HDACs  

Class II HDACs (HDAC4, 5, 6, 7, 9 and 10) are found in the nucleus and cytoplasm (see Table 1) 

and can freely shuttle between these two compartments, exhibiting specific functions in tissues 

[38,79]. For example, HDACs 4, 5 and 7 regulate cell differentiation according to a specific signal, 

which results in changes in gene expression [39]. This class of HDACs can be subdivided into class 

IIa (HDAC4, 5,7, and 9) and class IIb (HDAC6 and 10) [38]. Class II HDACs do not only act as 

transcription repressors but also interact with non-histone substrates, inducing autophagy and 

regulating the microtubules of the cytoskeleton [129]. 

Class IIa HDACs have low enzymatic activity but can recruit other protein complexes, exerting 

deacetylase function [128]. HDACs of this class can induce the conversion of cell signaling by 

presenting conservative serine residues in the regulatory N-terminal domains, with reversible 

phosphorylation [130]. This phosphorylation leads to the activation of several kinases and 

phosphatases which, when functioning downstream of biological pathways, regulate the transit of 

HDACs between the cytoplasm and nucleus, as well as their binding to DNA [131]. The 

phosphorylation of class IIa HDACs is crucial for the determination of their localization and 

transcriptional repression capacity in the nucleus. For example, in the nucleus, HDAC9 represses 

proteins such as myocyte enhancer factor-2 (MEF2) until a myogenic differentiation signal causes its 

export to the cytoplasm [130]. Class IIa HDACs have been shown to exert their transcriptional 

repressive function in different tissues such as skeletal, cardiac and smooth muscles, bone, immune 

system, vascular system and brain [132,133]. Most known HDAC inhibitors do not affect class IIa 

HDACs [134].  

Figure 3. Structure of class I HDAC co-repressor Complexes. HDAC1 and HDAC2 are recruited to the
(A) SIN3 and the (B) NuRD. Adapted from [96,100,115].



Cancers 2020, 12, 1664 7 of 28

These complexes show a diversity in the sizes and numbers of subunits. Larger complex formation
is required for better activity. The MiDAC and CoREST complexes also contain HDAC I and II enzymes.
MiDAC is a tetrameric complex that is composed of HDAC1/2, DNTTIP1 (deoxynucleotidyltransferase
terminally interacting protein 1) and the protein co-repressor MIDEAS (SANT domain associated with
mitotic deacetylase) [125,126]. The CoREST complex contains a single copy of CoREST1/2/3, LSD1
demethylase (specific lysine demethylase 1) and HDAC1/2 proteins [127]. NCoR/SMRT is associated
with HDAC3 and contains transducin β-like protein 1 (TBL1)/TBL1-related protein 1 (TBLR1) and
G-protein pathway suppressor 2 (GPS2) [96]. Class II HDAC activity is dependent on the interaction
with the SMRT/NCoR–HDAC3 complex [128].

3. Class II HDACs

Class II HDACs (HDAC4, 5, 6, 7, 9 and 10) are found in the nucleus and cytoplasm (see Table 1)
and can freely shuttle between these two compartments, exhibiting specific functions in tissues [38,79].
For example, HDACs 4, 5 and 7 regulate cell differentiation according to a specific signal, which results
in changes in gene expression [39]. This class of HDACs can be subdivided into class IIa (HDAC4, 5, 7,
and 9) and class IIb (HDAC6 and 10) [38]. Class II HDACs do not only act as transcription repressors
but also interact with non-histone substrates, inducing autophagy and regulating the microtubules of
the cytoskeleton [129].

Class IIa HDACs have low enzymatic activity but can recruit other protein complexes, exerting
deacetylase function [128]. HDACs of this class can induce the conversion of cell signaling by
presenting conservative serine residues in the regulatory N-terminal domains, with reversible
phosphorylation [130]. This phosphorylation leads to the activation of several kinases and phosphatases
which, when functioning downstream of biological pathways, regulate the transit of HDACs between
the cytoplasm and nucleus, as well as their binding to DNA [131]. The phosphorylation of class IIa
HDACs is crucial for the determination of their localization and transcriptional repression capacity
in the nucleus. For example, in the nucleus, HDAC9 represses proteins such as myocyte enhancer
factor-2 (MEF2) until a myogenic differentiation signal causes its export to the cytoplasm [130]. Class IIa
HDACs have been shown to exert their transcriptional repressive function in different tissues such
as skeletal, cardiac and smooth muscles, bone, immune system, vascular system and brain [132,133].
Most known HDAC inhibitors do not affect class IIa HDACs [134].

Class IIb HDACs (HDAC6 and HDAC10) possess duplicated catalytic domains and are usually
localized in the cytoplasm [134]. HDAC10 is very similar to HDAC6, with both forms containing a
second catalytic domain that is not found in other HDACs. However, in HDAC10, this domain has no
known function [135]. HDAC10 together with HDAC9 has been shown to be necessary for homologous
recombination activity, but it remains unclear whether they are direct participants in this process or act
through transcriptional control [136]. HDAC6 catalyzes the deacetylation of α-tubulin and promotes
microtubule- and actin-dependent cell motility. In addition, this enzyme plays a critical role in the
clearance of misfolded proteins by inducing autophagy [137]. HDAC6 contains two catalytic sites and
a ubiquitin-binding domain (see Figure 1). The latter is important for the response to cytotoxic protein
aggregates [138]. HDAC6 is an important potential therapeutic target for the treatment of diseases
such as Alzheimer’s and cancer [139].

Class I and II HDACs show great sequence similarity in proteins of the same class, directed to
the catalytic site. For example, HDACs 1, 2 and 3 have a homologous sequence and can be expressed
together, but only HDACs 1 and 2 together form other co-repressor complexes in the cell while
HDAC3 joins other proteins to exert its repressive activity [140]. Except for HDAC8, all other HDAC
isoforms are always found associated with other proteins, or other HDAC isoforms, in multiprotein
complexes [141]. In the same cell, there may be similar isoforms being expressed that may be part of
different DNA binding complexes. The homologous proteins of HDAC1, HDAC2 and HDAC3 are
regulated in the absence of HDAC1, but mammalian cells need to maintain specific levels of deacetylase
activities to ensure the uninterrupted and efficient cell cycle progression. We can also observe that
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the loss of HDAC1 results in an increase in acetylation at its specific activity site, which can affect the
expression of specific genes [49].

Specific patterns of histone acetylation and deacetylation do not occur by chance, they are
influenced by other modifications of histones. These post-translational modifications together generate
a ‘histone code’ [142]. For example, the acetylation of histone H3-K9 and the methylation of H3-K4
are associated with active transcription. The loss of the acetylation of histone H3-K9 and the gain
of the methylation of H3-K9 and H3-K27 are indicative of heterochromatin [143]. In many cases,
the modifications of a single residue are mutated exclusively. The presence of a modification can
induce additional modifications in nearby amino acids, expanding the change in the protein coding
information. Gene promoters suppressed by the HDAC inhibitors generally contain hypermethylated
DNA, indicating interference between the histone acetylation/methylation and DNA methylation.
Each of these events can have profound implications for gene expression in normal and cancerous
cells [144].

4. Class IV HDACs

HDAC11 is the only class IV HDAC. The expression of this enzyme was observed in some tissues
such as the brain and heart, but little is known about its function [78,145]. HDAC11 is related to
immune system regulation since the suppression of this deacetylase promoted the expression of IL-10
in animals [146].

HDACs have been studied extensively, especially because of their role in cancer. In contrast,
no clinical applications have been described for HATs. However, the latter may have important
functions in inflammatory diseases, cancer and neurological disorders since histone acetylation results
in less condensed DNA and increased gene transcription [147,148]. HATs can act on different cell
substrates such as histones, transcription factors, enzymes and nuclear receptors. Despite its potential,
the development of HAT inhibitors proved to be challenging and a large gap remains between the
biological activity of HAT inhibitors in in vivo studies and their use as therapeutic agents, since many
HAT gene knockout mutants are incompatible with life in mice [149].

5. Participation of Transcription Factors in the Mechanism of Regulation by HDACs

HDACs can exert direct effects on physiological processes such as apoptosis, differentiation,
metabolism and inflammation through the deacetylation of non-histone proteins, affecting their
functions, cellular localization and protein–protein interactions [150]. Some proteins such as p53,
NF-κB, STAT3, Hsp90, SCL/TAL1, OCT1, YY1, Akt and Ku70 are modified by HDACs, with consequent
changes in embryonic development and cell proliferation, differentiation and death [46] (see Figure 4).
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Other proteins that serve as transcription factors can also be modulated by chromatin status,
limiting their capacity to bind to DNA and to activate transcription. Some transcription factors are
specifically expressed in certain tissues and regulate specialized cellular functions; thus, the silencing
of these transcription factors may result in a functional blockade. The deletion of the SCL/TAL1
transcription factor, for example, resulted in the inability to generate hematopoietic precursors and
caused embryo death in mice [151]. Likewise, the silencing of the gene encoding transcription factor
organic cation transporter 1 (OCT1) also caused disturbances in embryonic development [152]. The Yin
Yang 1 (YY1) transcription factor can regulate different genes and has specific DNA-binding activity and
transcriptional repression [153]; however, this transcription factor requires co-activators or co-repressors
for its full function, thus interacting with HATs (CBP and p300) and class I HDACs (HDAC1, 2 and
3) [154]. Several transcription factors participate in the regulation of these pathways. These factors
directly or indirectly regulate DNA repair genes which are also part of the DNA repair machinery [155].
The tumor suppressor protein p53 is an important transcription factor, particularly for the response to
stress and cellular homeostasis. Under normal physiological conditions, this protein is maintained
at low levels by its negative regulator MDM2 [156]. In the absence of MDM2, the levels of p53
increase, causing embryonic lethality in mice [157]. The acetylation of p53 at different lysine residues
is mediated by p300/CBP, increasing its DNA-binding capacity and the consequent transcription of its
target genes [158,159]. This even occurs in response to cell damage but is transitory and reversible,
as the post-translational modifications maintain p53 acetylation under control [160].

During the response to genotoxic stress, p53 functions as a transcription factor and regulates
effector genes such as GADD45A and p21 [161]. The high expression of Gadd45A can reduce the
efficiency of DNA repair [162]. HDACs can decrease the activity of p53; for example, the overexpression
of HDAC1 was found to reduce p53 acetylation in vivo [163]. MDM2 can recruit HDAC1, promoting
the deacetylation of p53, and this silencing can more quickly interrupt the function of this protein
when its target genes are no longer necessary [164].

The transcription factor Sp1 (specificity protein 1) is found in all animal cells where it directly or
indirectly regulates the expression of genes such as Gadd45A and MGMT. However, in response to
DNA damage, Sp1 is phosphorylated and recruited to the sites of DNA double-strand breaks where
it possibly mediates the recruitment of chromatin remodeling factors involved in the repair of these
breaks [165]. Sp1 can define the binding of Gadd45A at a specific site of DNA damage [166]. Sp1 is a
specificity protein that belongs to the family of Krüppel transcription factors (Sp/KLF), which currently
has 26 members [167]. The DNA-binding domain consists of three Cys2His2 zinc finger proteins
(81 amino acids per protein), which are responsible for recognizing the GC (GGGGCGGGG) and
GT/CACC (GGTGTGGGG) sequences in DNA [168]. Post-translational modifications in Sp1 modulate
chromatin remodeling factors, DNA, the transcription machinery and other transcription factors to
induce or repress expression [169,170]. The high expression of Sp1 has been observed in several types
of cancer [170]. Sp1 can increase the activity of a gene promoter or recruit other protein complexes to
exert activating or repressing functions. In breast cancer, human epidermal growth factor receptor
type 2 (HER2) signaling phosphorylates Sp1, which recruits HDAC1 to the sites of gene regulation,
forming a protein complex that can involve other regulators [171]. GM2 synthase is an enzyme
that produces glycosphingolipids. The high expression of this enzyme is associated with a poor
tumor prognosis. Its activation is regulated by histone acetylation and a reduction in the Sp1-HDAC1
repressor complex [172]. In multiple myeloma, the inhibition of HDACs was associated with the
down-regulation of Sp1, indicating that the effects of HDAC expression might be mediated by Sp1 [173].

HDACs are involved in the dysregulation of pathways and transcription factors in the various
phases of cancer cells. The exacerbated expression of HDACs may be one of the factors responsible
for the worst prognosis for patients, with stomach and ovarian cancer [54], neuroblastoma [66] and
multiple myeloma (MM) [174] for example.

Epigenetic dysregulation can nurture the onset and progression of various human diseases. HDACs
induce several cellular and molecular effects through the hyperacetylation of histone and non-histone
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protein substrates, which are involved in the regulation of cell cycle, apoptosis, DNA-damage response,
metastasis, angiogenesis, autophagy and other cellular processes being able to influence the onset or
progression of diseases such as cancer [175]. However, the contribution of HDACs to this pathology
may not be related to the level of expression of these proteins. HDACs can function as catalytic
subunits of large protein complexes and can be recruited in ways that alter the expression of several
protein genes in order to induce a tumor. The molecular and biological consequences of inhibiting
HDACs need to be analyzed in this context. HDACs can be targeted using small molecules and more
selective agents [176]. The inhibition of HDAC10 in combination with doxorubicin treatment decimates
neuroblastoma, but not healthy cells, preventing the efflux of drugs, as well as improving DNA
damage [177], and the combined genetic deletion of HDAC1 and HDAC2 results in the activation of a
senescent program and the death of transformed cells [178]. HDAC1 has oncogenic activity in tumor
cells, but can have different functions in different subpopulations, but the combined genetic deletion of
HDAC1 and HDAC2 results in accelerated leukemogenesis. One study noted that in the pre-leukemic
phase, HDAC1 blocks differentiation; compromises genomic stability; and increases self-renewal in
hematopoietic progenitors, all events affected by the reduction of HDAC1 levels. The short-term
treatment of pre-leukemic mice with an HDAC inhibitor (HDACi) accelerated leukemogenesis. On the
other hand, the absence of HDAC1 in mice led to a longer survival time for the animals. Thus,
HDAC1 has a dual role in tumorigenesis: oncosuppressive in the early stages and oncogenic in
established tumor cells [179]. The authors suggest that the inhibition of HDACs may block the intrinsic
antitumor functions of these proteins. However, further studies are extremely important for a greater
understanding of the role of HDACs alone and together, in different stages of carcinogenesis and in
different types of tumor cells.

6. Inhibitors of HDACs

HDAC proteins are a promising class for drug targets due to the importance of these enzymes in a
variety of processes, including cell cycle regulation, proliferation, survival, differentiation, metabolism,
protein trafficking, DNA repair and angiogenesis. In recent decades, a class of inhibitors that block
HDAC activity have been discovered. These inhibitors are able to inhibit gene silencing through the
hyperacetylation of histones, acting on the regulation of gene expression and influencing cell growth
and differentiation and the induction of apoptosis in neoplasms [180]. Numerous synthetic or natural
molecules that aim at classes I, II and IV enzymes have been developed and characterized, although
interest in the class III Sirtuin family is increasing. Class I, II and IV exhibit their Zn2+-dependent
deacetylase activity. The binding of HDACi to this ion, found in the active site of HDACs, alters the
deacetylase activity of these proteins and damages their enzymatic function [181]. As the expression
of HDACs is not organized in several types of cancer, the disrupted balance between HATs and
HDACs in neoplastic cells can contribute to carcinogenesis and the reversible modulation function
of HDACs makes these proteins interesting targets for cancer treatment [41]. HDACi can neutralize
the abnormal acetylation status of proteins found in cancer cells and can reactivate the expression of
tumor suppressors. Cancer cells may also be more sensitive to HDACi-induced apoptosis than normal
cells, enhancing the therapeutic potential of HDACi [182].

The effect of HDAC inhibitors (HDACis) is not restricted to histone proteins. These inhibitors
can also target non-histone proteins, transcription factors, regulators, signal transduction mediators,
DNA repair proteins and chaperones [183–185] (see Figure 5). There has been increasing interest in
producing these drugs to better understand the functions of HDACs and to investigate the anticancer
potential of these inhibitors [186].

Most HDACs have a Zn2+-dependent active site that can be inhibited by compounds with the
ability to chelate this ion [187]. The currently used HDACis possess a pharmacophore that can bind
to this active site and block it [188]. The preclinical efficacy of HDACis is associated with the gene
activation mediated by these drugs, which promote the hyperacetylation of the N-terminal tails of
histones, facilitating the access of transcription factors to gene promoters [180]. HDAC inhibitors can be
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natural or synthetic compounds that differ in terms of their target specificity [189]. Many structurally
diverse compounds can bind to HDACs and inhibit their enzymatic activity. These compounds are
classified into two large classes, isoform-selective inhibitors and pan-inhibitors, which act against all
class I HDACs [134,190].
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Figure 5. Some pathways that are altered by the activity of histone deacetylases. Acetylation and
deacetylation of histones alter the chromatin activity, causing important epigenetic changes. In addition,
the activity of non-histone proteins is altered, including transcription factors, chaperones and structural
proteins, influencing the activity of the different pathways involved in the cell cycle control, apoptosis,
differentiation, angiogenesis and cell invasion.

These inhibitors are divided into five subgroups based on their chemical structure: short-chain fatty
acids that include hydroxamic acids, benzamides, cyclic peptides, and sirtuin inhibitors [19,176,191].
The functions of immune system cells with excessive accumulation of acetylated histones may be altered
and it is therefore of the utmost importance to carefully select HDACis for the treatment of diseases
such as cancer [175]. The inhibitors of HDACs render cancer cells more sensitive to immunotherapy,
increasing the expression of antigens present in the tumor and thus acting as immunomodulators [192].
The anticancer activity of HDACis comprises different molecular and physiological events such as
the inhibition of the vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase
(eNOS) and TGFβ1 [193–195]. The apoptosis of tumor cells induced by HDACis is associated with their
ability to selectively regulate proapoptotic pathways [196], which does not occur in normal cells [197].
There are a number of different classes of HDACis which are available to treat cancers.

First, there are the drugs which contain a hydroxamic acid group such as vorinostat [198],
whose structure, and that of other HDACis, are presented in Figure 6. The function of the hydroxamic
acid group is to chelate with zinc which is located in the active site of the enzymes. Another HDACi
which contains the hydroxamic acid group is trichostatin A which is a highly toxic compound [199].
These compounds can inhibit all classes of HDACs. A second cluster of drugs which also interacts with
zinc are benzamide derivatives, as exemplified by entinostat, which inhibits class I HDACs. A third
group of HDACs are short chain fatty acids such as valproic acid which has been widely used in
treating epilepsy. It inhibits classes I and IIa HDACs. In addition, butyric acid and phenylbutyric acid
inhibit classes I and II HDACS [184]. Another HDACi is romidepsin, which is a cyclic tetrapeptide and
a class I inhibitor [200].
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Figure 6. Structures of vorinostat (i), trichostatin A (ii), entinostat (iii) and valproic acid (iv).

HDACis have shown very promising results for the treatment of various neoplasms and several
in vitro [201–205] and in vivo [206,207] studies have sought to understand the methods of action and
the pathways involved in the anticancer process of these molecules. To date, only vorinostat (SAHA),
romidepsin (FK228), panobinostat ((LBH589), belinostat (PXD101) and chidamide (CS055/HBI-8000)
have been approved for clinical trials in the United States. These compounds show antineoplastic
activity in the treatment of several hematological malignancies [208–214]. Class III-directed HDACi
target NAD+-containing sirtuins and have shown an effect in the treatment of cardiovascular and
neurodegenerative diseases and aging [215]. Variable biological effects of HDACis have been observed,
which are the result of the individual chemical structure and profile of each inhibitor [199].

Although HDACis are showing important activities, mainly oncological, their adverse effects
and cytotoxicity are still serious and do not present selective inhibition among HDACs isoforms [216].
To design an effective HDACi, the molecule must have synergy with other anticancer agents given
that the HDACi used as a single agent does not show clinical benefits in nearly all types of solid
tumors [217]. The involvement that HDACis have in the levels of epigenetic alteration for which they
are responsible explains why they are so involved in altering normal phenotypes in malignant ones.
Figure 6 contains the structures of four HDACis but others are currently under development.

7. Alternative Inhibitors

Despite their benefits which were proven in clinical trials, synthetic HDACis still have undesirable
adverse effects [200]. One alternative is the search for natural products and their derivatives that are able
to inhibit epigenetic changes caused by changes in gene expression, with less risk to the patient [218].
Psammaplin A is a natural product derived from bromotyrosine that is found in marine sponges [219].
This compound has been shown to inhibit the activity of HDACs and DNA methyltransferase, exhibiting
low cytotoxicity in in vitro studies [220]. Largazole is a macrocyclic depsipeptide isolated from marine
cyanobacteria, which exerts antiproliferative activity by inhibiting HDACs 1, 2, 3 and 6 [221,222].
This compound is a promising pro-drug for the treatment of carcinomas. Several natural products
exhibit low HDAC inhibitory activity, but modifications in their chemical structure can produce analogs
with high inhibitory activity. FK228 (FR901228), also known as a depsipeptide (a peptide in which one
or more of its amide groups are substituted by an ester), is produced by Chromobacterium violaceum and
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exhibits HDAC inhibitory potential and antitumor activity in vivo [223]. Several natural compounds
appear to interfere with most of the molecular mechanisms that involve cell proliferation and death.
Natural compounds isolated from plants such as polyphenolic compounds, for example fisetin [224],
resveratrol [225], curcumin [226] or flavonoids [227], can induce epigenetic changes, increasing the
sensitivity of cancer cells to chemotherapeutic agents, and reduce tumor proliferation. Resveratrol is
a natural, biologically active polyphenol that is found in grape seeds and peanut skin and that has
therapeutic applications in the treatment of a range of diseases, including cancer [228–230]. Resveratrol
can reverse the progression of prostate cancer by inhibiting MTA1 that binds to HDAC, forming the
MTA1/HDAC complex [231]. This naturally occurring HDACi inhibited the activity of 11 HDACs in
hepatoblastoma cells [232], the concentration-dependent histone hyperacetylation in hepatoma cell
lines and cytotoxicity, but only at high doses [233]. Combination treatment with resveratrol and other
HDACis revealed important antitumor activity in leukemia [234] and ovarian [235] and pancreatic
carcinomas [174].

7.1. Chalcones

Chalcones (1,3-diaryl-2-propenones) are intermediates in the biosyntheses of flavonoids and
isoflavonoids. They can be synthesized by the condensation between aryl aldehydes and
acetophenone [236,237]. Their structure consists of two aromatic rings linked by a three carbon
unsaturated keto group [236]. Chalcones are found in medicinal plants, fruits, vegetables, spices and
nuts, and have anti-inflammatory [238], antihistaminic [239], antihypertensive [240], antidiabetic [241],
antimalarial [242], antiretroviral [243], antioxidant [236] and antitumor [237] properties. In regards to
the antitumor properties of chalcones, one should note that they are far less toxic than many current
anticancer drugs [244]. In an in vitro and in vivo study, different chalcones synthesized in the laboratory
were effective against colon adenocarcinoma, altering epigenetic pathways and inhibiting HDACs [245].
In computer-assisted studies on the activity of chalcones, β-hydroxymethyl chalcone exhibited the best
time-dependency (∼24 h) as a broad-spectrum HDACi and β-hydroxymethyl chalcone as a selective
inhibitor of HDAC2 [246]. Evaluating the inhibitory activity of 21 natural chalcones, researchers found
the significant HDAC inhibitory activity of four, namely isoliquiritigenin, butein, homobutein and
marein, against class I, II, and IV HDACs [247]. The 3,2,3’,4-tetrahydroxychalcone inhibited the class III
HDAC SIRT1, resulting in tumor suppression [248]. Chalcones exhibited significant anti-proliferative
activity against the HDAC inhibitory activity in carcinoma cell lines when compared to the synthetic
drug SAHA, which is already used clinically [249]. These data suggest that natural compounds are
promising in cancer treatment.

7.2. Curcuminoids

Another potential HDACi is curcumin (diferuloylmethane), a polyphenol and the active
component of turmeric (Curcuma longa) [250], which is widely known for its diverse pharmacological
activities against various diseases, including cancer [251–255]. Turmeric is composed of 80%
curcumin, 17% dimethoxycurcumin and 3% bisdemethoxycurcumin [256]. Curcumin can alter several
important molecular signaling pathways that are responsible for cell survival and inflammatory
responses and for reducing the expression of genes such as the tumor necrosis factor, adhesion
molecules, interleukins (IL-1, IL-6, IL-8), C-X-C chemokine receptor type 4 (CXCR-4), and C-reactive
protein [257–259]. Curcumin is considered a DNA hypomethylating agent that inhibits DNA
methyltransferase and balances the activity of HATs and HDACs (HDAC 1, 3, 4, 5, 8) [260].
This compound was first described as a specific inhibitor of the coactivator p300/CBP. The latter
interacts with numerous transcription factors and has been shown to increase the activity of
acetyltransferase in cervical cancer cells. Its inhibition induced apoptosis [261]. Several HDACis
have been used for the treatment of cancer alone or in combination with chemotherapeutic agents.
Curcuminoids have shown deacetylase inhibitory activity that can suppress DNA repair pathways
and can be used to increase the efficacy of cancer treatments [262]. A reduction of HDAC1 and
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HDAC3 activity was found in lymphoblastic cells treated with curcumin [263]. Furthermore,
curcumin significantly reduced class I HDAC levels and increased acetylation [264,265]. Calebin
A-([(E)-4-(4-hydroxy-3-methoxyphenyl)-2-oxobut-3-enyl]-(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2
-enoate) is a curcumin analog that contains a ferulic acid ester bond [266] (see Figure 7).
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This compound can be used as an adjuvant in cancer treatment, increasing the efficacy of the
chemotherapeutic agents used; however, its bioavailability is low [267]. The inhibition of HDACs
promotes cell death and inhibits angiogenesis in different tumor cell lines in in vitro studies [268]
(see Table 2).

Table 2. In vitro studies on the effects of curcumin on histone deacetylases (HDACs).

Cell Line Curcumin Molecular Effects Result References

Lymphoma Raji cells 1.6–50 µM Cell proliferation
↓HDAC1 mRNA

and protein
expression

[269]

Human cervical cancer
cell lines 0.5–50 µM Augments the efficacy

of antitumor drugs

↓HDAC activity,
↓HDAC1and 2

expression
[270]

HepG2 cell line 100 µM of different
curcumin analogues Modulates genes ↓HDAC1, 2, 4, 6, 8,

11 expression [271]

K562, HEL, and MPN
cell lines 5–40 µM

Increases the
expression of

suppressor of cytokine
signaling 1 and 3

↓HDAC activity
↓HDAC1, 3, 8

expression
[265]

LNCaP cells 5 µM CpG demethylation

↓HDAC activity
↑HDAC1, 4, 5 and

8 and
↓HDAC3 protein

expression

[272]

HT29 cell line 2.5 and 5 µM Inhibitory effect on cell
proliferation

↓HDAC4, 5, 6 and
8 expression [273]

Adapted from [274].

Curcumin increases the sensitivity to DNA damage, reduces the repair of double-strand breaks
and inhibits homologous recombination by inhibiting HDACs and promoting the degradation of
recombinases [262]. In another study, in addition to interacting with the active zinc-containing site,
curcumin exhibited an excellent inhibition of class 1 and 3 HDACs [275]. The enzymatic activity of
HAT was found to be reduced in tumor cells treated with calebin A [276]. However, another study
demonstrated that calebin A inhibited HDAC1, similarly to curcumin [277]. Tetrahydrocurcumin
is a curcuminoid obtained by the reduction of curcumin. It is synthesized in the laboratory by
hydrogenation but can be produced in vivo by metabolism in the liver [278]. Tetrahydrocurcumin did
not inhibit HDACs [277], probably because its mechanism of action differed from that of calebin A and
curcumin which have similar mechanisms. However, this curcuminoid exhibits anti-inflammatory
potential and antioxidant activity which may explain its anticancer activity [279]. Chalcones have been
linked to HDACs in an attempt to better understand the mechanisms of action of these deacetylases,
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with epigenetic importance in the treatment of diseases [247]. A molecular docking study concluded
that curcumin does not bind to HDAC8 through the interaction with the zinc ion; this deacetylase is
inhibited by the interaction with Arg37, Pro35, Ile34 and Phe152 residues located in the active site of
the enzyme [280].

8. Conclusions

This review has outlined the structures and functions of different classes of histone deacetylases
(HDACs). A major emphasis has been placed on various inhibitors of HDACs and how they exert their
bioactivity. Although neoplasms are currently the main clinical indication for these compounds, future
applications may include autoimmune diseases, neurological indications and even parasitic diseases.
However, improvements in the therapeutic index of these drugs should be made, as they present high
toxicity, inducing symptoms from fatigue, nausea and vomiting to thrombocytopenia, neutropenia
and some cardiac toxicity. One path to this improvement may come from more specific inhibitors of
individual HDAC isoforms that are critically involved in particular indications. By targeting the most
relevant HDAC isoform in a specific indication, it may be possible to significantly improve their efficacy
by removing certain toxicities that may be associated with the inhibition of multiple isoforms [281].
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