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Gait impairments in Parkinson’s disease (PD) are exacerbated under dual-task conditions requiring the simultaneous performance
of cognitive or motor tasks. Dual-task walking deficits impact functional mobility, which often requires walking while performing
concurrent tasks such as talking or carrying an object. The consequences of gait impairments in PD are significant and include
increased disability, increased fall risk, and reduced quality of life. However, effective therapeutic interventions for dual-task
walking deficits are limited. The goals of this narrative review are to describe dual-task walking deficits in people with PD, to
discuss motor and cognitive factors that may contribute to these deficits, to review potential mechanisms underlying dual-task
deficits, and to discuss the effect of therapeutic interventions on dual-task walking deficits in persons with PD.

1. Introduction

Gait impairments and walking limitations are common
among people with Parkinson’s disease (PD). While gait
abnormalities are not pronounced in the early stages of
PD, their prevalence and severity increase with disease
progression. Within 3 years of diagnosis, over 85% of people
with clinically probable PD develop gait problems [1].
The potential consequences of gait impairments in PD are
significant and include increased disability [2, 3], increased
risk for falls, and reduced quality of life. Falls are common
among people with PD and can result in fear of falling,
injury, and hospitalization [4–10]. The estimated prevalence
of falls in PD ranges from 40 to 90% and increases with the
duration of follow-up [4, 5, 11–16]. It is estimated that 45–
50% of falls in this population occur when walking [5, 17],
with balance and walking deficits commonly identified as
risk factors for falls [5, 10–12, 14, 18, 19]. Reduced quality
of life is also associated with balance and gait abnormalities
in PD, including festination and freezing of gait [2, 20–
24]. In fact, people with PD consider mobility and walking
limitations to be among the worst aspects of the disease [25].

Mobility in daily life frequently requires walking while
performing simultaneous cognitive or motor tasks, such
as talking with a friend or carrying a cup of coffee. Gait
impairments in people with PD are exacerbated under
such dual-task conditions. In recent years, dual-task walking
research has expanded rapidly. The association of gait
impairments with adverse consequences like increased fall
risk has motivated research into clinical strategies to assess
and treat dual-task walking deficits in PD. Several recent
review papers have been published on dual-task posture and
gait deficits among older adults and in a general neurologic
population [26–29], but none have focused specifically on
people with PD. While people with PD demonstrate dual-
task deficits in a variety of movements, including postural
control tasks [30, 31], upper extremity movements [32, 33],
and speech [34], the focus of this paper is dual-task walking.
The goals of this review are to describe dual-task walking
deficits in people with PD, to discuss motor and cognitive
factors that may contribute to these deficits, to review
potential mechanisms underlying dual-task interference, and
to discuss the effect of therapeutic interventions on dual-task
walking deficits in people with PD.
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2. Dual-Task Walking Deficits in PD

Single-task gait impairments in PD include reduced speed
and stride length and increased double limb support time
and stride-to-stride variability [35–38]. With progression
of PD, gait abnormalities worsen, and festination, freez-
ing, and dystonic or dyskinetic gait patterns can emerge
[39]. Gait impairments in PD are exacerbated under dual-
task conditions, with further reductions in gait speed and
stride length [40–46], decreased symmetry and coordination
between left and right steps [47, 48], and increased stride-
to-stride variability [45, 49, 50]. This section will review
reported dual-task walking deficits in people with PD and
will consider factors that influence the magnitude of these
deficits.

2.1. Individual, Task, and Environment Framework. Table 1
summarizes dual-task walking studies in people with PD,
including relevant individual, task, and environmental char-
acteristics of each study. Comparing dual-task walking
deficits across studies is challenging because of variations
in methodology. In Table 1, decrements in walking under
dual-task conditions are expressed as a percentage of single-
task performance, commonly referred to as the dual-task
cost (DTC = [dual-task – single-task]/single-task ∗ 100)
[51, 52]. The DTC allows a more direct comparison of dual-
task deficits across studies and provides a way to assess
the relative effects of individual, task, and environmental
factors. For example, a study by Plotnik and colleagues
measured gait speed DTCs of 17% in people with moderate
PD, on medication, when walking approximately 80 m and
performing serial-3 subtractions [45]. Lord and colleagues
measured gait speed DTCs of 32% in people with moderate
PD, off medication, when walking approximately 6.5 m in
their home while carrying a tray and counting auditory
tones [43]. Dual-task walking deficits can be compared
using the DTC even though these studies varied in terms
of the participants’ medication status, the concurrent tasks
used, and the environment where walking occurred. Because
multiple factors differed between studies, it is not clear
whether the greater DTCs reported by Lord and colleagues
are due to off-medication status, more challenging concur-
rent tasks, or a more complex home environment. When
assessing dual-task deficits in PD, it is important to consider
individual characteristics such as the severity of motor and
cognitive impairments, the complexity of both walking and
concurrent tasks, and the overall challenge presented by the
environment.

2.2. Individual Factors. Studies of dual-task walking in PD
vary substantially with respect to participant characteris-
tics. Dual-task walking deficits increase with age among
healthy adults [29, 60, 61], but people with PD consistently
demonstrate greater dual-task walking deficits than healthy,
age-matched individuals [42, 44, 50, 54, 59]. For example,
O’Shea and colleagues found that people with PD had
greater dual-task declines in gait speed than healthy older

adults, with gait speed DTCs of −18% to −19% in the PD
group compared to −7% in the control group [44]. Most
research has examined people with mild-to-moderate disease
severity, as measured by the Unified Parkinson Disease
Rating Scale (UPDRS) and Hoehn and Yahr scores, although
disease severity is associated with dual-task walking deficits
[43, 57]. The majority of studies examined the impact
of concurrent task performance during the on-medication
state, though a small number of studies examined dual-task
walking in people with PD in the off-medication state only
[43, 59]. Studies that examined the effects of medication
demonstrated improvements in dual-task walking perfor-
mance on-medication compared to off-medication [53, 57].
Some studies specifically examined individuals with PD and
freezing [53, 55, 59], motor response fluctuations [45], or a
history of falls [62]. For example, research comparing people
with PD and freezing to those without freezing demonstrated
increased dual-task walking deficits when walking forwards,
turning, and walking backwards [53, 55, 59].

2.3. Task Factors. Dual-task studies in PD also vary in
terms of walking and concurrent task characteristics. Most
examined walking on a level surface at a self-selected
speed, but some included more complex walking tasks. For
example, some walking tasks involved sit-to-stand transfers
and/or turning [43, 46, 53, 54, 57–59], and one study
examined backwards walking [55]. Concurrent tasks varied
in terms of type (cognitive or motor), domain, and difficulty.
Concurrent cognitive tasks included mental tracking, such as
attentional tasks [43, 50, 59] or arithmetic calculations [41,
42, 44, 45, 47–50, 55, 56], verbal fluency or conversational
tasks [42, 53, 54], and memory tasks [46, 50]. Concurrent
motor tasks were used less commonly and included carrying
objects [40, 43, 46, 57, 58] or manipulating objects [42, 44].
It is not clear whether motor or cognitive tasks have a greater
impact on walking in people with PD. One study found
similar impacts of cognitive and motor tasks [44], while
other studies showed a greater impact of cognitive tasks
[42, 46]. However, the tasks incorporated differed in terms of
both type and complexity, limiting the ability to make direct
comparisons. Studies that controlled task domain and varied
task difficulty suggest that more complex tasks have a greater
effect on walking in PD [40, 54, 56].

Typically, no specific instructions are provided regarding
which task to prioritize during dual-task conditions. In most
cases, participants were either instructed to focus on both
tasks or instructions were not specified. However, most
studies quantified dual-task changes in walking only and did
not measure concurrent task performance, making it difficult
to determine if there were between-task trade-offs. DTCs
provide a means to assess trade-offs between walking and
concurrent task performance [63]. In studies that examined
dual-task changes in both walking and the concurrent task,
most showed declines in both [44, 50]. Only one study
demonstrated concurrent task improvements and walking
declines under dual-task conditions [42], consistent with
trade-offs between tasks and prioritization of the concurrent
task over walking.
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2.4. Environmental Factors. Studies that systematically ma-
nipulate environmental factors to determine the effects on
dual-task walking deficits in PD are lacking. Most research
was conducted in a clinical or laboratory environment, but
some was conducted in participants’ homes [43, 46, 57, 58].
Studies conducted in the home environment may be more
representative of mobility challenges in daily life.

In summary, the literature as a whole confirms the
presence of significant dual-task walking deficits among
persons with PD, despite methodological variations in par-
ticipant characteristics, task demands, and environmental
constraints. The extent of these deficits appears to vary as a
function of individual, task, and environmental characteris-
tics, but the relative contribution of each factor is not well
understood. Carefully controlled studies are needed to better
quantify how these factors impact dual-task walking deficits
in people with PD.

3. Motor and Cognitive Factors Contributing to
Dual-Task Walking Deficits

3.1. Motor Factors. It is not clear how motor and cognitive
symptoms contribute to either single-task or dual-task
walking deficits in PD. The motor phenotype of PD is
heterogeneous, with cardinal features of rigidity, tremor,
and bradykinesia [64]. These symptoms, as well as primary
impairments in locomotor control pathways [65], can con-
tribute to both single- and dual-task gait abnormalities. The
relative contributions of these factors may vary with disease
progression. Cardinal symptoms may contribute more to
walking deficits early in the disease, while primary gait
impairments might predominate later in the disease.

Single-task walking deficits have been associated with a
variety of motor symptoms in PD. For example, increased
axial rigidity is associated with poorer performance on
single-task measures of balance and functional mobility
[66, 67]. In addition, rigidity may contribute to reduced
lower extremity joint excursions and a forward flexed posture
when walking [39]. Bradykinesia can lead to shortened
step length and reduced gait speed during walking [39].
Postural instability, another common motor symptom, may
contribute to gait impairments such as increased stride-to-
stride variability and double limb support.

Several motor factors are associated with dual-task walk-
ing deficits in PD. Dual-task gait speed has been associated
with disease severity, as measured by Hoehn and Yahr stage
[46] and UPDRS motor subscale scores [43]. The severity
of PD motor symptoms has also been related to single- and
dual-task gait variability both off and on medication [57].
Dual-task walking performance in people with PD has been
associated with performance-based measures of balance [46].
Though not a specific motor symptom of PD, some [46],
but not all [43, 57], studies have found associations between
physical fatigue and dual-task walking deficits in PD. Dual-
task walking deficits in PD are also associated with primary
gait deficits. Dual-task changes in speed and stride length
were associated with performance on single-task mobility
tests in people with PD [45]. In addition, dual-task walking

deficits were greater in people with PD and freezing of gait
compared to those without freezing [53, 55, 59]. Although
dual-task walking deficits have been associated with both
motor symptom severity and primary gait impairments, the
relative contribution of each to dual-task walking deficits has
not been well quantified.

3.2. Cognitive Factors. PD is associated with a variety of cog-
nitive impairments, including executive function, attention,
memory, language, and visuospatial impairments [68–70],
that could contribute to dual-task walking deficits. Cognitive
profiles in PD are variable [71] and range from mild deficits
in specific cognitive domains to severe dementia affecting
multiple domains. It is estimated that 19–30% of people with
early, newly-diagnosed PD present with cognitive impair-
ments [72–74], and these impairments worsen with disease
progression [69]. The presence of mild cognitive impairment
in people with PD is associated with development of
dementia within 4 years [75]. The prevalence of dementia
in PD is estimated at 26–44% [76, 77], with over 80% of
people developing dementia within 20 years of diagnosis
[13]. Depression can exacerbate cognitive impairments in
PD [78], and the frequency of depression in PD is estimated
at 25–33% [79, 80].

Specific cognitive functions, such as set shifting, divided
or alternating attention, and response inhibition, may be
particularly relevant to dual-task walking [28]. Dual-task
walking deficits in PD have been associated with impair-
ments in executive function, set-shifting, and attention [43,
45, 46]. For example, Plotnik and colleagues [45] demon-
strated a relationship between set shifting, as measured by
the Trail Making Test, and dual-task changes in gait speed
and step length. Dual-task changes in gait variability were
related to executive function, including set shifting and
global cognition [45, 50, 57]. Executive function, measured
by the Brixton test, has also been associated with gait speed
[46] and gait speed DTCs [43]. Deficits in attention were
associated with greater deficits in gait variability [57] and
increased gait speed DTCs [43]. Finally, depression has been
related to gait speed declines and gait variability increases
under dual-task conditions in some studies [46, 57], though
associations between dual-task parameters and affect (both
depression and anxiety) were not supported by all studies
[45].

Cognitive impairments can contribute to dual-task walk-
ing deficits in various ways. First, they may limit the ability to
compensate for gait impairments using cognitive strategies.
People with PD are often taught conscious strategies to
improve their gait pattern, such as focusing on walking with
longer steps. The type and severity of cognitive impairments
may limit the ability to use such strategies to compensate
for gait abnormalities. Also, impaired executive function
might result in the inappropriate or unsafe prioritization of
tasks when walking under dual-task conditions. Bloem and
colleagues have proposed that increased fall risk in people
with PD may result in part from a “posture second” prior-
itization strategy, in which concurrent tasks are prioritized
above walking [81, 82]. Consistent with this idea, falls in



Parkinson’s Disease 7

PD have been associated with reduced performance on a
variety of cognitive measures [83, 84]. The prevalence of
cognitive impairments in PD and their associations with
dual-task walking deficits suggest that they are an important
contributing factor. Further research is needed, however,
because little is known about how the domains and severity
of cognitive impairments affect dual-task walking deficits
and their response to therapeutic interventions.

4. Potential Mechanisms Underlying
Dual-Task Walking Deficits

The mechanisms responsible for interference between walk-
ing and concurrent cognitive or motor tasks in people
with PD are not clear. Because multiple factors contribute
to dual-task walking deficits, it is likely that a number
of different mechanisms contribute to these deficits. In
addition, characteristics of the concurrent task, such as
type, domain, and difficulty, will impact the mechanisms
and resources involved in dual-task performance. This
section will review both nonspecific mechanisms proposed
to explain dual-task interference across populations as well
as specific mechanisms that may contribute to dual-task
walking deficits in PD.

4.1. Nonspecific Mechanisms. Two general theoretical frame-
works have been proposed to explain dual-task interference.
Capacity theory conceptualizes the information processing
needed for dual-task performance as a flexible but limited
resource [27, 85, 86]. Performance of any given task, like
walking, requires some portion of this capacity. When two
tasks are performed concurrently, competition for limited
resources results in dual-task interference and deterioration
in performance of one or both tasks [26]. According to this
theory, information processing resources such as attention
can be flexibly allocated between tasks, with many factors
potentially influencing resource allocation [86]. For example,
differences in dual-task performance can result from indi-
vidual differences in overall capacity, and intra-individual
variability in dual-task performance can arise from transient
variations in effective capacity due to factors like motivation,
fatigue, or arousal [86]. Task-related factors also influence
resource allocation. For example, a recent meta-analysis
demonstrated that dual-task gait speed declines varied as a
function of the concurrent cognitive task in healthy young
and older adults and a general neurologic population [29].

A second general theory to explain dual-task interference
is the bottleneck theory [87]. According to this theory, dual-
task performance requires serial or sequential processing
of the two concurrent tasks. Dual-task interference results
when two tasks compete for the same processing resources.
In order to complete one task, processing of the second
task is temporarily postponed, resulting in performance
decrements in the second task. Dual-task walking studies
are limited in their ability to discriminate between these
two theories, but these general mechanisms may inform
methodological choices and subsequent interpretations.

4.2. PD-Specific Mechanisms. Several mechanisms specific to
PD may also contribute to dual-task walking deficits. These
mechanisms are not mutually exclusive, but might overlap
with one another. Consistent with the capacity theory, a first
specific mechanism in people with PD is reduced movement
automaticity. Automaticity refers to the ability to perform
a skilled movement without conscious or executive control
or attention directed toward the movement [88, 89]. The
control of standing and walking was previously thought
to be automatic, but the role of cognitive and executive
functions in postural control is increasingly appreciated
[26, 28]. For example, in healthy young and older adults,
simple reaction times increased when walking compared to
sitting, reflecting greater attentional demands for walking
[90, 91]. The basal ganglia are proposed to play a role in
the automatic control of movement [65]. In people with PD,
basal ganglia dysfunction may lead to reduced movement
automaticity and the need for increased reliance on cognitive
resources to control movements. During dual-task upper
extremity movements, people with PD demonstrated greater
levels of activity in premotor and prefrontal cortical areas
compared to healthy individuals, as measured by functional
magnetic resonance imaging [92]. Similarly, people with PD
may rely on greater cognitive control during walking, even
under single-task conditions [37, 93]. If reduced movement
automaticity contributes to dual-task walking deficits in
people with PD, rehabilitation strategies designed to improve
the automatic control of walking should improve dual-task
walking.

A second mechanism that could contribute to dual-task
walking deficits in PD is dopamine-mediated dysfunction
of the basal ganglia. Multiple parallel pathways through the
basal ganglia subserve different functions, including motor,
cognitive, and limbic functions [94–96]. Degeneration of
dopaminergic neurons in PD appears to affect both motor
and cognitive circuits within the basal ganglia. Pathology
of basal ganglia circuits that project to the dorsolateral
prefrontal cortex may contribute to the executive function
deficits that are prominent in people with PD [97, 98]. For
example, specific deficits in set shifting, which are associated
with dual-task walking deficits in PD [45], are thought
to be mediated by the dorsolateral prefrontal cortex [98].
Dual-task walking deficits are improved by anti-parkinson
medications [53, 57], supporting the idea that motor and
cognitive impairments are due in part to dopaminergic
pathways. However, the impact of anti-parkinson medica-
tions may be limited to those impairments mediated by
dopamine dysfunction, and many studies demonstrate dual-
task walking deficits in people with PD in the on-medication
state.

A third mechanism that could contribute to dual-task
walking deficits in PD is the presence of nondopaminergic
pathology, which may affect both gait and cognition. It is
increasingly appreciated that the pathology of PD is not
limited to dopamine but includes other neurotransmitter
systems, such as serotonin, norepinephrine (noradrenaline),
or acetylcholine [71, 99, 100]. Dysfunction in multiple neu-
rotransmitter systems may contribute to gait [101, 102] and
cognitive impairments in PD [71]. Thus, non-dopaminergic
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pathways may also contribute to dual-task walking deficits
in PD. Consistent with this idea, dual-task walking deficits
persist even when people with PD are optimally medicated
[42, 44, 50, 54, 59].

In summary, research suggests a number of general
and specific mechanisms that may contribute to dual-
task walking deficits in PD. These mechanisms are not
mutually exclusive, and the relative contribution of each may
depend on factors like the symptom profile of the individual
and the specific task combination performed under dual-
task conditions. A better understanding of the mechanisms
responsible for dual-task walking deficits in PD can inform
novel therapeutic approaches and enhance our ability to
identify optimal interventions.

5. Therapeutic Interventions: Impact on
Dual-Task Walking Deficits

The effects of various interventions on single-task walking
in PD have been well described, but there is less research
examining the efficacy of different pharmacological, surgical,
or rehabilitative therapies on dual-task walking in this
population. Because gait impairments in PD are exacerbated
by dual-task conditions, which are common in daily life,
it is important to understand how various therapeutic
interventions affect dual-task walking.

5.1. Pharmacological Interventions. The reported effects of
anti-parkinson medications on walking in PD are variable,
even under single-task conditions. Medications improve
aspects of single-task walking, including gait speed and stride
length, but may not influence others, like stride-to-stride
variability [38, 103, 104], festination, and freezing of gait
[39, 105, 106]. As noted above, anti-parkinson medications
increase speed and decrease variability during dual-task
walking in PD [57] and even increase dual-task walking
speed in those with freezing [53]. Neither of the above
studies examined the effects of medication on concurrent
task performance, so it is unclear if medication-related
improvements were due to trade-offs between walking and
the concurrent task. Medications can have limited or adverse
effects on cognitive functions like set shifting [107] and cer-
tain types of learning [108, 109] that are critical to dual-task
walking. As a result, medications could negatively affect dual-
task walking or result in dual-task walking improvements at
the expense of concurrent cognitive task performance. The
positive effects of anti-parkinson medications on dual-task
walking are consistent with a contribution from dopaminer-
gic mechanisms, but persistent deficits in the on-medication
state suggest that non-dopaminergic mechanisms may also
contribute to dual-task interference.

5.2. Surgical Interventions. The reported effects of surgery
on single-task walking are inconsistent. For example, initial
improvements in postural control and gait as a result of
deep brain stimulation are not sustained beyond 2–9 years
[110]. In the short term, subthalamic nucleus stimulation

can improve single-task gait speed and stride length, partic-
ularly in the off-medication condition [111, 112], but the
individual response to subthalamic nucleus stimulation in
the on-medication state is variable [113]. To date, no research
has examined the effects of deep brain stimulation or ablative
surgeries on dual-task walking in people with PD. The
limited research on dual-task upper extremity movements is
equivocal, with one study showing no effect of subthalamic
nucleus stimulation [114] and one showing a decline [115].

5.3. Rehabilitation Interventions. There is considerable re-
search demonstrating training-related improvements in
single-task walking in persons with PD [116–122]. However,
it is not clear whether dual-task walking deficits can be
improved with practice in PD or, alternatively, whether
clinicians should teach people with PD to avoid dual-task
conditions to improve safety [123]. A variety of rehabilitation
strategies to improve dual-task walking in PD have been
studied, with most research focusing on external cues, cog-
nitive or attentional strategies, and dual-task gait training.

External visual, auditory, or somatosensory cues improve
both single- and dual-task walking in PD [42, 124–129],
even among those with de novo PD [130] or cognitive
impairment [131]. For example, Rochester and colleagues
examined the effects of external rhythmic cues (auditory,
visual, and somatosensory) on walking in people with PD
[128]. Cueing therapy was provided over nine 30-minute
sessions in the home and consisted of training during single-
and dual-task walking and during various functional walking
tasks. Speed and step length improved during both single-
and dual-task cued walking conditions. These improvements
transferred to noncued walking and were retained at 6-
week follow-up testing. The authors suggest that dual-
task walking improvements were likely due to improved
walking automaticity. Based on this research, external cueing
appears to improve walking under both single- and dual-
task conditions in people with PD. However, studies of cue
training vary in terms of cueing modality, training duration,
tests used for outcomes assessment, and length of follow-
up. Further research is needed to determine the parameters
of cue training that provide the greatest and most sustained
benefits for dual-task walking in PD.

Cognitive or attentional strategies (e.g., focusing atten-
tion on walking with long steps) can also improve walking in
people with PD [125, 126, 132], but evidence for the efficacy
of cognitive strategies to improve dual-task walking is mixed.
Dual-task conditions introduce a concurrent task requiring
cognitive control. As suggested by the capacity theory of
dual-task interference, the need to direct cognitive resources
to the concurrent task may limit the ability to use conscious
or unconscious cognitive control to improve walking in PD.
Some studies indicate that attention can improve dual-task
walking [125], while others find that attentional strategies are
not effective under dual-task conditions [133].

Recent intervention studies have combined dual-task
gait training with cognitive strategies to direct attentional
focus and task prioritization. Even people with early PD
report the need to monitor and consciously correct walking
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deficits [93]. However, research suggests that people with PD
prioritize concurrent tasks over postural tasks under dual
task conditions, thereby decreasing safety and increasing fall
risk [82]. A number of intervention studies have examined
the effects of dual-task training with various instructions
regarding task prioritization. Training with instructions to
prioritize walking improved gait velocity and stride length
under both single- and dual-task conditions [125, 134],
with retention at 30 minutes [134]. Dual-task training with
instructions to divide attention equally between walking
and the concurrent cognitive task also improved dual-task
gait speed and stride length, with retention at 30 minutes
[135]. However, the same concurrent task was used for both
training and outcomes measurement in this study, so it is
not clear if these training-related improvements generalize
to other dual-task combinations. Canning and colleagues
also examined multitask training with divided attention
instructions [136]. In this study, the concurrent tasks used
during training differed from those used for outcomes
measurement. Training improved gait speed and cadence,
with improvements retained at 3-week follow-up. Finally,
Brauer and Morris examined the effects of dual-task training
using variable-priority instructions, where prioritization is
shifted between walking and the concurrent task [137].
Gait speed and step length improved for both the trained
dual-task combinations and on novel dual-task walking
combinations. Performance on the concurrent tasks did
not decline, indicating that dual-task walking improvements
were not due to between-task trade-offs. The authors suggest
that practice may reduce the attentional demands of walking
and increase automaticity, thus enabling individuals with PD
to attend to more challenging concurrent tasks. Together,
these studies suggest that dual-task gait training is an
effective intervention, but the relative impact of different
instructional sets requires further research.

One of the limitations in the research on dual-task
walking interventions is the lack of consistent and validated
measures of dual-task walking performance. Appropriate
outcome measures are necessary to determine if a person
with PD has dual-task walking deficits and if a given
intervention effectively improves these deficits. A variety
of tests, including the Stops Walking When Talking test
or the Walking and Remembering Test, have been used to
assess dual-task walking performance in older adults [138–
144]. Few of these measures have been examined in the PD
population [54, 81, 145], thus the psychometric properties
of these tests in PD are unclear. Future research is needed to
determine reliable, valid, and sensitive outcome measures to
evaluate dual-task walking performance in people with PD
and quantify the response to different interventions.

Research supports the efficacy of rehabilitative inter-
ventions, including external cueing, cognitive strategies,
and dual-task gait training, to improve dual-task walking
deficits in PD. Emerging research is examining additional
treatment approaches to improve dual-task walking. For
example, treadmill training with virtual reality, designed to
incorporate more complex task and environmental condi-
tions, has been shown to improve both single- and dual-
task walking in people with PD [146]. Future research is

needed to examine optimal treatment parameters for both
established and novel dual-task walking interventions, the
relative efficacy of different interventions, whether dual-
task walking improvements generalize to novel dual-task
combinations, and the degree to which improvements in
dual-task walking are retained.

6. Summary

This paper has reviewed basic and applied research related
to dual-task walking deficits in people with PD. Gait impair-
ments under both single-task and dual-task conditions are
prevalent in people with PD and are associated with serious
consequences. The severity of dual-task walking deficits
appears to vary as a function of individual, task, and
environmental characteristics, though the relative impacts
of each factor are not well understood. Both motor and
cognitive impairments have been associated with dual-task
walking deficits in persons with PD. However, because the
clinical profile of PD is heterogeneous, further research is
needed to elucidate the relative contributions of each of
these impairments to dual-task walking deficits. A number
of general and specific mechanisms may underlie dual-task
walking deficits in PD. The role of each is not clear, but
might depend on the dual-task combination performed.
These mechanisms inform a number of therapeutic interven-
tions. Rehabilitation interventions, including external cues,
cognitive strategies, and dual-task gait training, appear to
be effective in reducing dual-task walking deficits in PD.
However, a better understanding of the individual, task,
and environmental factors that influence dual-task walking
deficits is critical to refine existing interventions and identify
novel therapeutic approaches.
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