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Suppression of Groups Intermingling as an Appealing
Option for Flattening and Delaying the Epidemiological
Curve While Allowing Economic and Social Life at a
Bearable Level during the COVID-19 Pandemic

Ioan Bâldea

The COVID-19 pandemic in a population modelled as a network wherein
infection can propagate both via intra- and inter-group interactions is
simulated. The results emphasize the importance of diminishing the
inter-group infections in the effort of substantial flattening/delaying of the
epi(demiologic) curve with concomitant mitigation of disastrous economy and
social consequences. To exemplify, splitting a population into m (say, 5 or 10)
noninteracting groups while keeping intra-group interaction unchanged yields
a stretched epidemiological curve having the maximum number of daily
infections reduced and postponed in time by the same factor m (5 or 10).
More generally, the study suggests a practical approach to fight against SARS-
CoV- 2 virus spread based on population splitting into groups and minimizing
intermingling between them. This strategy can be pursued by large-scale
infrastructure reorganization of activity at different levels in big logistic units
(e.g., large productive networks, factories, enterprises, warehouses, schools,
(seasonal) harvest work). Importantly, unlike total lockdown, the proposed
approach prevents economic ruin and keeps social life at a more bearable
level than distancing everyone from anyone. The declaration for the first time
in Europe that COVID-19 epidemic ended in the two-million population
Slovenia may be taken as support for the strategy proposed here.

1. Introduction

Neither natural immunization nor vaccination or pharmacologic
intervention can currently help in fighting the COVID-19 global
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pandemic.[1] Most frequently, to prevent
disastrous sanitary consequences, govern-
ments across the world responded by im-
posing, for example, social (=physical) dis-
tancing, wearing face masks, lockdown reg-
ulations, and rigid sanitary moves aim-
ing at reducing the infection rate (“flat-
tening the epidemiological curve”). Still,
politics cannot push strict restrictions in-
definitely, and “how much is too much?”
is a question of time which unavoidably
arises sooner or later. Fighting COVID-19
should not ruin economy.[2] This is certainly
what a draconian lockdown across theworld
over months would do. Parenthetically,
catastrophic economic consequences inher-
ently make healthcare system itself also
collapsing.
In this vein, mathematical modelingmay

make a notable contribution in provid-
ing politics with reasonable suggestions to
slowing down epidemic propagation and
reducing medical burden while mitigat-
ing economy and social crisis. A series
of mathematical COVID-19 simulations
have recently appeared.[3–10] Most of them

are based on deterministic continuous-time epidemiologi-
cal models, which consider age-independent epidemiological
classes of, for example, susceptible (S), exposed (E), infected (I),
and recovered (R) individuals,[11–16] whose numbers S(t), E(t),
I(t),R(t) evolve in time (t) according to a system of (deterministic)
ordinary differential equations.
Open access sources already available[17–19] enable one to eas-

ily perform various numerical simulations by means of such
models. Unfortunately the various SIR-inspired flavors need (too
many) input parameters difficult to validate,[20] and this would
rathermask than enlighten themain idea which the present work
aims at conveying. Therefore, to better emphasize this idea, in-
stead of a SIR-based approach (whichwould pose no special prob-
lem), in this paper we prefer to adopt the simpler logistic growth
framework. The logisticmodel is particularly appealing in view of
its simplicity and versatility demonstrated in approaching a broad
variety of real systems with very different nature,[21–28] including
population dynamics of epidemic states.[29–32] Prior to this study,
results based on the logistic model were presented for COVID-19
time evolution in China and the United States.[33]
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Figure 1. Logistic growth is characterized by a cumulative number of infected cases n(t) following an S-shaped (sigmoid) curve (a) exhibiting an ac-
celeration stage (close to a J-shaped exponential growth), which switches to a deceleration stage beyond the half-time T50 and attains p(= 95, 99, see
Equation (12)) percent of the plateau valueN. Saturation occurs because the effective infection rate �̃� is time dependent and gradually decreases to zero
(b). The epi(demiologic) curve ṅ(t) ≡ dn∕dt (daily number of new cases) exhibits a peak located at t = T50 whose shape is controlled by the infection
rate 𝜅 (c). Time on the x-axis is expressed in units of the characteristic time Tc = 𝜅−1.

Fighting against the spread of SARS-CoV-2 virus while al-
lowing economic and social activity to continue to a reasonable
extent represents a major challenge for the present era. Extended
lockdown does not represent an acceptable response to this
challenge. From this perspective, we believe that the results
reported below obtained by extending the conventional logistic
model may provide useful suggestions on how to sidestep the
ongoing difficulty of living under pandemic conditions.
While the implementation of the presently proposed strategy

via population splitting into smaller groups and reducing inter-
mingling certainly requires considerable effort and fantasy in in-
frastructure reorganization, it offers the perspective of flattening
and delaying the epidemiological curve by obviating wrecking of
economy andmaintaining social life to a levelmore bearable than
total lockdown.

2. Methods

The results reported below were obtained by means of the logis-
tic model[21–28] extended (see Equation (16)) to allow treatment
of infection propagation in a network consisting of groups in in-
teraction. To fix the ideas and to make the paper self-contained,
in Section 3.1 we will first review the main aspects related to the
logistic model applied to an isolated group using a terminology
adapted to the specific subject under consideration. The exten-
sion of the logistic model to groups in interaction will be pre-
sented in Section 3.2.

3. Results and Discussion

3.1. Logistic Growth in an Isolated Group

Uninhibited infected population n growths in time t according to
the Malthus law[34]

d
dt
ne = 𝜅ne (1)

The intrinsic population-independent rate 𝜅 entering Equa-
tion (1) is expressed in terms of the probability 𝛽 of infection per

encounter with an infected individual multiplied by the number
 of encounters per unit time (day)

𝜅 = 𝛽 (2)

This yields an unlimited exponential time growth (n0 ≡ n(t = 0))

ne(t) = n0e
𝜅t (3)

depicted by the dark green J-shaped curve of Figure 1a.
In a real situation, the exponential growth will gradually slow

down and eventually level off. Infections becomemore andmore
unlikely because, in a given environment, the increase in the
number of infected diminishes the number of individuals that
can be infected. Rephrasing, the effective growth rate decreases
with increasing population density: 𝜅 → �̃� = f (n)𝜅 < 𝜅. By as-
suming a linear decrease of f with n, one arrives at the logistic
model[21–26]

�̃� = 𝜅

(
1 − n

N

)
(4)

d
dt
n

�̃�=𝜅(1−n∕N)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ 𝜅n

(
1 − n

N

)
(5)

Plotted as a function of time (Figure 1a), Equation (5) yields an
exponential J-shaped curve only at early times which switches to
an S-shaped (sigmoid) curve as the population increases and sat-
urates to the maximum (plateau) value N, which defines the so-
called carrying capacity of a given environment. The parenthe-
sis entering the right hand side of Equation (5), which acts as
Darwin’s “struggle for existence” and suppresses the exponential
growth, is similar to the Pauli blocking factor keenly discussed in
electron transport theory.[35–39]

Given their specific, approximate manner of describing re-
ality, model-based approaches are inherently faced with certain
issues.[40] This also applies to Equation (5), wherein n and t are
implicitly treated as continuous variables. Although the number
of individuals and the time (typically, epidemiological reports are
issued daily) are, obviously, discrete quantities, for reasonable
large n the continuous time representation underlying the
differential Equation (5) is even quantitatively reliable[41] and is

Adv. Theory Simul. 2020, 3, 2000132 2000132 (2 of 8) © 2020 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

convenient because it allows to express the cumulative number
of cases n(t) in closed analytical form

n(t = 0) = n0 (6)

n(t) = N

1 +
(

N
n0

− 1
)
e−𝜅t

(7)

By using the half-time T50

n
(
t = T50

)
= N

2
(8)

which defines the crossover point where the population attains
p = 50% of its maximum (N), the above results can be recast as
follows

n(t) = N

1 + e−𝜅(t−T50)
(9)

T50 =
1
𝜅
ln

(
N
n0

− 1
)

(10)

At t = T50, there is a substantial infection slowing with respect
to the exponential growth. There, the instantaneous infection
rate �̃� is reduced by 50% as compared to that of the uninhibited
growth 𝜅 (Equation (4) and Figure 1b).
Saturation occurs within a few characteristic times Tc ≡ 𝜅−1

beyond the half-time T50 (Figure 1a). The moment (“day”) Tp
when the number Np of infected amounts to p percent (e.g.,
p = 95 or 99, cf. Figure 1) of the maximum value N

n
(
t = Tp

)
≡

p
100

N (11)

can easily be deduced from Equation (9)

Tp =
1
𝜅
ln

N∕n0 − 1
100∕p − 1

= T50 +
1
𝜅
ln

p
100 − p

(12)

The quantity 𝜅 is important because it quantifies the daily new in-
fected cases expressed by the time derivative dn∕dt (Equation (13)
and the red curve in Figure 1c)

d
dt
n(t) = N𝜅

4
sech2

𝜅
(
t − T50

)
2

(13)

The height H and full width at half maximum FWHM of this
so-called epidemiological curve dn∕dt = f (t) are expressed by

H ≡ maxt
d
dt
n(t) = 1

4
𝜅N (14)

FWHM = 1.763∕𝜅 (15)

Large values of 𝜅, amounting to a sharp and high peak in Fig-
ure 1c, may cause healthcare systems to collapse.
Diminishing the value of 𝜅 is of paramount practical impor-

tance for a twofold reason:

(i) It renders the peak broader and smaller (Figure 1c). Keeping
the daily number of infected cases at amanageable level (“flatten-
ing of the curve”) is essential for not overwhelming the healthcare
system beyond its capacity to treat the sick.
(ii) Small values of 𝜅 yield large values ofT50 (cf. Equation (10)).

Thismeans postponement of infection explosion and hence gain-
ing time for a better sanitary and logistic preparation to tackle an
upcoming problem: preventing shortage of intensive care unit
beds and gaining time for securing and/or producing critical
emergency equipment (e.g., masks, ventilators, artificial lungs,
personal protective equipment, extracorporeal membrane oxy-
genation machines, ventilators, or other devices) needed to re-
duce mortality rate.

3.2. Modeling Infection in Interacting Groups

The above considerations referred to a closed population in
which members are neither added nor lost from the group.
Neither “imported” nor “exported” infections were included. Let
us now focus on a network consisting of groups of individuals
{nj} = {n1, n2,… , nm} wherein infections can proliferate both
by infections within the same group (intra-group infection
rates 𝜅j ≡ 𝜅jj) and because individuals of one group j can infect
or can be infected by individuals of other groups p ≠ j (inter-
group/intermingling infection rates 𝜅pj and 𝜅jp, respectively).
Figure 2 schematically depicts the case of two groups.
Generalizing the idea underlying Equation (5), we will con-

sider below the following extended logistic model

d
dt
nj =

m∑
p=1

𝜅jpnp

(
1 −

nj
Nj

)
(16)

Although solving Equation (16) in general poses no special nu-
merical problem (some examples are presented in Figures 4 and
5), to better emphasize the strategy we aim at conveying, let us
first focus on the case of identical groups

nj(t = 0) = n0 ≡ n0T∕m (17)

Nj = N = NT∕m

𝜅jj = 𝜅; 𝜅j≠p = 𝜅′ (18)

Equation (18) yields j-independent populations

nj(t) =
1
m

m∑
j=1

nj(t) ≡
1
m
nT (t) (19)

nT (t) being the total time dependent population.
Upon term-by-term addition (

∑m
j=1…) of Equation (16), we im-

mediately get

d
dt
nT (t) =

[
𝜅 + (m − 1)𝜅′]nT (t)

(
1 −

nT (t)
NT

)
(20)

and hence

nT (t = 0) = n0T (21)

Adv. Theory Simul. 2020, 3, 2000132 2000132 (3 of 8) © 2020 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

Figure 2. Schematic representation of a network consisting of two groups 1 and 2 wherein epidemic can spread (b) both through intra-group infections
(infection rates 𝜅1 and 𝜅2) and through inter-group infections (infection rates 𝜅12 and 𝜅21). Limiting cases wherein the network is split into two groups
that are a) completely separated among themselves (𝜅12 = 𝜅21 = 0) or c) perfectly intermingled (𝜅1,2 = 𝜅12 = 𝜅21 = 𝜅).

nT (t) =
NT

1 + exp
{
−
[
𝜅 + (m − 1)𝜅′

](
t − T50

)} (22)

d
dt
nT (t) =

[
𝜅 + (m − 1)𝜅′]NT

4
sech2

[
𝜅 + (m − 1)𝜅′

2

(
t − T50

)]

(23)

Tp =
1

𝜅 + (m − 1)𝜅′ ln
NT∕n0T − 1
100∕p − 1

(24)

FWHM = 1.763
𝜅 + (m − 1)𝜅′ (25)

It should be obvious, but to avoid misunderstandings related
to Equation (20) and the pertaining discussion, let us reiterate
that the independence on j of nj(t) of the situations examined in
this section and Section 3.3 straightforwardly follows from the
fact that the groups considered are identical: both the differen-
tial equations and the initial conditions satisfied by each nj(t)
are identical.
By comparing the above formulas with Equations (6)–(10) valid

for a single group, one can conclude that the quantity

𝜅T = 𝜅 + (m − 1)𝜅′ (26)

plays the role of a total infection rate. Importantly, both the half-
time T50 and the maximum number of daily infections H de-
duced from Equations (23) and (24)

T50 =
1

𝜅 + (m − 1)𝜅′ ln
(
NT

n0T
− 1

)
= 1

𝜅T
ln

(
NT

n0T
− 1

)
(27)

H ≡ maxt
d
dt
nT (t) =

1
4

[
𝜅 + (m − 1)𝜅′]NT = 1

4
𝜅TNT (28)

are controlled by 𝜅T .

3.3. Analysis of Two Limiting Cases of Practical Importance

The results of Section 3.2 allow us to compare how infection
propagates in a network (“larger group”) of individuals split into
several (m) smaller (sub)groups (chosen identical for simplicity)
which do not interact with each other against the case of a ficti-
tious splitting, wherein (from the point of view of infection) inter-
actions between members of a given group and between mem-
bers belonging to different groups are identical (perfect intermin-
gling). Noteworthy, whether the groups are completely separated
of each other (label s) or perfectly intermingled (label i), the total
initial population n0T = mn0 is taken to be the same in both cases
(cf. Equation (17))

ns0T = ni0T (29)

The former case, corresponding to separated groups (label i),
is characterized by a vanishing inter-group infection rate (𝜅′ ≡ 0).
Applied to this case, Equations (26)–(28) yield

𝜅s
T = 𝜅; Ts

50 =
1
𝜅
ln

(
NT

nT0
− 1

)
; Hs = 1

4
𝜅NT (30)

At the opposite extreme of perfectly intermingled groups,
inter-group interactions are as strong as intra-group interactions
(𝜅′ = 𝜅). Based on Equations (26)–(28), we then get

𝜅 i
T = m𝜅; Ti

50 =
1
m𝜅

ln
(
NT

nT0
− 1

)
; Hi = 1

4
m𝜅NT (31)

The above results show that the epidemiological curve can be
substantially flattened if a larger group is split into several smaller
groups separated from each other. By starting from the same
number of infections (Equation (29)), splitting into groups sep-
arated from one another yields a reduction of the infection rate
and of the maximum daily cases by a factorm and an increase of
full width at half maximum by the same factor

𝜅s
T = 𝜅s

m
(32)
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Figure 3. Results demonstrating how preventing intermingling between several groups flattens the epidemic curve with the concomitant time delay of
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FHWMs = m FWHMi (33)

Hs = Hi

m
(34)

Equally pleasantly, splitting leads in addition to a time post-
ponement of the infection peak by the same factor m

Ts
50 = mTi

50 (35)

The results presented in Figure 3 depict these findings for the
particular case of a larger group split into two smaller groups
(m = 2). They also schematically visualize how and why group
splitting can relieve the healthcare system. To avoid misunder-
standings, one should note that the value m = 2 in Figure 3 was
chosen just for more clarity. Splitting into more than two nonin-
teracting groups (i.e., makingm as large as possible) is highly de-
sirable.
Before ending this part, we want to emphasize that, however

important, flattening and delaying the epidemiological curve by
a factor m achieved by group splitting (cf. Figure 3 and Equa-

tions (32)–(34)) is not the whole issue. Extremely importantly,
the presently proposed group splitting approach does not assume
any intra-group (like social distancing and wearing masks) re-
strictions: economy and social life within individual groups sep-
arated of each other can continue.

3.4. Additional Results

As anticipated in Section 3.2, the logistic model extended as ex-
pressed by Equation (16) can be used to quantify the impact of
mutual infections in networks of interacting groups more gen-
eral than the particular situations examined (namely, identical
groups) in Section 3.3. To briefly illustrate this fact, two exam-
ples are presented in Figures 4 and 5.
Figure 4 depicts the case two groups whose populations differ

by a factor of four. As visible there, in spite of the equal infection
rates, infection of the smaller group 2 (dashed lines) is stronger
enhanced by the inter-group interaction than in the larger group
1 (solid lines).

Adv. Theory Simul. 2020, 3, 2000132 2000132 (5 of 8) © 2020 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

T
50,2

T
50,1 Time t

N/10

N/2

N

N/1000

C
um

m
ul

at
iv

e 
N

um
be

r 
of

 C
as

es
 n

1,
2(t

) 

n
2
(t) 

n
1
(t)

(a)

κT
50,2

 = 2.197

κT
50,1

 = 6.907
κ’ = 0

T
50,2

T
50,1 Time t

H

D
ai

ly
 N

ew
 C

as
es

 n.  1
,2

(t
)

n
.

2
(t)

n
.

1
(t)

(b)

κT
50,2

 = 2.197

κT
50,1

 = 6.907

κ’ = 0

T
50,2

T
50,1 Time t

N/10

N/2

N

N/1000

C
um

m
ul

at
iv

e 
N

um
be

r 
of

 C
as

es
 n

1,
2(t

) 

n
2
(t) 

n
1
(t)

(c)

κT
50,2

 = 2.054

κT
50,1

 = 2.743
κ’ = κ / 4

T
50,2

T
50,1 Time t

H
2

H
1

D
ai

ly
 N

ew
 C

as
es

 n.  1
,2

(t
)

n
.

2
(t)

n
.

1
(t)

(d)

κT
50,2

 = 2.142

κT
50,1

 = 2.649

κ’ = κ / 4

H
1
 = 1.350 H

H
2
 = 1.142 H

T
50,2

T
50,1 Time t

N/10

N/2

N

N/1000

C
um

m
ul

at
iv

e 
N

um
be

r 
of

 C
as

es
 n

1,
2(t

) 

n
2
(t) 

n
1
(t)

(e)

κT
50,2

 = 1.813

κT
50,1

 = 2.115
κ’ = κ / 2

T
50,2

T
50,1 Time t

H
2

H
1

D
ai

ly
 N

ew
 C

as
es

 n.  1
,2

(t
)

n
.

2
(t)

n
.

1
(t)

(f)

κT
50,2

 = 1.903

κT
50,1

 = 2.038

κ’ = κ / 2

H
1
= 1.610 H

H
2
= 1.385 H

T
50,2

T
50,1 Time t

N/10

N/2

N

N/1000

C
um

m
ul

at
iv

e 
N

um
be

r 
of

 C
as

es
 n

1,
2(t

) 

n
2
(t) 

n
1
(t)

(g)

κT
50,2

 = 1.412

κT
50,1

 = 1.517
κ’ = κ

T
50,2

≈ Τ50,1 Time t

H
2

H
1

D
ai

ly
 N

ew
 C

as
es

 n.  1
,2

(t
)

n
.

2
(t)

n
.

1
(t)

(h)

κT
50,2

 = 1.467

κT
50,1

 = 1.467

κ’ = κ

H
1
= 2.104 H

H
2
= 1.896 H

Figure 5. Results showing the impact of the inter-group interaction 𝜅′ (values increasing downwards are indicated in the inset) on the cumulative
number of cases n1,2(t) (panels a, c, e, and g) epidemiological curves ṅ1,2(t) ≡ dn1,2(t)∕dt (panels b, d, f, and h) in case of two groups merely differing by
the initial number of infected cases: n01∕N = 0.001 and n02∕N = 0.1. They show how infections in the initially less infected group 1 are rapidly triggered
by infections in the initially more infected group 2. Time on the x-axis is expressed in units of the characteristic time Tc = 𝜅−1.
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Figure 5 presents the case two groups merely differing from
each other by the different numbers of initially infected individ-
uals (n01∕N = 0.001 vs n02∕N = 0.1). Comparison of the various
panels of Figure 5 reveals that inter-group infection yields an in-
fection rapidly “exported” from the initially more infected group
to that whichwas initially less infected. Intermingling (Figure 5g)
quickly wipes out any difference between a initially weaker (or
non)infected group and an initially strongly infected group.

4. Conclusion

In closing, the results presented above indicate that splitting of
a large group into smaller groups and reducing intermingling
appears to be an appealing strategy for substantially reducing the
spread of the SARS-CoV-2 virus while still allowing social life to
a more bearable level than distancing everyone from anyone and
economy go on, albeit slower.
One can expect that (A) it is easier to impose and maintain

longer-term regulations on splitting a given population into (say,
5–10) groups weakly interacting among themselves than (B) en-
forcing severe containment measures to all individuals in order
to diminish the probability 𝛽 of infection per encounter and the
number of daily encounters yielding a reduction by the same
factor (5–10) of the infection rate 𝜅 (cf. Equation (2)). The big dif-
ference is that with option (A), social life and economy within
individual groups go on without intra-group restrictions, while
option (B) means attaining the same epidemiological curve with
both social life and economy paralyzed.
Devising and implementing an adequate restructuring of large

logistic units (large productive networks, factories, enterprises,
warehouses, etc.) allowing, if/when necessary, society to rapidly
switch back and forth between separated groups and intermin-
gled groups can certainly be challenging, but may be a long-term
strategic goal worth to be pursued when faced with these COVID-
19 pandemic times or other similar difficulties that cannot be
ruled out in the future. Last but not least, the declaration on May
15, 2020, for the first time in Europe, that COVID-19 epidemic
ended in the two million people Slovenia[42,43] may be taken as
confirming the advantage of the strategy proposed in this paper.
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