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Recombination enables reciprocal exchange of genomic information between parental chromosomes and successful segre-
gation of homologous chromosomes during meiosis. Errors in this process lead to negative health outcomes, whereas var-
iability in recombination rate affects genome evolution. In mammals, most crossovers occur in hotspots defined by PRDM9
motifs, although PRDM9 binding peaks are not all equally hot. We hypothesize that dynamic patterns of meiotic genome
folding are linked to recombination activity. We apply an integrative bioinformatics approach to analyze how three-dimen-
sional (3D) chromosomal organization during meiosis relates to rates of double-strand-break (DSB) and crossover (CO) for-
mation at PRDM9 binding peaks. We show that active, spatially accessible genomic regions during meiotic prophase are
associated with DSB-favored loci, which further adopt a transient locally active configuration in early prophase.
Conversely, crossover formation is depleted among DSBs in spatially accessible regions during meiotic prophase, particu-
larly within gene bodies. We also find evidence that active chromatin regions have smaller average loop sizes in mammalian
meiosis. Collectively, these findings establish that differences in chromatin architecture along chromosomal axes are asso-
ciated with variable recombination activity. We propose an updated framework describing how 3D organization of brush-
loop chromosomes during meiosis may modulate recombination.

[Supplemental material is available for this article.]

The formation of crossovers during meiotic recombination is a
highly orchestrated process, enhancing genetic diversity by allow-
ing reciprocal exchange of genomic information to occur between
parental chromosomes. Crossover formation also promotes proper
segregation of homologous chromosomes (Baker et al. 1976), and
errors in this process lead to chromosomal abnormalities such as
aneuploidy, which are associated with negative health outcomes
(Petronis 1999; Potapova and Gorbsky 2017). In mammals, cross-
overs are highly enriched (100-fold) in discrete ∼1- to 2-kb stretch-
es along the genome, termed recombination hotspots (Paigen and
Petkov 2010). These hotspots are in large part determined by the
binding of PRDM9, a meiosis-specific zinc-finger protein that
marks loci for potential recombination (Baudat et al. 2010;
Myers et al. 2010; Parvanov et al. 2010).

Although hotspot initiation is dependent on PRDM9, subse-
quent DSB and crossover formation are highly stochastic.
Although exact numbers vary by species, a mammalian chromo-
some may harbor hundreds of PRDM9 binding loci, but during a
typical meiotic cycle, only 10–20 double-stranded breaks (DSBs)
occur (Diagouraga et al. 2018) per chromosome. Out of these
DSBs, most are repaired as noncrossover conversion events, and
only one or two per chromosome are chosen for crossover forma-
tion inmice (Baudat and deMassy 2007; Li et al. 2019). Local chro-
matin features such as GC content, histone modification, and
cofactor binding are known to impact DSB formation at hotspots
(Walker et al. 2015; Yamada et al. 2017), whereas nucleosome oc-
cupancy, GC content, and chromosomal position are associated
with crossover formation (Hinch et al. 2019). Still, a full under-

standing of why certain hotspots are favored to form DSBs and
crossovers remains undetermined.

Meiotic chromosomes adopt a brush-loop conformation
characterized by chromatin loops attached to a central axis
(Møens and Pearlman 1988). Although recombination hotspots
are found within loops, DSB machinery, such as DNA-repair pro-
teins, resides on the axis (Blat et al. 2002; Grey et al. 2018; Tock
and Henderson 2018; Slotman et al. 2020). This “tethered-loop/
axis complex” model of recombination suggests that 3D genome
folding could place constraints on the recombination process.
Herewe apply computational analyses to investigate how3D chro-
matin organization relates to PRDM9binding, DSBs, and crossover
formation in male mammalian meiosis. Our analyses aim to inte-
grate observations from multiple recent interphase and meiosis
data sets measuring recombination activity and chromatin organi-
zation, including Hi-C, leading to an updated framework of how
meiotic events related to recombination are associated with
brush-loop chromosomal architecture.

Results
To investigate the relationship between meiotic chromatin struc-
ture andmale recombination in themouse genome, we first quan-
tify recombination activity by analyzing PRDM9 binding
measured by ChIP-seq (Baker et al. 2015), DSB activity based on
DMC1 single-stranded DNA sequencing ChIP-seq (DMC1-SSDS)
(Smagulova et al. 2016), and crossover likelihood quantified in sin-
gle-sperm genome sequencing data sets (Yin et al. 2019). These
three data sets all derive from a B6xCAST hybrid mouse genotype,
allowing separate analyses of howPRDM9binding yieldsDSBs and
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howDSBs are selected to form crossovers.
Therefore, we explore chromatin features
associated with (1) PRDM9 binding
peaks, additionally partitioned between
DSB-favored and disfavored, as well as
(2) DMC1-SSDS binding peaks marking
DSBs, additionally partitioned between
CO-favored and disfavored (Fig. 1A).

Wenext integratedata sets quantify-
ing meiotic chromatin structure. We
analyze meiotic chromosomal structure
using Hi-C contact maps of mouse sper-
matocytes in the zygonema and pachy-
nema stages of prophase I. Although
multiple meiotic Hi-C spermatocyte
data sets have been published recently
(Alavattam et al. 2019; Vara et al. 2019;
Wang et al. 2019; Luo et al. 2020), we pri-
marily focus on one that uses a B6xCAST
genotype (Patel et al. 2019), matched
with recombination data. In addition to
raw contact frequencies, we also use Hi-
C data to generate several genome-wide
measures of meiotic chromatin 3D struc-
ture: cis/total ratio, A- and B-compart-
ment scores, insulation scores, and FIRE
scores. We highlight primarily the first
two measures, which display particularly
interestingpatterns related to recombina-
tion. Cis/total ratios quantify the frac-
tion of contacts within versus between
chromosomes. Low cis/total ratios are
associated with increased spatial accessi-
bility (not to be confused with DNA ac-
cessibility associated with nucleosome
occupancy) (Kalhoret al. 2012).At achro-
mosome-wide level, lower cis/total ratios
indicate a greater degree of chromosome
territoriality (Falk et al. 2019). A- and
B-compartment scores quantify pre-
ferential interactions after removing the
impact of genomic distance; positive
compartment scores (A-compartment)
are typically associated with active,
gene-rich chromatin (Lieberman-Aiden
et al. 2009).Meanwhile, insulation scores
typically showminimaat domainbound-
aries (Crane et al. 2015), whereas high
FIRE scores indicate regions with en-
riched interactions (Schmitt et al. 2016).
We supplemented these Hi-C metrics
with measurements of chromatin state,
including occupancy patterns of CTCF,
cohesin (using the meiotic-specific cohe-
sin subunit RAD21L—similar occupancy
patterns exist for REC8) (see Supplemen-
tal Fig. S3A;Vara et al. 2019), andRNApo-
lymerase II (RNAPII) (Margolin et al.
2014). We also include in our analysis a seven-state ChromHMM
genomic profile from mouse testis (see Methods, “ChromHMM
Chromatin Epigenetic States”) (Yue et al. 2014). All data sets are
uniformly mapped to a consistent set of 5-kb bins across the auto-

somal chromosomes (492,557 bins genome-wide) (Fig. 1B). Meiot-
ic data sets are compared with counterparts (Hi-C, CTCF, RNAPII,
and cohesin RAD21 subunit) from embryonic stem (ES) cells, serv-
ing as an example of interphase chromatin organization (Nitzsche

B
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Figure 1. Multiple chromatin organization data sets are integrated with measurements of recombina-
tion activity at the levels of PRDM9 binding, DSB, and crossover formation. (A) Overview of recombina-
tion-related comparisons explored in this paper. Figure 2 explores chromatin conformation at PRDM9
binding peaks, stratifying based on their likelihood of forming DSBs as measured via DMC1-SSDS
ChIP-seq signal. Subsequently, Figure 3 explores chromatin conformation at DMC1-SSDS binding peaks,
indicative of DSBs, stratifying based on their likelihood of forming crossovers. (B) Key data sets used in this
study (see also Supplemental Section S1), shown in a browser view of a representative 1.3-Mb region on
mm10 Chromosome 2. Pachynema Hi-C contact frequencies are shown as a heatmap, in addition to Hi-
C-derived cis/total ratio and compartment score for zygonema and pachynema. Hi-C contact informa-
tion is accompanied by epigenetic chromatin state information using ChromHMM annotations of his-
tone marks in mouse testis (for color legend, see bottom), as well as meiotic ChIP-seq tracks of cohesin
subunit RAD21L, RNAPII, and CTCF. Recombination activity measurements include ChIP-seq binding
tracks of PRDM9, DMC1 (marking DSBs), as well as crossover likelihood score derived from single-sperm
whole-genome sequencing. Several relationships to note in this region: (1) enriched Hi-C contacts be-
tween transcriptionally active regions during meiosis, highlighted in orange shaded boxes; (2) colocal-
ized DSB formation and crossover formation at PRDM9 binding peaks, highlighted in purple shaded
boxes; (3) differences in DSB and crossover likelihood among PRDM9 binding peaks; and (4) locally de-
pressed cis/total ratio and elevated compartment score at these loci in zygonema. Hi-C bins with missing
data are ignored for visualization of maps and derived scores.
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et al. 2011; Shen et al. 2012; Bonev et al. 2017), allowing the iden-
tification of meiosis-specific patterns.

PRDM9 sites associated with DSB formation show transient shifts
toward active, spatially accessible chromatin

Webegin by exploring chromatin organization at PRDM9 sites, de-
fined as bins that intersect a PRDM9 ChIP-seq binding peak. We
additionally investigate features that affect the likelihood of DSB
formation at PRDM9 sites by partitioning these sites into quartiles
with the highest and lowest respective DMC1-SSDS ChIP-seq
scores (i.e., the most and least favored PRDM9 sites for DSB forma-
tion) (Fig. 2A).

We confirm that PRDM9 sites are enriched forDSBs and cross-
overs (5636 genomic bins) (Fig. 2A) and that PRDM9 ChIP-seq
peaks are found in both A and B-compartment (57%A vs. 43%B)
(Supplemental Fig. S1C). During zygonema, PRDM9 sites are char-
acterized by locally decreased cis/total ratio and elevated A/B-com-
partment scores (Fig. 2B) within a ±50-kb window. These transient
zygonema-specific signals reflect active and spatially accessible
chromatin, respectively, and temporally coincide with H3K4me3
trimethylation activity at PRDM9 binding peaks (Buard et al.
2009; Baker et al. 2014), which peaks in zygonema and fades in
pachynema (Chen et al. 2020). Averaged together, PRDM9 sites
also show distinctive features in their local Hi-C contact map spe-
cifically during zygonema (Fig. 2C). However, these meiotic Hi-C
patterns are weaker than signals in interphase such as at RAD21
sites in ES cells (Supplemental Fig. S3F), consistent with the gene-
ral attenuation of TAD and compartment patterns in meiotic Hi-C
data sets (Patel et al. 2019).

Top quartile DSB-favored sites are characterized by strong
PRDM9 binding (Fig. 2A) and also show stronger local shifts to-
ward active, spatially accessible chromatin during zygonema rela-
tive to disfavored sites (Fig. 2B,C). This supports the idea that local
active chromatin shifts observed during zygonema are related to
PRDM9 methyltransferase activity, which is positively associated
with DSB formation (Baker et al. 2014). In addition to local zygo-
nema-specific effects, DSB-favored sites appear to be biased at a
more global scale toward active and spatially accessible chromo-
somal regions throughout interphase and meiosis (Fig. 2B). We
find that these DSB-favored sites also show higher meiotic
RNAPII occupancy, whereas CTCF and RAD21/RAD21L cohesin
subunit occupancy do not appear strongly associated (Fig. 2D).
We find enrichment of H3K36me3 histone marks (characteristic
of gene bodies) and depletion of unmarked chromatin at DSB-fa-
vored sites (Fig. 2E). Among all ChromHMMannotations, DSBs ap-
pear most favored at sites associated with H3K36me3 (Fig. 2F).
These results indicate DSB formation is enriched among PRDM9
sites in active/spatially accessible chromatin such as gene bodies.
Indeed, compared with PRDM9 ChIP-seq peaks, DMC1-SSDS
peaks are more skewed to A- rather than B-compartment (66%A
vs. 34%B) (Supplemental Fig. S1C).

Finally, as noted earlier, these results are derived from a
B6xCAST hybrid mouse genotype. To confirm whether these pat-
terns are universal to PRDM9 binding in general or are somehow
unique to a particular PRDM9 allele or genome background (e.g.,
B6 vs. CAST), we reran the analysis using a PRDM9 ChIP-seq
data set that separately analyzed binding of B6 and CAST
PRDM9 alleles (Grey et al. 2017; Supplemental Fig. S1) and also
used haplotype-resolved Hi-C (Patel et al. 2019; Supplemental
Fig. S2) to distinguish between B6-B6, CAST-CAST, and interho-
molog genomic Hi-C contacts. We confirmed that our overall con-

clusions hold for both the B6 and CAST PRDM9 allele and for B6-
B6, CAST-CAST, and interhomolog Hi-C contacts, suggesting that
our observations are general properties of meiotic recombination.

Depleted crossover formation for DSB sites in spatially accessible
chromatin, especially gene bodies

We next explore how chromatin organization around DSBs affects
their likelihood of being selected as the site of crossover formation
later during pachynema.We partitionDSB sites (i.e., the 9569 bins
intersecting DMC1-SSDS ChIP-seq peaks) into quartiles based on
their crossover likelihood (Fig. 3A). We find that the top quartile
of crossover-favored DSB sites are characterized by an elevated
cis/total ratio throughout meiosis and interphase, as well as mod-
estly lower compartment scores (Fig. 3B). These sites also show de-
pleted nearby (±100 kb) Hi-C contacts (Fig. 3C) particularly during
pachynema. This indicates that DSBs in chromosomal regions that
adopt, on average, fewer spatially accessible configurations are fa-
vored for crossover formation, contrasting the clear enrichment of
DSBs at PRDM9 sites in active, spatially accessible chromatin.

Higher meiotic RNAPII occupancy and elevated H3K36me3
ChromHMM overlap (characteristic of gene bodies) appear associ-
ated with decreased crossover activity (Fig. 3D,E). Depletion of
crossover formation in H3K36me3 gene body regions is confirmed
by comparing crossover scores at DSB sites across different
ChromHMM histone annotations, validating that this gene-body
recombination depletion is not occurring at the earlier stage of
DSB formation (cf. Fig. 3F and Fig. 2F).

DSB sites that colocalize with H3K36me3 histone marks are
characterized by a lowcis/total ratio (i.e., high spatial accessibility),
which is associated with reduced crossover formation. However,
crossover depletion at low cis/total ratio sites is observed beyond
H3K36me3 regions (Supplemental Fig. S4). This suggests that
crossover formation is generally depleted in active and spatially ac-
cessible chromatin (gene bodies as a particular example) and that
distinctly different chromatin environments favor DSB formation
and crossover formation.

Linear model with principal component analysis reveals
recombination-associated chromatin features

To jointly assess the contributions of different chromatin structure
variables to the likelihood of DSB formation at PRDM9 sites and
crossover formation at DSB sites, we implement a linear modeling
approach that uses principal component analysis (PCA) andmodel
selection. These techniques help us to address the problem thatHi-
C scores (cis/total ratio, compartment score, insulation, FIRE), epi-
genetic states (ChromHMM), and ChIP-seq signals (RAD21/
RAD21L cohesin, CTCF, RNAPII) constitute a large collection of
chromatin features, many of which are correlated with each other
(Supplemental Fig. S5A).

First, we apply PCA to extract the primary directions of varia-
tion in chromatin variables from both ES andmeiotic time points.
To emphasize variation across PRDM9 andDSB sites, as opposed to
genome-wide variation, we applied PCA among joint PRDM9–DSB
sites, defined as the union of bins intersecting either PRDM9 or
DMC1-SSDS ChIP-seq sites (Supplemental Fig. S5B). We find that
the first principal component (PC1), encompassing by far the
highest explained variance (16.0%), is positively associated with
many of the general trends of active and spatially accessible chro-
matin. Increased levels of PC1 correspondwith a lower cis/total ra-
tio, higher compartment score, and increased active epigenetic
marks (Fig. 4A). The second principal component (PC2; 3.7%
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Figure 2. Chromatin environments at PRDM9 sites. (A) Summary of recombination activity at PRDM9 sites, with additional partition into the top and
bottom quartiles by DMC1-SSDS ChIP-seq score, measuring DSB activity. Top (i.e., DSB-favored) sites have more bound PRDM9 and greater likelihood
of crossover formation. Heatmap shows log fold enrichment over genome median, and an asterisk indicates a Bonferroni-adjusted P<0.01 difference be-
tween top and bottom partitioned sites. (B) Hi-C cis/total ratio (top) and compartment score (bottom), symmetric-averaged across PRDM9 sites, calculated
for ES, zygonema, and pachynema data sets. Shading represents 95% confidence intervals. Top DSB-favored sites are associated with higher compartment
score in all data sets and lower cis/total ratio in ES. Black arrows indicate zygomena-specific shifts toward active, spatially accessible chromatin, which are
enhanced at DSB-favored sites. (C) Normalized chromatin contact matrices, symmetric-averaged across PRDM9 sites, for embryonic stem (ES) cell, zygo-
nema, and pachynemaHi-C data sets.We observe contact depletion at PRDM9 sites during zygonema and enriched contacts near DSB-favored sites during
pachynema. (D) RAD21/RAD21L cohesin subunit (top), CTCF (middle), and RNAPII (bottom) ChIP-seq tracks, symmetric-averaged across PRDM9 sites, cal-
culated for ES cell and meiotic data sets. Elevated RNAPII occupancy during meiosis appears to be associated with increased DSB formation (black arrow).
(E) Overlap of ChromHMM histone annotations with PRDM9 sites. Note DSB-favored sites are depleted for unmarked chromatin while enriched for
H3K36me3 chromatin typical of gene bodies. Heatmap shows log fold enrichment over genome-widemean, and an asterisk indicates a Bonferroni-adjust-
ed P<0.01 difference betweenmost (top) and least (bottom) DSB-favored sites. Insets plot overlap fraction symmetric-averaged around PRDM9 sites; shad-
ing represents 95% confidence intervals. (F) Distribution of DMC1 ChIP-seq scores (i.e., DSB activity) at PRDM9 sites split by ChromHMM state. DSB
formation is elevated within H3K36me3-marked chromatin characteristic of gene bodies.
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Figure 3. Spatially accessible chromatin is depleted for crossover formation, particularly at gene bodies. (A) Summary of recombination activity at DSB
binding sites (fromDMC1-SSDS ChIP-seq), with additional partition into the top and bottom quartiles for crossover likelihood. Top (i.e., crossover-favored)
sites have modestly stronger inherent DSB activity and show greater likelihood of crossover formation. Heatmap shows log fold enrichment over genome
median, and an asterisk indicates a Bonferroni-adjusted P<0.01 difference between the top and bottom partitioned sites. (B) Hi-C cis/total ratio (top) and
compartment score (bottom), symmetric-averaged across DSB sites, calculated for ES cell, zygonema, and pachynema data sets. Shading represents 95%
confidence intervals. Top CO-favored sites are associated with a higher cis/total ratio, particularly during meiosis, indicative of reduced spatial accessibility
(black arrow). (C) Normalized chromatin contact matrices, symmetric-averaged across DSB sites, for ES cell, zygonema, and pachynemaHi-C data sets. We
observe reduced contact frequency near top CO-favored sites and vice versa, particularly during pachynema. (D) RAD21/RAD21L cohesin subunit (top),
CTCF (middle), and RNAPII (bottom) ChIP-seq tracks, symmetric-averaged across DSB sites, calculated for ES cell and meiotic data sets. Elevated RNAPII
occupancy during meiosis appears to be associated with decreased crossover formation (black arrow). (E) Overlap of ChromHMM histone annotations
with crossover-partitioned DSB sites. Note CO-favored sites are depleted for the H3K36me3 chromatin typical of gene bodies and are enriched for un-
marked chromatin. Heatmap shows log fold enrichment over genome-wide mean, and an asterisk indicates a Bonferroni-adjusted P<0.01 difference be-
tween most (top) and least (bottom) CO-favored sites. Insets plot overlap fraction symmetric-averaged around DSB sites; shading represents 95%
confidence intervals. (F ) Distribution of crossover likelihood scores at DSB sites split by ChromHMM state. Crossover formation is depleted at DSBs in
H3K36me3 chromatin, despite abundant DSB activity (see Fig. 2F), indicating that gene-body crossover depletion occurs at the DSB-to-CO stage rather
than the PRDM9-to-DSB stage.
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explained variance) positively associates with the presence of gene
bodies (H3K36me3), along with high Hi-C FIRE scores, and meio-
sis-specific decreases in the cis/total ratio. The third principal
component (PC3; 2.9% explained variance) reflects instances in
which the cis/total ratio and compartment scores diverge from
their PC1 association. Positive PC3 indicates when spatial accessi-
bility is higher than expected given chromatin activity. Finally, the
fourth principal component (PC4; 2.5% explained variance) ap-
pears to reflect local enrichment of the meiotic RAD21L cohesin
subunit, H3K4me3, and RNAPII, consistentwith presence of active
promoters.

After transforming chromatin variables into principal
component space, we use a linear model with feature selection
to identify statistically significant associations between principal
components and either DSB or crossover formation. Applying
this strategy to DSB formation at PRDM9 sites (Fig. 4B), we treat in-
dividual PRDM9 sites as quasi-independent observations. We in-
clude PRDM9 binding score and chromosomal position in the
model to adjust for inherent differences in PRDM9 binding and
potential centromeric or telomeric proximity effects (mouse chro-
mosomes are acrocentric, meaning chromosomal position can be
used as a proxy for centromeric distance). We find that PRDM9
binding strength and PC1 are both strong predictors of DSB forma-
tion. The positive coefficient for PC1 confirms that DSBs are en-
riched in active chromatin, even after adjusting for binding
strength differences at PRDM9 sites. This result aligns with previ-
ous reports detailing increased DSB formation at PRDM9 sites in
chromatin with prior histone modifications, as well as a balance
between intrinsic affinity for PRDM9binding and chromatin envi-

ronment in determiningDSB formation (Walker et al. 2015). Com-
paring explained variance between the naive model, only using
PRDM9 ChIP-seq strength, and our selected model incorporating
structural information, we find that R2 increases from 19.2% to
27.9%.

Next, we apply the same approach to modeling the distribu-
tion of crossover likelihood at DSB sites (Fig. 4C), including
DMC1-SSDSChIP-seq score as a predictor to adjust for inherent dif-
ferences in DSB formation. We find that PC1 (chromatin activity)
shows a negative associationwith crossover likelihood, confirming
that active and spatially accessible chromatin is disfavored for
crossovers, in contrast to its positive association with DSBs.
Additionally, PC2–PC4 are also negative predictors of crossover
likelihood, respectively, indicating that gene bodies, promoters,
and extraspatially accessible chromatin are disfavored for crossover
formation.We also find a strong positive correlationwith chromo-
somalpositionas expected fromcrossover suppressionnear centro-
meres (Blitzblau et al. 2007; Nambiar and Smith 2016).
Chromosomal position (along chromosomal arm) was only select-
ed in the crossover prediction model (Fig. 4C) and not in the DSB
model (Fig. 4B), supporting earlier conclusions that pericentro-
meric regions are depleted for crossovers but not DSBs (Blitzblau
et al. 2007; Talbert and Henikoff 2010; Vincenten et al. 2015).
Comparing explained variance between a naive model—only us-
ing DMC1 ChIP-seq strength and chromosomal position—and
our selected model incorporating structural information, we find
that R2 increases from 10.9% to 19.8%.

Finally, although our analysis here separately assesses two
stages of recombination (PRDM9-to-DSB and DSB-to-crossover),

BA

C

Figure 4. Principal component analysis (PCA) with linearmodel reveals variable chromatin organization at PRDM9 and DSB sites and its relationship with
recombination activity. (A) Loadings for the top four principal components (PC1–PC4) of variation at joint PRDM9–DSB sites based on underlying chro-
matin organization variables (horizontal axis). Two values of each variable were included: one measuring local value at the joint PRDM9–DSB site and the
other a 500-kb average around the site. Positive PC1 loadings reflect presence of active chromatin, which is typically characterized by a low cis/total ratio,
high compartment, FIRE, and insulation scores, as well as increased histone modifications, RAD21L cohesin subunit, and RNAPII. Positive PC2 loadings
indicate the presence of H3K36me3 histone marks typical of gene bodies, which tend to colocalize with increases in FIRE score, as well as meiotic-specific
decreases in cis/total ratio. PC3 reflects divergence from the typical correlation between activity and spatial accessibility: Specifically, positive PC3 loadings
indicate chromatin regions that are more spatially accessible (lower cis/total ratio) than expected given their activity (compartment score). Positive PC4
loadings indicate strong local enrichment of RAD21L/CTCF/RNAPII, characteristic of occupancy sites. (B) Results from a linear model for DSB activity (quan-
tified by DMC1-SSDS ChIP-seq score) at PRDM9 sites as a function of the principal components described in A and adjusted for centromeric proximity
(chromosomal position) and inherent PRDM9 binding variability (PRDM9 ChIP-seq score). Forward selection was used to choose statistically significant
principal components to include in the model. Note that the strongest predictors are positive inherent PRDM9 binding strength and positive PC1, reflect-
ing increased DSB formation at PRDM9 sites in active, spatially accessible chromatin. PC colors as in panel A. (C) Results from a linear model with forward
feature selection for crossover likelihood at DSB sites as a function of principal components and adjusted for centromeric proximity (chromosomal position)
and inherent DSB variability (DMC1-SSDS ChIP-seq score). DMC1-SSDS score and chromosomal position both positively predict crossover formation, re-
flective of inherent DSB variability and pericentromeric crossover depletion. PC1–PC4 all negatively predict crossover formation, reflecting crossover deple-
tion at DSB sites in active chromatin, particularly at gene bodies, as well as promoters and spatially accessible regions. PC colors as in panel A.
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we also apply our approach to analyze PRDM9 sites tracked all the
way through DSB formation and into crossover formation (i.e.,
PRDM9-to-crossover). This analysis (Supplemental Fig. S6) indi-
cates that high spatial accessibility (lowmeioticHi-C cis/total ratio)
and overlap with gene bodies are negative determinants of cross-
over formation at PRDM9 sites but that overall crossovers are still
favored in the A-compartment rather than B-compartment. This
observation that crossovers remain enriched in active A-compart-
ment chromatin despite depletion in gene bodies also helps place
our findings in the context of earlier work reporting positive ge-
nome-wide correlations between gene bodies and crossovers (Yin
et al. 2019). A positive correlation would be expected owing to
genebodies also being enriched inA-compartment, an expectation
we confirm when calculating global genome-wide correlation be-
tween H3K36me3 ChromHMM overlap and crossover score; how-
ever, a localized correlation analysis considering only PRDM9 and
DSB sites reveals a negative correlation between H3K36me3 and
crossover formation (Supplemental Fig. S7), consistent with our
linear modeling approach.

Organization of A- and B-compartment genomic regions show
different chromosomal loop lengths

Given the importance of chromatin activity and spatial accessibility
in recombination, we further explored how A- and B-compartment
regions are organized in the context of brush-loopmeiotic chromo-
somes. By analyzing contact frequency versus distance curves (Gass-
ler et al. 2017) in meiotic Hi-C data, we find the maxima of the
derivatives occur on average approximately threefold shorter in
the A-compartment compared with the B-compartment during
zygonema (Fig. 5A). Similar results are observed in pachynema and
other meiotic Hi-C data sets, including the DSB-deficient Gm960−/−

(also knownasTop6bl−/−) genotype, but not inmitotic Hi-C (Supple-
mental Fig. S8). This suggests that meiotic loops in the A-compart-
ment contain approximately threefold fewer base pairs than the
B-compartment, implying a higher frequency of loop-axis attach-
ment points in active A-compartment chromatin. This would
alignwithprevious cytological analysis suggesting that active chro-

matin regions are overrepresented along the axis (i.e., stretched rel-
ative to inactive chromatin) (Luciani et al. 1988; Fransz et al. 2000).

Weobserve an enrichment of cohesin binding sites frompub-
lished ChIP-seq data sets (Nitzsche et al. 2011; Vara et al. 2019) in
the A-compartment compared with the B-compartment, particu-
larly in meiosis-specific subunits RAD21L/REC8 (Supplemental
Fig. S3A). This finding appears to align with our hypothesis, as
cohesin is known to localize at the axes of meiotic chromosomes.
However, we note thatmeiotic cohesin binding sites are character-
izedbya lowcis/total ratio, indicatingahighdegreeof spatial acces-
sibility not expected at chromosomal axes, and also show a high
degree of overlap with promoter regions (Vara et al. 2019; Supple-
mental Fig. S3C). Therefore, we refrain from interpreting meiotic
cohesinREC8/RAD21L binding sites asmarking stable sites of axial
localizationalong thechromosome; thepossibilityofoff-axis cohe-
sin binding has also been previously noted (Vara et al. 2019).

As a caveat to our prediction of threefold shorter A-compart-
ment loops, we note that the physical size of the meiotic loops ap-
pears relatively consistent overall along chromosomal axes.
Although physical loop size differences can be observed near telo-
meres and with exogeneous DNA (Heng et al. 1996; Zickler and
Kleckner 1999; Kolas et al. 2004), differences between active and
inactive chromatin (e.g., A- vs. B-compartment) have not been re-
ported to our knowledge. We hypothesize that relative deconden-
sation of A-compartment chromatin fibers may compensate for
the fewer base pairs in A-compartment loops, leading to compara-
ble physical sizes between A/B-compartment loops (Fig. 5B).
Enrichment of axial loci in active, decondensed chromatin may
partially explain the otherwise puzzling low cis/total ratio at mei-
otic cohesin REC8/RAD21L ChIP-seq sites, given that active,
decondensed chromatin is generally associated with a lower
cis/total ratio (Mahy et al. 2002; Kalhor et al. 2012).

Discussion
We test the hypothesis that features of 3D genome organization
are associated with meiotic recombination in the mammalian

B CA

Figure 5. Proposed framework relating mammalian meiotic chromosomal architecture and recombination. (A) Contact probability versus genomic dis-
tance analysis of zygonema Hi-C data set. Orange and blue arrows indicate estimate of loop length for A- and B-compartments, respectively, determined as
the maxima of the derivatives of the P(s) curves as in Gassler et al. (2017). (B) Simplified cartoon of proposed chromatin conformation. In early leptonema,
meiotic chromosomes adopt a brush-loop architecture, with cohesin and recombinationmachinery located at the axis. Loops in the A-compartment have,
on average, fewer base pairs than the B-compartment. Accordingly, A- and B-compartment regions depicted here represent roughly equal genomic
lengths despite greater number of A-compartment loops. Physical size of A- and B-compartment loops may remain comparable owing to the relaxed linear
packing density in A-compartment. (C) Concurrently during leptonema, PRDM9 binds across both A- and B-compartment regions, causing local increases
in chromatin activity and spatial accessibility. Schematic depicts hypothetical example of 10 total binding events across the A- and B-compartment regions.
After PRDM9 binding, a subset of binding loci are recruited to DSBmachinery at the axis and formDSBs. This subset is biased toward A-compartment. Later
during pachynema, a single crossover point is selected from the DSBs formed earlier, avoiding DSBs formed in gene-body regions.
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genome. Our analyses reveal distinct associations with PRDM9
binding, DSB formation, and crossover formation. We confirm
these observations with multiple regression and analyze contact
frequency decay to help situate these events relative to themeiotic
brush-loop structure (Fig. 5B,C). This work complements earlier
multifactorial analysis of DSB and crossover formation at hotspots
(Walker et al. 2015; Yamada et al. 2017;Hinch et al. 2019) by show-
ing that in addition to local chromatin environment, features
of genome folding beyond the immediate vicinity of hotspots
(e.g., >5 kb) are significantly associated with differences in recom-
bination. Based on the results of our linearmodel, we estimate that
incorporation of these chromatin data sets improves prediction
of DSB formation at PRDM9 sites by nearly a factor of 1.5 (model
R2 improves from 19.2% to 27.9%) and our ability to predict cross-
overs at DSB sites nearly twofold (model R2 improves from 10.9%
to 19.8%).

PRDM9 sites are locally associated with a transient shift to-
ward increased compartment scores and reduced cis/total ratios
during zygonema. This builds on previous observations of a simul-
taneous transient shift in patterns of histone trimethylation (e.g.,
H3K4me3) around PRDM9 binding in mammals (Baudat et al.
2010; Myers et al. 2010; Parvanov et al. 2010; Chen et al. 2020).

We find DSB formation at PRDM9 sites is strongly associated
with elevated compartment scores during meiosis and interphase,
characteristic of active chromatin, and lower cis/total ratio during
interphase, characteristic of spatially accessible chromatin. We
confirm DSB enrichment in active (A-compartment) chromatin
(Patel et al. 2019). DSB formation is also favored in PRDM9 sites
with enhanced zygonema-specific shifts toward increased activity
and spatial accessibility.

In contrast to DSB formation at PRDM9 sites, crossovers are
favored at DSB sites with increased cis/total ratios on average, indi-
cating less spatially accessible chromatin. DSB sites in spatially ac-
cessible gene body regions marked by H3K36me3 are particularly
depleted for crossovers, consistent with earlier reports in plants
(Wijnker et al. 2013). Crucially, our analysis discerned this rela-
tionship by focusing on DSB sites. By comparison, because of lim-
ited resolution of crossover locations, positive correlations can be
observed genome-wide between genes and crossover frequency
(Yin et al. 2019) as both crossovers and gene bodies are enriched
in active chromatin. Our results indicate that crossover depletion
exists in gene bodies and occurs at the crossover selection stage
rather than during DSB formation. This may be a general feature
of 3D genome structure, as decreased Hi-C cis/total ratio is associ-
ated with crossover depletion amongDSB sites beyondH3K36me3
regions as well.

Our observations that DSB formation is enriched in active, A-
compartment chromatin, including gene bodies, align with earlier
work that showed DSB bias toward genic regions with active his-
tone modifications and away from inactive chromatin regions
such as lamin-associated regions (Smagulova et al. 2011; Walker
et al. 2015; Patel et al. 2019). On the other hand, crossover deple-
tion in spatially accessible genomic regions, such as gene bodies, is
a more unexpected result: Why do meiotic cells create so many
DSBs in these regions, only to almost never select them as eventual
crossover locations? We speculate a potential causal mechanism
for crossover depletionmay involve reduced frequency of interho-
molog contacts in transcriptionally active regions. RNA polymer-
ase activity may disrupt interhomolog engagement and thus
decrease the stability of recombination intermediates. Further ex-
perimental work is needed to test this hypothesis, although pre-
liminary analysis using haplotype-resolved Hi-C indicates a

decrease in interhomolog versus intra-homolog contacts in active
H3K36me3 chromatin regions, and increased interhomolog versus
intra-homolog contacts at crossover-favored DSB sites (Supple-
mental Fig. S9).

Because crossovers reflect rare and contingent events, inter-
preting ensemble-average Hi-C data sets presents many caveats.
In any given cell, only a fraction of PRDM9 binding loci is convert-
ed to DSBs, and yet a smaller subfraction is selected as crossovers.
Therefore, the Hi-C signals we observe at DSB or crossover-favored
genomic sites are unlikely to directly reflect chromosomal con-
figuration of individual DSB and crossover events, as even the
most favored sites are not sites of recombination in most cells.
Additionally, we note that genomic positions of DSBs andmeiotic
cohesinChIP-seq sites appear to have relatively low cis/total ratios,
despite the fact that immunofluorescent microscopy shows DSB
machinery and cohesin subunits enriched along the axes
(Ishiguro et al. 2011; Lee and Hirano 2011; Hinch et al. 2020). In
general, genomic loci with axial positions in a brush-loop structure
would be expected to display high cis/total ratios characteristic of
low spatial accessibility. This puzzling observation is in contrast
with yeast meiosis, where REC8 ChIP-seq sites display elevated
cis/total ratios (Muller et al. 2018; Schalbetter et al. 2019), as ex-
pected for axially positioned loci in a loop-brush structure.

Our analyses of contact frequency curves in meiosis suggest
that, on average, loops in active chromatin have fewer base pairs
than in inactive chromatin. We speculate that overall linear pack-
ing density of chromatin may be higher in the B-compartment,
compensating for base-pair length differences. This proposal is
congruent with previously reported overrepresentation of A-com-
partment regions along chromosomal axes (Luciani et al. 1988;
Fransz et al. 2000) and alignswith the enrichment ofmeiotic cohe-
sin peaks in the A-compartment (Vara et al. 2019; Luo et al. 2020).
Transcriptionally active genomic regions with decondensed chro-
matin are furthermore associated with increased spatial accessibil-
ity (Mahy et al. 2002; Kalhor et al. 2012); together this may resolve
the otherwise puzzling low cis/total ratio observed atmeiotic cohe-
sin ChIP-seq sites, which often overlap promoters. Nevertheless,
this association between transcriptional activity and axial localiza-
tion requires a cautious interpretation. Despite sharing many
ChIP-seq sites with cohesin at promoters, RNAPII, which is addi-
tionally enriched in gene bodies, is broadly dispersed along chro-
mosomal loops (van der Laan et al. 2004). H3K4me3, which
marks both promoters and PRDM9 binding loci during meiosis,
is present both at axial and loop positions (Prakash et al. 2015),
whereas H3K27me3, which typically associated with transcrip-
tionally repressed promoters, localizes close to the axis (Prakash
et al. 2015). Given these findings, we cannot currently rule out
the possibility that cohesin is more uniformly distributed across
active and inactive chromatin yet is preferentially visible in tran-
scriptionally active regions such as promoters owing to hyper-
ChIPability (Teytelman et al. 2013; Jain et al. 2015).

We conclude by suggesting avenues for future experimental
studies. First, modern microscopy methods such as DNA-paint
and super-resolution FISH (Beliveau et al. 2015; Schnitzbauer
et al. 2017; Albert et al. 2019) would be useful to trace contiguous
DNA regions and obtain direct evidence for differing numbers of
base pairs per loop in active and inactive regions. If these experi-
ments could be performed in conjunction with crossover tracking,
it would also be interesting to explore hypotheses that differences
in loop sizes may affect crossover interference (Paigen and Petkov
2010). Second, our results thus far largely show associations be-
tween genome organization and recombination; perturbation
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experiments would allow for analyses of causality. For instance, to
test the effects of chromatin activity and spatial accessibility, we
envision experiments that target the expression of genes near or
overlapping recombination hotspots using CRISPR inhibition/ac-
tivation tools (Larson et al. 2013; Maeder et al. 2013), in conjunc-
tion with chromosomal conformation capture and ChIP-seq
experiments to observe downstream effects on meiotic genome
folding, PRDM9 binding, DSB formation, and crossovers. Third,
to explore the connection between PRDM9 methyltransferase ac-
tivity and transient shifts in 3D genome organization, we imagine
potential Hi-C and ChIP-seq experiments using heterozygous
PRDM9 mutants with modified methyltransferase activity
(Thibault-Sennett et al. 2018). Alternatively, CRISPR-based epige-
nome modification strategies (Hilton et al. 2015) can be repur-
posed to directly perturb histone marks around hotspots,
exploring, for example, whether targeted local H3K4me3 deposi-
tion is sufficient to drive genome folding changes during meiosis
to the extent observed in zygonema with PRDM9. Similar ap-
proaches could be used to investigate the effects of modified
H3K36me3 levels for DSB and crossover formation. Fourth, our re-
sults are limited tomalemeiosis, and it remains to be seenwhether
similar conclusions can be made for female meiosis; confirmation
would require analogous data sets generated during oogenesis.
Finally, meiotic Hi-C for human chromosomes would enable an
analysis of the potential interplay between PRDM9 polymorphism
(Baudat et al. 2010) and clinically relevant dysregulation of 3D ge-
nome folding in meiosis.

Methods
All data sets pertaining to thismanuscript are previously published
and described in more detail in Supplemental Section S1.

Genome mapping and 5-kb bins

All analyses were performed with the mouse mm10 genome as-
sembly. Cooler makebins (Abdennur and Mirny 2020) was used
to generate a 5-kb bin BED file corresponding to the mm10 ge-
nome. Using this BED file as auxiliary input, BEDTools intersect
(Quinlan and Hall 2010) was used to convert unbinned genomic
tracks to 5-kb resolution, outputting the maximum score and cov-
erage per bin for bedGraph and BED tracks, respectively.

ChIP-seq data sets

The ENCODE ChIP-seq pipeline (github.com/ENCODE-DCC/chip-
seq-pipeline2) was used to process raw ChIP-seq reads into bigWig
signal (fold change over input) and peak files (idr optimal) for
ChIP-seq of PRDM9 (Baker et al. 2015; Grey et al. 2017), DMC1
(Smagulova et al. 2016), RNAPII (Shen et al. 2012; Margolin et al.
2014), CTCF (Nitzsche et al. 2011; Vara et al. 2019), RAD21
(Nitzsche et al. 2011), RAD21L, and REC8 (Vara et al. 2019). UCSC
bigWigToBedGraph (Kent et al. 2010) was used to convert bigWig
to bedGraph format before mapping to 5-kb bins. Binding sites
were defined as genomic bins intersecting ChIP-seq peak centers.

Partitioning PRDM9 and DSB sites into top and bottom quartiles
by DSB/crossover activity, respectively

Considering all genomic bins corresponding to PRDM9peaks, bins
were ranked based on their DMC1-SSDS ChIP-seq score. The top
and bottom ranked bins become the top-DSB and bottom-DSB
PRDM9 bins, respectively. The same approach is used with geno-
mic bins corresponding to DSBs, using the crossover score to rank.

Generating genetic map of crossover scores from single-sperm-seq
data set

A 5-kb resolution crossover score map was generated using a list of
mapped crossovers from Yin et al. (2019). These loci were derived
using single sperm sequencing of B6xCAST hybrid mouse (Yin
et al. 2019). The crossover score for each 5-kb bin was determined
by summing the number of intersecting crossovers, inversely
weighted by the length of each crossover (i.e., giving prominence
to sharply localized crossovers). The final crossover score was nor-
malized by genome-wide median. Supplemental Figure S10 shows
a visual summary of approach.

ChromHMM chromatin epigenetic states

Chromatin state was obtained from the Mouse ENCODE Project,
using the segmentation outputs from the testis-specific seven-
state ChromHMM model (Yue et al. 2014). This mouse ENCODE
data set used four histone modification measurements (H3K4
me1, H3K4me3, H3K36me3, H3K27me3) to generate a seven-state
model. The seven states are H3K4me3∼promoters, H3K4me1/3∼
promoters/enhancers, H3K4me1∼ enhancers, H3K4me1+H3K3
6me3∼ enhancers/gene-bodies, H3K36me3∼ gene-bodies, un-
marked, and H3K27me3∼ repressed/polycomb. Coordinates were
lifted over to mm10 from mm9 using UCSC liftOver (Hinrichs
et al. 2006).

Hi-C analysis

RawHi-C reads from ES cells (Bonev et al. 2017) andmeiosis (zygo-
nema, pachynema) (Patel et al. 2019; Vara et al. 2019) were
converted using the HiCUP pipeline (Wingett et al. 2015) and
cooler (Abdennur and Mirny 2020) software into cooler format
at 5-kb resolution. Insulation scores and cis/total contacts
were derived using cooltools.insulation and cooltools.coverage
(github.com/open2c/cooltools, https://doi.org/10.5281/zenodo
.4667696), respectively.

FIREcaller (Crowley et al. 2021) was used to generate FIRE
scores. cooltools.expected was used to generate contact frequency
versus genomic distance plots (i.e., P(s) curves),masking all A-com-
partment bins for the B-compartment analysis and vice versa, with
compartments defined using the ES Hi-C data set.

Compartment vector calling using a “fine-grain eigenvectors”
approach

Although compartment vectors for ES Hi-C samples were success-
fully generated using cooltools.eigdecomp for whole chromo-
somes (i.e., traditional eigenvector decomposition), the approach
failed to generate reasonable compartment vectors for several
chromosomes in the pachynema and zygonema data set owing
to the dropoff in signal of theHi-Cmatrices beyond 10-Mb contact
distances. Therefore, we implemented the “fine-grain eigenvector”
approach presented byWang et al. (2019) that calculates eigenvec-
tors using 10-Mb×10-Mb chunks along the Hi-C contact map.

Haplotype-resolved Hi-C

Haplotype-resolvedHi-C reads for pachynema and zygonemaHi-C
data sets were kindly provided by the original investigators (Patel
et al. 2019) and processed into contact matrices using cooler.

Visualization and plotting

Seaborn (Waskom 2021) and Matplotlib (Hunter 2007) were used
to generate meta-averaged Hi-Cmatrices and genomic tracks; 95%
confidence intervals are calculated using Seaborn defaults with
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1000-sample bootstrapping. Plots are symmetrized for upstream
versus downstream directions. PyGenomeTracks (Lopez-Delisle
et al. 2021) was used to generate example genome tracks at particu-
lar loci. Binswithminimal read counts are filtered out by cooler dur-
ing Hi-C matrix balancing and are ignored during visualization.

PCA and linear model with feature selection

Values for all chromatin organization variables (see Fig. 4A, hori-
zontal axis) were calculated for joint PRDM9–DSB sites, defined
as the union of bins containing PRDM9 and DMC1-SSDS ChIP-
seq peaks. Variables were preprocessed with standard scaling
(zero, mean; one, standard deviation), followed by principal com-
ponent analysis using the sklearn.decomposition (Pedregosa et al.
2011) package to extract loadings for each principal component.
Principal components were calculated for all PRDM9 sites and sup-
plied (alongside PRDM9 ChIP-seq score and chromosomal posi-
tion) as predictors to a linear model predicting DMC1-SSDS
ChIP-seq score using forward variable selection (Supplemental
Fig. S5B). Briefly, the forward selection process begins with a null
model and adds variables one-by-one by choosing the most statis-
tically significant predictor at each step into an updated least
squares model, implemented using statsmodels.OLS (Seabold
and Perktold 2010). The selection process converges when none
of the remaining predictors passes the statistical significance
threshold, in this case P< 0.001 with Bonferroni correction (signif-
icance threshold=0.001/n, for n variables). The selected predictors
and their respective t-statistics are then reported. The process was
repeated for DMC1-SSDS ChIP-seq sites in a model that used prin-
cipal components alongsideDMC1-SSDSChIP-seq score and chro-
mosomal position as predictor variables to a linear model
predicting crossover likelihood score.

Software availability

Code used for analysis and visualization are available in
Supplemental Code and also at GitHub (https://github.com/
xiaofanjin/meiosis-recombination-chromatin).
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