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The abnormal activation of the NLRP3 inflammasome is closely related to the occurrence
and development of many inflammatory diseases. Targeting the NLRP3 inflammasome
has been considered an efficient therapy to treat infections. We found that
dihydrotanshinone I (DHT) specifically blocked the canonical and non-canonical
activation of the NLRP3 inflammasome. Nevertheless, DHT had no relation with the
activation of AIM2 or the NLRC4 inflammasome. Further study demonstrated that DHT
had no influences on potassium efflux, calcium flux, or the production of mitochondrial
ROS. We also discovered that DHT suppressed ASC oligomerization induced by NLRP3
agonists, suggesting that DHT inhibited the assembly of the NLRP3 inflammasome.
Importantly, DHT possessed a significant therapeutic effect on NLRP3
inflammasome–mediated sepsis in mice. Therefore, our results aimed to clarify DHT as
a specific small-molecule inhibitor for the NLRP3 inflammasome and suggested that DHT
can be used as a potential drug against NLRP3-mediated diseases.
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INTRODUCTION

An inflammasome is a cytoplasmic complex composed of multiple proteins, which mediates the host
immune response to microbial infection and cell damage (Péladeau and Sandhu, 2021). The NLR
family proteins are intracellular signaling molecules that can sense many factors of pathogenic origin,
environment, and host origin (Su et al., 2021). Inflammasomes are composed of intracellular pattern
recognition receptors (PRRs), including NLRP3, NLRP1, and NLRC4, belonging to the NLR family
and melanoma 2 (AIM2) belonging to the non-NLR family. (Zhang WJ. et al., 2021). Among them,
the study of the NLRP3 inflammasome is the most in-depth and extensive one.

Both pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns
(DAMPs) can activate inflammasomes. NLRP3, ASC (apoptosis-associated speck-like protein
containing a card), and caspase-1 are three components of the NLRP3 inflammasome (Elliott
and Sutterwala, 2015). NLRP3 binds to ASC, and ASC interacts with caspase-1, which triggers the
self-cleavage of pro–caspase-1 to form mature caspase-1 and then leads to pyrosis and IL-1β
production. The NLRP3 inflammasome could be activated by many types of pathogens or danger
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signals, such as nigericin, adenosine triphosphate (ATP),
cholesterol crystal, amyloid-β aggregates, pore-forming toxins,
or viral RNA (He et al., 2016a; Wang et al., 2019; Shi et al., 2020).
In addition, the environmental factors, such as ultraviolet
irradiation, SiO2, PM2.5, allergens, infectious agents, and
physical stress, are also important for the activation of the
NLRP3 inflammasome (Feldmeyer et al., 2007; Elliott and
Sutterwala, 2015; Broz and Dixit, 2016; Chu et al., 2019). The
NLRP3 inflammasome has been known to be a participant in the
pathogenesis which is associated with many metabolic and
inflammation-related diseases. Hereditary caps such as
Muckle–Wells syndrome (MWS), neonatal multi-system
inflammatory diseases, and familial cold auto-inflammatory
syndrome result from functional acquisition mutations of the
NLRP3 inflammasome (Awad et al., 2019; Iida et al., 2019; Nair
et al., 2019). Moreover, NLRP3 inflammasome activation is
conducive to the evolution of many other medical conditions,
including Parkinson’s disease (Han et al., 2019), inflammatory
bowel disease (Chen et al., 2021), Alzheimer’s disease (Feng et al.,
2020), Crohn’s disease (Zhang G. et al., 2021), and liver disease
(Yang et al., 2020). Pharmacological inhibitors of the NLRP3
inflammasome have exhibited significant therapeutic efficacy in
multiple animal models (Daniels et al., 2016; Wu et al., 2017;
Renaudin et al., 2020). Therefore, the NLRP3 inflammasome is
widely considered a new target for the treatment of inflammatory
diseases. MCC950 (Corcoran et al., 2021), Olt1177 (Marchetti
et al., 2018), cryptotanshinone (Liu et al., 2021), isoliquiritigenin
(Honda et al., 2014), and tranilast (Zhuang et al., 2020) have been
affirmed to repress the NLRP3 inflammasome over the years.
MCC950 has been proven to be the most effective and specific
inhibitor for NLRP3 inflammasome activation. It is effective in
manyNLRP3-driven diseasedmousemodels, such as Alzheimer’s
disease (Tapia-Abellán et al., 2019), colitis, and type 2 diabetes.
However, phase II clinical trials have demonstrated their
potential hepatotoxicity (Shi et al., 2020; Corcoran et al.,
2021). In addition, OLT1177 also conducted phase II clinical
trials (Marchetti et al., 2018). However, there is no therapy
targeting NLRP3 available in the clinic. It is essential to
undertake an urgent study to develop secure and effective
inhibitors on the NLRP3 inflammasome against NLRP3
inflammasome–mediated diseases.

Salvia miltiorrhiza Bge. (Lamiaceae) is one of the most famous
traditional Chinese medicines. As a traditional Chinese medicine,
Danshen is widely used to treat blood abnormalities, heart
disease, hepatitis, bleeding, menstrual irregularities, collagen-
induced platelet aggregation, and so on (Mei et al., 2019; Guo
et al., 2021). Dihydrotanshinone I (DHT) is a natural compound
extracted from Danshen. According to the reports, DHT has
antitumor (Allegri et al., 2021), anti-inflammatory (Wang et al.,
2020), and immunomodulatory effects (Wang et al., 2020).
Evidence has emerged that DHT attenuates crystalline
silica–induced lung inflammation by regulating the immune
response and inhibiting STAT1/STAT3 (Wang et al., 2020). It
has been reported that DHT could inhibit the activation of NF-κB
induced by TNF-α (Weng et al., 2021). In this study, we
discovered that DHT blocked the activation of the NLRP3
inflammasome but not NLRC4 and AIM2 inflammasomes. In

addition to this, DHT treatment can protect against NLRP3
inflammasome–mediated infectious shock and inflammation in
vivo, which indicates that DHT may have a potential as a
therapeutic drug for the treatment of NLRP3
inflammasome–mediated diseases.

MATERIALS AND METHODS

Mice
C57BL/6 female mice (6- to 8-week-old) were purchased from
SPF Biotechnology Co., Ltd. (Beijing, China). Mice were kept
under pathogen-free conditions. All mice were given unlimited
water and food, and maintained under a 12-h dark/light cycle
(25 ± 2°C). The animal experiments were carried out in
consistence with the guidelines for the care, as well as use of
laboratory animals and were approved by the Fifth Medical
Center of PLA General Hospital, Beijing, China.

Reagents and Antibodies
ATP, nigericin, and DMSO were obtained from Sigma. SiO2,
Pam3CSK4, poly (dA:dT), and ultrapure lipopolysaccharide
(LPS) were provided by InvivoGen. Dihydrotanshinone I
(DHT) was purchased from MCE and Targetmol. Salmonella
was supplied as a gift fromDr. Tao Li from the National Center of
Biomedical Analysis (Beijing, China). MitoSOX was supplied by
Invitrogen. Anti-mouse caspase-1 (1:1,000, AG-20B-0042) and
anti-NLRP3 (1:2000, AG-20B-0014) were supplied from
AdipoGen. Anti-ASC (1:1,000, #67824) and anti-GAPDH (1:
1,000, #5174) were supplied by Cell Signaling Technology.
Anti-mouse IL-1β (1:1,000, AF-401-SP) was obtained from
R&D Systems. Anti-flag (1:1,000, 80010-1-RR), anti-NEK7 (1:
1,000), and anti-lamin B (1:1,000, 10895-1-AP) were supplied by
Proteintech. F4/80 (565,410) was obtained from BD Biosciences.

Cell Culture
Bone marrow–derived macrophages (BMDMs) were derived
from 10-week-old C57BL/6 female mice and cultured in
Dulbecco’s modified Eagle’s medium (DMEM) containing 10%
fetal bovine serum (FBS), 1% penicillin/streptomycin (P/S), and
50 ng/ml murine macrophage colony-stimulating factor (M-CSF,
416-ML-050, R&D Systems) for 6–7 days. HEK-293T was
cultured in DMEM containing 10% FBS and 1% penicillin/
streptomycin (P/S). All cells were cultured at 37°C
humidification (5% CO2).

Cell Viability Assay
BMDMs were seeded in 96-well plates overnight at a density of
1 × 105 cells/well. Then, BMDMs were exposed to DHT in
DMEM for 24 h at 37°C. Next, the medium was replaced with
fresh DMEM containing CCK-8 for 15–30 min. The optical
density (O.D.) values were detected at a wavelength of 450 nm.

Inflammasome Activation
BMDMs were plated in 24-well plates at 5× 105 cells per plate.
After the cells adhered overnight, they were exposed for 4 h with
DMEM containing LPS (50 ng/ml) or Pam3CSK4 (1 μg/ml).
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BMDMs were exposed to DHT for 1 h in Opti-MEM and then
stimulated with nigericin (10 μM) for 30 min, ATP (5 mM) for
45 min, SiO2 (250 mg/ml) for 6 h, or Salmonella for 6 h. Besides,
1 μg/ml ultra-LPS, 2 μg/ml poly (I:C), or 2 μg/ml poly (dA:dT)
were transfected with the StarFectII high-efficiency transfection
reagent for 6 h.

Western Blotting
The protein extraction of the cell culture supernatant was
performed as described previously (Wang et al., 2019). The
whole cell lysates were prepared with RIPA buffer. The samples
were boiled at 105°C for 15 min and separated by 12% or 10% SDS-
PAGE. Then, the gels were transferred to a nitrocellulose
membrane by the wet transfer system. The membranes were
sealed with 5% fat-free milk at room temperature for 1 h and
incubated with primary and secondary antibodies in turn. The
signals were analyzed using enhanced chemiluminescence reagents
(Promega, Beijing, China).

Enzyme-Linked Immunosorbent Assay
Mouse IL-1β (Dakewe, Beijing, China; R&D Systems,
Minneapolis, MN, United States) and mouse TNF-α (Dakewe,
Beijing, China) were used to measure the mouse serum,
peritoneal lavage fluid, and cell supernatants following the
manufacturer’s instructions.

Caspase-1 Activity Assay
The activity of cleaved caspase-1 in the cell supernatant was
measured by Caspase-Glo®1 Inflammasome Assay (Promega,
Madison, Wisconsin, United States) following the
manufacturer’s instructions.

Flow Cytometry
The peritoneal lavage fluid was collected and centrifuged at
1,500 rpm at 4°C for 3 min. In consistence with the
abovementioned centrifugation method, the cells were washed
twice with PBS and discarded. Then, the cells were incubated with
anti-F4/80 monoclonal antibody at 4°C in dark for 60 min. After
incubation, the cells were washed with iced PBS 3 times. Finally,
the cells were resuspended with 200 μl PBS and transferred to a
flow tube for detection.

Apoptosis-Associated Speck-Like Protein
Containing a Card Oligomerization Assay
BMDMs were seeded in 12-well plates overnight. After
inflammasome activation, the cell supernatant was removed,
and the cells were lysed using Triton buffer [50 mM Tris-HCl
(pH 7.5), 150 mM NaCl, 0.5% Triton X-100, and EDTA-free
protease inhibitor cocktail]. The lysates were centrifuged at
6,000 g for 15 min. The supernatants detected the level of the
NLRP3 inflammasome complex proteins by immunoblotting
analysis, and the pellet fractions were washed with 500 μl PBS
and resuspended in 200 μl PBS containing 2 mM DSS, and then
cross-linked at 37°C for 30 min. After that, the pellets were
centrifuged at 6,000 g for 15 min. Finally, the cell supernatant
was removed.

ROS Measurements
BMDMs were seeded in 100-mm cell culture dishes with 1 ×
106 cells/ml overnight. After that, the medium was replaced with
fresh DMEM, and then primed with 50 ng/ml LPS for 4 h. Next,
the cells were digested with trypsin (EDTA + trypsin) and
stimulated with 10 μM nigericin for 30 min after being
exposed to DHT for 1 h in Opti-MEM. Then, the cells were
centrifuged at 5000 rpm for 5 min, and the supernatants were
removed. After that, the cells were rinsed with HBSS and dyed
with 4 μM MitoSOX for 20 min at 37°C. Flow cytometry was
applied to detect the cells washed with HBSS.

Intracellular K+ Measurement
BMDMs were plated in 24-well plates with a concentration of 1 ×
106 cells/ml overnight. The activation of the inflammasome has
been described earlier. The medium was removed, and the cells
were lysed with ultrapure HNO3. Next, the cell lysates were boiled
at 100°C for 15 min. The content of intracellular K+ was measured
by ICP-MS (inductively coupled plasma optical emission
spectrometry).

Intracellular Ca2+ Measurement
BMDMs were seeded at a concentration of 5 × 105 cells/well in a
384-well plate. Then, DMEM containing LPS was used to replace
the original medium. After 4 h, ATP was used to stimulate the
cells for 45 min. DHTwas used to treat or not treat the cells. ATP-
induced Ca2+ fluxes were detected by the FLIPRT Tetra System
(Molecular Devices, San Jose, CA, United States). The procedure
has a complete introduction in the previous studies.

Lipopolysaccharide-Induced Septic Shock
Model
DHTwas dissolved with 10% dimethyl sulfoxide and diluted with
sterile saline. Before the experiment, 18–20 g C57BL/6 female
mice were fed adaptively for a week. The septic shock model was
established by intraperitoneal injection of LPS in mice. The
vehicle control, DHT (40 mg/kg), or MCC950 (40 mg/kg) was
injected intraperitoneally. LPS (20 mg/kg) was given 1 h later, and
animal mortality was monitored regularly for three consecutive
days. In another experiment, C57BL/6 female mice were
randomly allocated to the following four groups: solvent
control, LPS, MCC950 + LPS, and DHT + LPS group (n � 8).
The administration condition was the same as that of the previous
experiment, except that the serum samples and PBS peritoneal
lavage fluid were adopted after 4 h. The cytokine levels were
measured by ELISA, and the macrophages were analyzed by flow
cytometry.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 7
(GraphPad Software, San Diego, CA, United States) and
Microsoft Excel. The data were expressed as the mean ±
standard error of the mean (SEM). The unpaired Student’s
t-test was used to analyze the significant differences between
the two groups. The comparison of three or more groups used
one-way ANOVA. The log-rank test was used to analyze the mice
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FIGURE 1 | Dihydrotanshinone I (DHT) blocks NLRP3 inflammasome activation induced by nigericin and ATP in BMDMs. (A) Dihydrotanshinone I structure. (B)
BMDMs were exposed to DHT (2.5–80 μM) for 24 h. (C–E) BMDMs were primed with LPS and then exposed to different concentrations (2.5, 5, or 10 μM) of
dihydrotanshinone I, followed by the stimulation of nigericin for 0.5 h. Immunoblotting analysis of IL-1β (P17) and activated caspase-1 (P20) in cell supernatants (Sup.) are
shown (C). Caspase-1 activity (D) and IL-1β (E) secretion weremeasured. (F–H)BMDMswere primed with LPS and then treated with different concentrations (2.5,
5, or 10μM) of dihydrotanshinone I, followed by the stimulation of ATP for 1 h. Western blot analysis of matured IL-1β (P17) and activated caspase-1 (P20) in culture
supernatants (Sup.) are shown (F). Caspase-1 activity(G) and IL-1β (H) secretion are measured. (I and J) The secretion of TNF-a in the supernatant of cells treated as
described in C (I) and F (J) were determined by ELISA. Coomassie blue staining was used as the loading control of the supernatant (C, F) and Lamin B was used as
the lysate loading control (C, F). Results are represented as mean ± SEM from three biological replicates. One-way ANOVA was used to analyze the data. *p < 0.05,
**p < 0.01, ***p < 0.001, NS: not significant.
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FIGURE 2 | Dihydrotanshinone I specifically inhibits NLRP3 inflammasome activation. (A) LPS-primed BMDMs were treated with dihydrotanshinone I (10 μM) and
then stimulated with ATP (45 min), nigericin (30 min), poly (I: C) (6 h), or SiO2(6 h), or Pam3CSK4-primed BMDMs were treated with dihydrotanshinone I (10 μM) and
stimulated with LPS (6 h). Western blot analysis of IL-1β (p17) and caspase-1 (p20) in supernatants (Sup.) and pro–IL-1β and pro–caspase-1 in whole lysates (Lys.) of
BMDMs are shown in (A). (B) BMDMs were primed with LPS, exposed to DHT (10 μM), and then stimulated with nigericin, Poly (dA:dT) (6 h), and Salmonella
typhimurium (6 h). Immunoblotting analysis of IL-1β (p17) and cleaved caspase-1 (p20) in culture supernatants (Sup.) and pro–IL-1β and pro–caspase-1 in whole lysates
of BMDMs (Lys.). (C–E) Activity of caspase-1 (C), secretion of IL-1β (D), and production of TNF-α (E) in Sup. from samples described in (A). (F–H) Activity of caspase-1
(F), IL-1β (G), and TNF-α (H) in Sup. from indicated samples in (B). Coomassie blue staining was used as the supernatant loading control (A–B) and Lamin B as the lysate
loading control (A–B). Data are represented as mean ± SEM from three biological replicates. Statistics were analyzed by multiple t-tests. *p < 0.05, **p < 0.01, ***p <
0.001, NS: not significant.
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survival data. Statistical significance was indicated as *p < 0.05,
**p < 0.01, and ***p < 0.001; ns: not significant.

RESULTS

Dihydrotanshinone I Inhibits Nigericin and
Adenosine Triphosphate–Induced
Activation of the NLRP3 Inflammasome
To examine whether dihydrotanshione I (DHT, Figure 1A) is
influential in the activation of the NLRP3 inflammasome, we
applied the CCK-8 kits to detect the cytotoxicity of DHT when
different doses of DHT acted on macrophages derived from
mouse bone marrow (BMDMs) for 24 h. It was observed that
low concentrations of DHT did not damage the viability of
BMDMs. DHT at concentrations below 20 μΜ is safe
(Figure 1B).

Hence, the inhibition of DHT on the activity of caspase-1 and
the secretion of IL-1β were measured at the concentration of
0–10 μΜ. We primed BMDMs with LPS and then treated them
with DHT before being stimulated with nigericin. The
immunoblotting results indicated that DHT treatment could
suppress the cleavage of caspase-1 and the secretion of IL-1β
(Figure 1C). Subsequently, the caspase-1 activity assay showed
that DHT treatment and the activity of caspase-1 were dose-
responsive (Figure 1D). Next, we measured the level of IL-1β by
ELISA. ELISA results were consistent with those of Western
blotting, indicating that DHT caused a dose-dependent inhibition
of the activity of caspase-1 and the production of IL-1β
(Figure 1E). Similarly, DHT dose dependently suppressed the
level of ATP-induced caspase-1 and IL-1β (Figures 1F–H).
However, DHT made no difference in the secretion of
inflammasome-independent TNF-α (Figures 1I,J).
Furthermore, the protein levels of NLRP3, ASC, pro–caspase-
1, pro–IL-1β in the whole lysate of BMDMs were not affected by
DHT (Figures 1C,F). Taken together, DHT efficiently blocks the
activation of the NLRP3 inflammasome.

Dihydrotanshinone I Specifically Inhibits the
Activation of the NLRP3 Inflammasome but
Does Not Affect AIM2 and NLRC4
Inflammasome Activation
To verify whether DHT can inhibit the NLRP3 inflammasome
over a broad spectrum, we investigated the effects of DHT on the
LPS-mediated canonical-activated pathway of SiO2 and poly (I:
C). Our results indicated that DHT could inhibit SiO2- and poly
(I: C)-induced production of IL-1β and activity of caspase-1
(Figures 2A,C,E). We also identified the role of DHT in the
non-canonical activation of the NLRP3 inflammasome.
Pam3CSK4-primed BMDMs were stimulated with LPS
transfection after being exposed to DHT. The results showed
that DHT reduced IL-1β secretion and caspase-1 cleavage
(Figures 2. A,C,D). The data hint that DHT can restrain the
canonical and non-canonical activation of the NLRP3
inflammasome in BMDMs.

Not only the NLRP3 inflammasome but also the AIM2 and
NLRC4 inflammasomes may mediate IL-1β secretion and
caspase-1 maturation. Subsequently, we tested whether
DHT has a specific inhibitory effect on the activation of the
NLRP3 inflammasome. We stimulated LPS-primed BMDMs
with Salmonella typhimurium to see if DHT prevented the
activation of the NLRC4 inflammasome (Samperio Ventayol
et al., 2021). The results indicated that DHT did not influence
the secretion of IL-1β and the maturation of caspase-1 during
NLRC4 inflammasome activation in BMDMs (Figures
2B,F,G). It has been reported that double-stranded DNA
can activate the AIM2 inflammasome (Li et al., 2021). LPS-
primed BMDMs were exposed to DHT (10 μΜ) for 1 h and
then transfected with poly (dA: dT) (Zhang C. et al., 2021). The
effect of DHT on the AIM2 inflammasome was observed with
no reduction in the secretion of IL-1β and cleavage of caspase-
1 (Figures 2B,D,F). Meanwhile, DHT made no difference in
the production of TNF-α (Figures 2E,H). The results
supported DHT as a broad-spectrum inhibitor for the
NLRP3 inflammasome, but it could not inhibit the
activation of the AIM2 or NLRC4 inflammasome.

Dihydrotanshinone I Inhibits ASC
Oligomerization
Existing studies have shown that DHT blocks the TNF-
α–induced NF-κB signaling pathway (Wang et al., 2015).
Then, according to the method described earlier (Hou et al.,
2020), we detected whether DHT affected the NF-κB–dependent
expression of NLRP3 or pro–IL-1β to inhibit the activation of the
NLRP3 inflammasome. We treated BMDMs with DHT for 1 h
before being treated with 4 h-LPS. A high dose of DHT could
downregulate the production of pro–IL-1β, NLRP3, and TNF-α
(Figures 3A,B). Instead, when BMDMs were pretreated with LPS
for 4 h and then followed by stimulation with or without DHT,
the production of NLRP3, pro–IL-1β, and TNF-α remained
unchanged (Figures 3A,B). In this condition, DHT showed
inhibition of caspase-1 activity and IL-1β production (Figures
1A,F). Collectively, these data suggest that DHT, indeed, was
effective in the activation stage of the NLRP3 inflammasome.

ASC oligomerization is a crucial stage during the activation of
the inflammasome (Green et al., 2018). Then, we further explored
whether DHT could block ASC oligomerization during the
activation of the NLRP3 inflammasome. The LPS-primed
BMDMs were stimulated by nigericin after being exposed to
DHT, and then the cytoplasmic part of cell lysis was cross-linked.
The ASCmonomers and advanced complexes maintained a dose-
dependent decline by DHT as observed by Western blotting
(Figure 3C). Deeper results showed that DHT could inhibit
the oligomerization of ASC mediated by multiple NLRP3
inflammasome stimuli, such as ATP, nigericin, SiO2, and poly
(I: C) (Figure 3D). In comparison, DHT did not inhibit ASC
oligomerization during Salmonella typhimurium and poly (dA:
dT)-induced NLRC4 and AIM2 inflammasome activation
(Supplementary Fig. 1). Thus, the results implied that DHT
could inhibit ASC oligomerization when the NLRP3
inflammasome was activated.
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DHT Does Not Affect the Upstream Signals
of NLRP3 Inflammasome Activation and the
NLRP3–NEK7 Interaction
The decrease of intracellular K+ concentration is recognized as a
trigger for the activation of the NLRP3 inflammasome (Gong et al.,
2018). Therefore, we tested if DHTpreventedK+ efflux duringNLRP3
activation. The results indicated that nigericin significantly reduced
intracellular potassium levels, whereas DHT did not reverse such
changes induced by nigericin (Figure 4A). Recent researches have
clarified that Ca2+ signaling is a crucial signaling pathway in the
activation of the NLRP3 inflammasome (Elliott and Sutterwala, 2015).
Blocking Ca2+ signaling can inhibit the activation of the NLRP3

inflammasome but not AIM2 and NLRC4 inflammasomes (Elliott
and Sutterwala, 2015). We observed that DHT did not affect ATP-
induced calcium mobilization during NLRP3 inflammasome
activation (Figure 4B). Moreover, oxidative stress also participates
in the upstream of inflammasome activation, mitochondrial
perturbations, and reactive oxygen species (mtROS) production
which are essential for the activation of the NLRP3 inflammasome
(He et al., 2016a; Verma et al., 2020). Thus, we investigated whether
DHT influences the nigericin-inducedROSproduction. The emerging
findings suggested that DHT treatment did not affect nigericin-
induced mtROS production (Figure 4C).

NEK7 is anNLRP3-binding protein. The interaction betweenNEK7
and NLRP3, which plays a crucial role in regulating the assembly and

FIGURE 3 | DHT inhibits ASC oligomerization. (A)Western blot analysis of proteins in lysates. from BMDMs with 4 h-LPS priming and then treated with or without
different doses of DHT (2.5, 5, 10 μM) for 1 h, or BMDMs treated with varying doses of DHT (2.5, 5, 10 μM) for 1 h and then stimulated with LPS for 4 h. Lamin B was
used as an internal control. (B) Production of TNF-α in Sup. from BMDMs as described in (A). (C, D) BMDMs were pretreated with LPS and stimulated with nigericin,
ATP, transfected LPS, SiO2, poly (I: C), or Pam3CSK4-primed BMDMs stimulated with LPS transfection after exposure to DHT. Western blotting analysis of ASC
oligomerization in cell lysates.
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activation of the NLRP3 inflammasome, is indispensable for activating
the NLRP3 inflammasome (He et al., 2016b; Sharif et al., 2019).
Therefore, we investigated if DHT was acting on the NEK7–NLRP3
interaction. 293T cell lines were transfected with Flag-NLRP3, and the
immunoprecipitates were analyzed by Western blotting. Our results
showed that DHT did not inhibit the binding of NEK7 to NLRP3
(Figure 4D). Taken together, DHT has no effect on the upstream
signals of NLRP3 inflammasome activation, as well as the interaction
between NLRP3 and NEK7.

Dihydrotanshinone I Inhibits Inflammation
In Vivo and Protects Against LPS-Induced
Septic Shock In Vivo
To determine the role of DHT on the activation of the NLRP3
inflammasome in vivo, we selected the mouse model of LPS-
induced NLRP3 inflammasome–dependent septic shock (Mao

et al., 2013; Lee et al., 2017). We intraperitoneally injected DHT
or MCC950 in mice, and LPS was injected 1 h later to monitor
their survival. Our results showed that DHT significantly
increased the survival rate of septic shock in mice injected by
LPS (Figure 5A). On comparing the effects of DHT with
MCC950, a selective inhibitor of the NLRP3 inflammasome,
we observed that DHT had a similar protective effect on LPS-
mediated death as MCC950 (Figure 5A). In addition, the mice
were intraperitoneally treated with DHT or MCC950 for 1 h and
then injected by LPS. The levels of IL-1β and TNF-α were
evaluated 4 h later. The findings suggested that DHT had a
similar effect as MCC950. DHT significantly reduced the levels
of IL-1β and TNF-α in serum and peritoneal lavage fluid, and
decreased the number of macrophages (Figures 5B–F). In
conclusion, these results reveal that DHT treatment could
block the activation of the NLRP3 inflammasome and improve
NLRP3 inflammasome–mediated septic shock in mice.

FIGURE 4 | DHT has no effect on upstream signaling events of NLRP3 inflammasome activation andNLRP3–NEK7 interaction. (A)Qualification of potassium efflux in LPS-
primed BMDMs exposed to various doses of DHT (2.5, 5, 10 μM) and then stimulated with nigericin. (B) ATP-induced Ca2+ flux in LPS-induced BMDMs treated with or without
DHT was measured using a FLIPR Tetra system. (C) LPS-primed BMDMs treated with DHT and then stimulated with nigericin were detected by staining with MitoSox. The
percentage of ROS-positive cells was obtained by flow cytometry. (D) HEK-293T cells were transfected with Flag-NLRP3, and DHT (10 μM) was added at 18 h post
transfection. Immunoprecipitationwas performedwith anti-Flag affinity gel-agarose beads, followed byWestern blot analysis. GAPDHwas used as the lysate loading control. Data
are shown as mean ± SEM from three biological replicates. One-way ANOVA was used to analyze the data. *p < 0.05, **p < 0.01, ***p < 0.001, NS: not significant.

Frontiers in Pharmacology | www.frontiersin.org October 2021 | Volume 12 | Article 7508158

Wei et al. Dihydrotanshinone I Inhibits NLRP3 Inflammasome Activation

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


DISCUSSION

Salvia miltiorrhiza is widely used in the treatment of
inflammation. DHT is one of the main components of total
tanshinones in Salvia miltiorrhiza and has an anti-inflammatory

effect (Gao et al., 2018; Chen et al., 2019). However, the detailed
mechanism of DHT in inflammatory diseases has not been fully
elucidated. Current studies suggest that when the NLRP3
inflammasome is abnormally activated, it can cause severe
inflammatory responses, leading to various human

FIGURE 5 |Dihydrotanshinone I reduces LPS-induced septic shock and inflammation in vivo. (A) Survival rate of septic shock in mice. After intraperitoneal injection
of DHT (40 mg/kg) and LPS (20 mg/kg), the lethality of 6- to 8-week-old C57BL/6 female mice wasmonitored within 72 h (n � 10) (B–F) C57BL/6 female mice were given
vehicle control, DHT (40 mg/kg), or MCC950 (40 mg/kg) for 1 h and then treated with LPS (20 mg/kg) for 4 h. Monocytes-macrophages (F4/80 + cells) (B), TNF-α (C),
IL-1β (E) from serum and TNF-α (D), and IL-1β (F) in the peritoneal lavage fluid weremeasured using flow cytometry and ELISA. Data are represented as themean ±
SEM. Statistics differences were analyzed using an unpaired Student’s t-test *p < 0.05, **p < 0.01, ***p < 0.001, NS: not significant.
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inflammatory diseases (Chen et al., 2009; Abderrazak et al., 2015;
Louvrier et al., 2020). This study demonstrated that DHT acts as a
specific inhibitor to block the canonical and non-canonical
activation of the NLRP3 inflammasome but has no effect on
the activation of AIM2 andNLRC4 inflammasomes. Evidence has
emerged that DHT attenuates crystalline silica–induced lung
inflammation by regulating the immune response and
inhibiting STAT1/STAT3 (Zhang et al., 2019). DHT can
promote amyloid-β accumulation clearance and decrease Tau
phosphorylation by autophagy and the AMPK/mTOR pathway
(Zhou et al., 2011; Bao et al., 2020). A previous study also showed
that DHT could promote the formation of a negative feedback
loop between the HuR level and TRIM21 expression under UV
irradiation (Guha et al., 2020). In our study, we have shown that
DHT could inhibit the activation of the NLRP3 inflammasome
targeted by many types of factors, including nigericin, ATP, poly
(I: C), or SiO2 (Figure 2). Thanks again for the reviewer’s
suggestion, and we have added the discussions in our revised
manuscript (page 13, line 326–334).

We also explored the mechanism of how DHT inhibits the
activation of the NLRP3 inflammasome. Previous studies have
reported that after the two steps of priming and activation are
completed, the NLRP3 inflammasome can activate and
subsequently secrete bioactive IL-1β (Jo et al., 2016; Duan
et al., 2020). Reports showed that the activation of the NF-κB
signaling pathway plays an important role on the expression of
NLRP3 in the priming events (Yu et al., 2017; Wang et al., 2018).
The ability of DHT to inhibit the activation of the NF-kB
signaling pathway has long been proven (Wang et al., 2015).
Consistent with the previous study, our results also demonstrated
that DHT inhibited the inflammasome-independent production
of pro–IL-1β and NLRP3 in DHT-pretreated BMDMs followed
by LPS priming. In contrast, when BMDMs were treated with LPS
prior to DHT stimulation, DHT has no effect on the expression of
NLRP3 and pro–IL-1β induced by LPS. However, in this case,
DHT can inhibit the caspase-1 maturation and the IL-1β
secretion. These suggested that DHT could inhibit the priming
phase of the NLRP3 inflammasome and play a part in the
activation phase of the NLRP3 inflammasome.

mtROS production is a major upstream signaling regulator of
NLRP3 inflammasome activation (Camilli et al., 2020). Our
findings showed that DHT had no effect on the production of
mtROS during the activation of the NLRP3 inflammasome. But,
recent research studies claimed that DHT attenuated mtROS
production in J774A.1 cells (Yue et al., 2021). In our results, the
effect of DHT on mtROS production is not consistent with Hu
et al.’s study, which may be caused by different cells and different
experimental conditions. Potassium efflux (Di et al., 2018; Xu
et al., 2020) and Ca2+ flux (Chae et al., 2015; Elliott and
Sutterwala, 2015) are also the upstream signals of NLRP3
inflammasome activation. Our results also demonstrated that
DHT had no inhibitory effect on calcium flux or potassium efflux.
Thus, these results suggested that DHT does not influence the
upstream signals of NLRP3 inflammasome activation. Therefore,
we speculated whether DHT influences the activation of the
NLRP3 inflammasome by targeting the assembly of the
NLRP3 inflammasome. ASC oligomerization is an important

assembly step in the activation of the NLRP3 inflammasome.
These data indicated that DHT was provided with the solid
repression of ASC oligomerization during the activation of the
NLRP3 inflammasome. However, DHT did not affect NLRC4-
and AIM2-dependent ASC oligomerization. Therefore, these data
clarified that DHT may inhibit NLRP3 inflammasome assembly
through the upstream events of ASC oligomerization, thereby
inhibiting NLRP3 inflammasome activation. However, this
unknown upstream event needs to be studied further.

Intraperitoneal injection of lipopolysaccharide induces sepsis
(Ulevitch and Tobias, 1995; Liao et al., 2018), and the activation
of the NLRP3 inflammasome plays a crucial role in vivo,
accompanied by the production of IL-1β and the occurrence
of inflammation (Lee et al., 2017; Xiong et al., 2020). In our
study, the results showed that DHT could antagonize LPS-
induced septic shock in mice and raise the survival rate. In
vivo experiments showed that DHT inhibited the production of
IL-1β and TNF-α in the serum and peritoneal lavage fluid of
mice and inhibited the recruitment of macrophages in
peritoneal lavage fluid, suggesting that DHT could inhibit the
activation of the NLRP3 inflammasome in vivo and alleviate the
disease mediated by the NLRP3 inflammasome. The therapeutic
effect was almost the same as that of MCC950. In this study,
only F4/80 was detected to label the macrophages. In future
studies, the effect of DHT on inflammation in vivo can also be
detected by detecting total cells and neutrophils in peritoneal
lavage fluid. Moreover, previous studies have shown that DHT
attenuates DSS-induced experimental ulcerative colitis in mice
(Guo et al., 2018). It has been confirmed that DSS-induced
ulcerative colitis is an NLRP3-dependent disease (Bauer et al.,
2010; Ruiz et al., 2017). We speculate that DHT may ameliorate
DSS-induced experimental ulcerative colitis by inhibiting the
NLRP3 inflammasome. Therefore, our study proves DHT to be
a potential agent for a position in the treatment for NLRP3
inflammasome–mediated diseases.
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