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Visual receptive field (RF) attributes in visual cortex of primates have been explained mainly
from cortical connections: visual RFs progress from simple to complex through cortico-
cortical pathways from lower to higher levels in the visual hierarchy.This feedforward flow of
information is paired with top-down processes through the feedback pathway. Although the
hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear
transmission of activity through the visual hierarchy can yield smooth contrast response
functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions
create either a bimodal response to contrast, or no contrast dependence of the response
in the highest level of the hierarchy. One possible mechanism to regulate this transmission
of visual contrast information from low to high level involves an external component that
shortcuts the flow of information through the hierarchy. A candidate for this shortcut is
the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a
hierarchical model network of ten cortical areas is examined. In each level of the network,
the activity from the previous layer is integrated and then non-linearly transmitted to the
next level.The arrangement of interactions creates a gradient from simple to complex RFs
of increasing size as one moves from lower to higher cortical levels.The visual input is mod-
eled as a Gaussian random input, whose width codes for the contrast.This input is applied
to the first area. The output activity ratio among different contrast values is analyzed for
the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely
cortical system, the output of the last area can be approximately contrast invariant, but the
sensitivity to contrast is poor.To account for an alternative visual processing pathway, non-
reciprocal connections from and to a parallel pulvinar like structure of nine areas is coupled
to the system. Compared to the pure feedforward model, cortico-pulvino-cortical output
presents much more sensitivity to contrast and has a similar level of contrast invariance of
the tuning.

Keywords: visual hierarchy, cortical transmission, cortico-pulvinar-cortical connections, sensitivity to contrast,

tuning contrast invariance

1. INTRODUCTION
Visual processing in primates is assumed to be hierarchical. The
visual activity travels almost sequentially for at least 10 levels of
organization (Felleman and Van essen, 1991). This type of cortico-
cortical transmission is called feedforward and is generally paired
with feedback projections from higher to lower areas (Van Essen
et al., 1992). The hierarchical organization is supported by the
receptive fields (RF) attributes of neurons, where RFs in higher
cortical levels code for progressively more complex properties of
the stimuli (Hegdé and Felleman, 2007). Beside this hierarchy in
complexity, cortical RFs also increase in size. This increment in
both complexity and RFs sizes in higher levels might reflect a
gradual feedforward convergence of RFs from early stages (Bullier,
2003).

In parallel to the complexity and growth of the RFs, two basic
visual attributes are present in almost all cortical neurons: their fir-
ing rate increases smoothly with contrast and the tuning of their
responses is contrast invariant. The firing rate of cortical neurons

increases sigmoidally with contrast (Albrecht and Hamilton, 1982;
Sclar and Freeman, 1982; Sclar et al., 1990). This contrast response
function (CRF) of spike activity become progressively steeper as
one moves up through the hierarchy (Rolls and Baylis, 1986; Avi-
dan et al., 2002). Cortical cells also seem to maintain a constant
tuning to visual stimuli as contrast is varied. In V1 cells, con-
trast invariance of the tuning to oriented bars is seen across the
six cortical layers (Olsen et al., 2012). MT and V4 cells also have
this attribute. In higher levels, neurons also seem to show contrast
invariant tuning. However, here the detection of tuning curves is
less accurate, so the evidence for this has to be confirmed (Baylis
et al., 1985).

The propagation of the response to visual stimuli through the
cortical hierarchy has so far only received very limited attention in
theoretical studies. A simple model to test firing rate transmission
is a feedforward model (FF). This model consists in a layered chain
of neural population in which a population of a given layer receives
inputs from the previous layer. The first layer receives the visual
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stimulus. Given the non-linear input-output relation of the neu-
ronal populations, chains of such populations will rapidly develop
the tendency to a step response, or go to a constant response when
the contrast is varied (Cortes, 2008). Such a bimodal response
developed in simple FFN is also seen in more realistic layered
networks with spiking neurons (Litvak et al., 2003).

In fact, a simple model with connections only between adja-
cent layers in the hierarchy, both feedforward and feedback, result
in a step-function response or constant output for higher layers
(Cortes, 2008). To get reasonable CRFs for cortical areas higher in
the hierarchy, a shortcut is needed to link hierarchically distant
levels. We propose that this shortcut is provided by the Pul-
vinar nucleus (Pul) of the thalamus. Our assumption is based
on: (i) non-reciprocal connections between Pul and visual cortex
(Sherman, 2007), (ii) a cortical gradient inside Pul (Shipp, 2003),
(iii) Pul microcircuitry with long range connections (Imura and
Rockland, 2006). It has been shown (Cortes, 2008) that adding a
shortcut through Pul to a simple chain of cortical areas can lead to
smooth sigmoidally shaped CRFs for areas high in the hierarchy,
provided that the inputs from Pul to the different cortical areas is
sufficiently small. However, in that study the increase of size and
complexity of the RFs with the layer in the cortical hierarchy was
not taken into account. Presumably the increase of RF complexity
is, at least partially, due to the specificity of the cortico-cortical
feedforward connections. On the other hand, the Pul, which is
a much simpler structure than visual cortex, is unlikely to have
cells with RFs of comparable complexity as higher layers in the
visual cortex. This raises the question whether the input from Pul
to cortex, necessary to obtain smooth sigmoidal tuning curves
in the higher cortical areas, does not disrupt the formation of
complex RFs in these areas. To study this issue, we create a fir-
ing rate model in which the connectivity of the cortico-cortical
feedforward pathway increases both the complexity and size of
the RFs as one move higher in the hierarchy. We investigate net-
works with purely cortico-cortical connections (feedforward and
feedforward-feedback), and networks with also cortico-pulvino-
cortical connections (feedforward-Pul and feedforward-feedback-
Pul). For these networks we analyze both the CRF and contrast
invariance of the response tuning in different levels of the hier-
archy, to establish that cortico-pulvino-cortical connections can
significantly improve both the smoothness of the CRF and contrast
invariance in higher cortical areas.

2. MATERIALS AND METHODS
We study a network of interconnected cortical areas that mimics
some of the properties of the visual cortex. The system is hier-
archical with L layers, with, as one ascends the hierarchy, RFs of
increasing size and complexity. This behavior of the RFs through
the hierarchy is observed in the two processing streams of the
visual cortex: the dorsal and ventral stream. At the same time, tak-
ing into account the remarkable homogeneity of the architecture
of different visual cortical areas, the units in the network are iden-
tical. The increase in size and complexity are, in our model, due to
the pattern of the feedforward connectivity.

For simplicity we consider a network with a one-dimensional
“visual” input. The network has L areas which each cortical area
consists of 2L units. In the first layer of the hierarchy, our model

of V1, the response of these units describes the average response
of a group of neurons with the receptive fields at the same posi-
tion. The feedforward inputs into units of higher cortical areas are
combinations of the output of 2 adjacent units in the area below
it in the hierarchy. Thus, each time one goes up one level in the
hierarchy, the number of receptive field positions decreases by a
factor of two. At the same time, at each position, there are different
units which receive different combinations of inputs from the two
units in the lower areas as described below. Because of this, as one
ascends the hierarchy the number of “types” of receptive fields is
doubled with in each layer.

Next we add feedback connections from units in higher cortical
areas to the area just below it, with feedback connections only to
those units from which the higher area unit receives input.

Finally we consider the effect of the a pulvinar like structure on
the activity of the cortical hierarchy. Our pulvinar model is similar
to the model of the cortex, in that it has a hierarchy of layers with
receptive fields that increase in size and complexity as one goes up
the hierarchy. The major differences between pulvinar and visual
cortex is that the number of types of receptive fields does not dou-
ble as one ascends the hierarchy and that in the pulvinar units in
layer � receives feedforward inputs from layers 1 to �− 1, not just
from layer �− 1, as is the case in our cortex model.

2.1. THE MODEL OF THE UNITS
Each unit in the model consists of two subunits, with “On” and
“Off” cells respectively. The subunits consists of interconnected
excitatory and inhibitory populations. For simplicity we assume
that these can be described by one effective population, whose
effective input is the difference between the input into the exci-
tatory neurons and the inhibitory ones. If the effective input into
the “On” and “Off” subunits is I+ and I− respectively, their rates,
r+ and r−, satisfy

τr
d

dt
r± = −r± + F(I±), (1)

where τ r is the time constant and f is a sigmoidal func-
tions, satisfying F(I ) = [1 + exp(−I + I th)]−1. Here, I th is the
threshold.

As a further simplification we assume that I− = −I+ = I and
the rates of the “On” and “Off” groups can be combined into an
effective rate, r = r+ − r− with an effective transfer function, f,
given by

f (I ) = 1

1 + exp(−I + I th)
− 1

1 + exp(I + I th)
. (2)

The threshold I th is the same for all cortical units.
Pulvinar units are modeled the same way with the effective rate

s of the pulvinar unit having the same time constant, τ r, and the
effective transfer function also satisfying equation (2), all be it that
I th can be different for pulvinar units. In the full model we will

use I ctx
th and I

pul
th to denote threshold for the cortical and pulvinar

units respectively. When we consider a model consisting only of
the cortical hierarchy we will the denote the threshold by I th for
simplicity.
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The transfer function, f, can be written as

f (I ) = sinh(I )

cosh(I )+ cosh(I th)
. (3)

Note that the transfer function does not change if we replace I th
by −I th, so that without loss of generality we can assume that
I th ≥ 0. The first and second derivatives of f are given by

f ′(I ) = 1 + cosh(I )cosh(I th)

[cosh(I )+ cosh(I th)]2 and

f ′′(I ) = sinh(I )[cosh2(I th)− cosh(I )cosh(I th)− 2]
[cosh(I )+ cosh(I th)]3 , (4)

respectively.
The transfer function increases monotonically from −1 to 1

as I goes from minus to plus infinity and has 1 or 3 inflection
points. The inflection points are found by solving f ′′(I ) = 0 and are
given by sinh(I ) = 0 and cosh(I ) = [cosh2 (I th) − 2]/cosh(I th).
The first of these always has a solution I = 0. There are two
other inflection points at I = ± ln(z + √

z2 − 1), where
z = [cosh2(I th) − 2]/cosh(I th) if cosh(I th)> 2, or I th > ln(2 +√

3) ≈ 1.317.
Figure 1 shows how the transfer function transforms the

input into the output rate. The Figure plots the output rate,
rout = f (WFFrin) as a function of the input rate, rin, for different
values of the threshold, I th, and different values of the synaptic
strength, WFF.

2.2. NETWORK ARCHITECTURE
For the cortical architecture we consider neuroanatomical prop-
erties of the ventral visual stream. In the cortex, the ventral
stream starts in V1, cross early visual areas until arrives to V4,
and ends in the inferotemporal (IT) cortex (Van Essen et al.,
1992). Classically, the ventral stream is related with object iden-
tification. Despite the fact that feedforward connections between
ventral stream cortical areas traverse several hierarchical levels,
most of the connections cross only 1 or 2 levels. This number

of levels traversed is also seen in feedback connections (Felleman
and Van essen, 1991). On the other hand, in monkeys the ven-
tral stream receives connections directly from the Pul (Kaas and
Lyon, 2007). These pulvinar connections have been postulated to
follow a gradient of connectivity, from low to high hierarchical
levels (Shipp, 2003). Also, the cortico-pulvino-cortical pathway
is described to have to different loop of connections while here
we consider the open type (see Pulvinar Architecture; Sherman,
2007).

By assuming the previously described requirements, in our
model the input into a cortical units in area � has three compo-
nents: cortical feedforward input from area �− 1, cortical feedback
from �+ 1 and pulvinar input from pulvinar area �− 1. The excep-
tion to these inputs projections are first and last cortical areas. The
first cortical area receives only feedforward input from LGN and
feedback from cortical area 2, but lacks inputs from the pulvinar.
The last cortical layer, layer L, does not receive cortical feedback
input.

2.2.1. Intracortical connections
We account for the increasing size and complexity of the receptive
fields as one moves up the cortical hierarchy by assuming that in
area � the units receive input from two neighboring units in area
�− 1. For example, units at position 1 in area 1 receive inputs
from the units at position 1 and 2 of the input, so layer 0, while
units at position 2 receive feedforward inputs from area 0 units at
position 3 and 4, etc. At each position in layer 1 two units with
different receptive field types. In the first the input is proportional
to the sum of the outputs of the two units in layer 0 which project
to it, in the other the input is proportional to their difference. In
layer 2 units at position i receive inputs from units at position 2i
−1 and 2i in layer 1, and there are 4 kinds of receptive fields. The
input into units with type 1 receptive fields take as argument the
sum of output of the two units with type 1 receptive fields in layer
1. For type 2 units the argument is the difference between these.
Type 3 receptive fields have as input the sum of the outputs of the
type 2 units in layer 1, while type 4 units have the difference of
these two as input. This algorithm is repeated for higher layers.

FIGURE 1 | Examples of input-output transfer functions at different

values of the threshold, I th. In each plot, the strength WFF is also
changed to analyze changes in linearity of curves. In all three
conditions, low values of WFF produces a reasonably linear response.
As WFF increases the response curves increase in non-linearity. For
Ith = 0.0, when WFF is large, the curve is steep, and the only one

inflection point occurs at r 0 = 0. Three inflection points are seen when
the threshold is sufficiently large (cosh(Ith) >

√
2). The shape of the

input-output curves is a combination of two sigmoidal functions in
which the non-linearity increase in as WFF becomes larger. The
inflection points are at r 0 = 0 and at r0 = ± ln(z + √

z 2 − 1)/WFF , where
z = (cosh2Ith − 2)/coshIth.
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This results in a system in which for layer � there 2L − � positions,
at each of which there are 2� different types of receptive fields
(Figure 2).

We denote the rate of the unit of layer � at position i with recep-
tive field type k with r�k,i and its feedforward input by I �k,i(FF) for
1 ≤ �≤ L − 1 the feedforward input is given by

I �2k−1,i(FF) = WFF (r
�−1
k,2i−1 + r�−1

k,2i )

I �2k,i(FF) = WFF (r
�−1
k,2i−1 − r�−1

k,2i ), (5)

for i = 1, . . ., 2L − � and k = 1, . . ., 2�. Here WFF is the strength of
the feedforward connections.

For �= 1 two types of receptive field exists, k = 1, 2 and the
feedforward input is, for i = 1, . . ., 2L − 1, given by I 1

1,i(FF) =
WFF (r0

2i−1 + r0
2i) and I 1

2,i(FF) = WFF (r0
2i−1 − r0

2i), where r0
i is the

output of the I th LGN unit.
Units in area � receive reciprocal input from those units in area

�+ 1 onto which they project. This feedback input has the same
sign as the feedforward input but is modulated by connection
strength WFB. The cortical feedback input, I �k,i(FB), in the unit
with receptive field type k at position i in layer �, is given by:

I �k,2i−1(FB) = WFB(r
�+1
2k−1,i + r�+1

2k,i )

I �k,2i(FB) = WFB(r
�+1
2k−1,i − r�+1

2k,i ), (6)

Units in the Lth cortical area have no feedback inputs. To com-
pensate for this we assume that the strength of the feedforward
connection to the last area is WFF +WFB rather than WFF. Note
also that in the layer L the receptive fields span the whole input
range and there is only 1 position (i = 1). The feedforward input

into layer L units is given by

I L
2k−1,1(FF) = [WFF + WFB](rL−1

k,1 + rL−1
k,2 )

I L
2k,1(FF) = [WFF + WFB](rL−1

k,1 − rL−1
k,2 ). (7)

It is well known that the synaptic connections from one cortical
area to another emanate from pyramidal neurons (Rodney et al.,
2004). So, both feedforward and the feedback pathways are are
excitatory. However, in the model here we are considering effec-
tive inputs. The effective connection are positive if the excitatory
population in the presynaptic “On” unit project to the excitatory
“On” population and the inhibitory “Off” population of the post-
synaptic unit while the presynaptic excitatory “Off” population
projects to the excitatory “Off” and inhibitory “On” populations
in the postsynaptic unit. The effective connection is negative if the
presynaptic“On”cells project to the inhibitory“On”and excitatory
“Off” cells in the postsynaptic unit and similar for the excitatory
presynaptic “Off” cells.

2.2.2. Pulvinar architecture
The Pul is the largest thalamic nucleus in primates and it presents
anatomical and physiological properties that involve with visual
cortical transmission. The Pul has two topographic maps that
traverse retinotopically the lateral (PL) and inferior (PI) subdi-
visions of the Pul. These two subdivisions connect directly with
the ventral stream of the cortex. The other two subdivision of the
Pul, medial (PM) and anterior divisions (PA), connect partially to
cortical areas of the dorsal stream (Stepniewska, 2003; Kaas and
Lyon, 2007). RFs of pulvinar neurons has simple visual features
that correspond with the cortical areas that they target. RFs of cat
and monkey pulvinar neurons have small and large diameter sizes,
are driven by orientated bars with a broad tuning responses as

Walsh 
patterns

Area Area Area 

FIGURE 2 | Schematic representation of the feedforward connections.The
sign of the connections represent Walsh pattern sequences from area �− 1 to
area �+ 1. The combination of inputs from pairs of units creates the receptive
fields in the next layer. The four units, i, in area �− 1, have the same type of
receptive field (k = 1) at different positions. The summation and subtraction of
the output of two units produces two different types of RFs in area �, the size

of these RFs is twice as large, and the number of RF positions is reduced by a
factor of two. This process is repeated for the connections from area � to area
�+ 1. Thus in layer 0 we have only 1 type of RF at 2L positions, in layer 1 we
have 2 types of RFs, with 2L − 1 positions, with each unit responsive to 2
neighboring positions in layer 0, while in layer L we have 2L types of RFs at 1
position, with each unit responsive to the whole input range.
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well as motion to textured patterns, and color-sensitive attributes
(Casanova, 2003).

The major source of visual inputs to Pul come from the visual
cortex. Lesions in striate cortex of macaque eliminated the visual
response of pulvinar neuron. This input from the cortex is rep-
resented as a gradient inside the Pul. Shipp (2003), based on
cortico-thalamic and thalamo-cortical connections, postulates the
existence of a “cortical gradient” in the Pul. While injections with
dual tracer in V1 and V4 label preferentially respective medio-
caudal and latero-rostral pulvinar areas, injection in V2 target
lateral within Pul, and inferior temporal cortical areas, medial
within Pul. On the other hand, injections in area V1, that represent
retinotopic position of either the upper and lower contralateral
hemivisual field, label neurons in respective hemifield of both PL
and PI. Thus, a fronto-occipital axis in the cortex is reproduced as a
medio-lateral gradient in the pulvinar (medio-lateral cortical axis
rotates to a rostro-caudal gradient in the thalamus). In addition
to the gradient observed in the Pul, the cortico-pulvino-cortical
loop has two types of connections. In one subgroup the cortical
layer VI project to a pulvinar region, which in turn send back
to same cortical area but to layer IV (“Reciprocal connections,”
similar to connections between V1 and the LGN). In the other,
connections arise from cortical layer V and end in a non-reciprocal
pulvinar region. In turn, this pulvinar region sends back orthog-
onally to the cortex. These latter are known as “non-reciprocal
connections” and it is considered here as an open loop (Sherman,
2007).

In addition to projections from and to the cortex, the Pul also
has a local circuitry. Recently works show at least four intrinsic
interactions: (i) axons type I are branched and highly divergent
(1.0–3.0 mm), to the extent that they can easily be shown to
cross over subdivisions (Rockland, 1996, 1998); (ii) Long range
inhibitory interneurons traverse areas in 1.0 mm of length (Imura
and Rockland, 2006); (iii) The existence of “bridges” between
PI subdivisions that stain to calcium binding protein calbindin
and to substance P (Stepniewska, 2003); (iv) Inhibitory inputs
from the reticular nucleus which receives excitatory branches from
the cortico-thalamic and thalamo-cortical axons (Sherman and
Guillery, 2000).

For the Pul architecture the previous attributes are considered.
The Pul is modeled similarly to the cortex. However, each pulvinar
area has at most 4 types of RFs, the patterns corresponding to k = 1,
2, 2�− 1, 2�, for l ≥ 2. Reciprocal cortico-pulvino-cortical interac-
tions mainly have the effect of changing the effective if modifying
the effective cortical transfer functions, so that, in the interest of
simplicity only the non-reciprocal cortico-pulvino-cortical path-
way is assumed and the gradient inside the Pul is modeled as a
feedforward pathway with long range connections. Pulvinar units
in area � receive input from cortical units in area � and from pul-
vinar units in areas 1 to � – 1. The input J �k,i(PC) from cortex to
unit i of type k in pulvinar region � is given by

J �2k−1,i(PC) = WPC (r
�
k,2i−1 + r�k,2i)

J �2k,i(PC) = WPC (r
�
k,2i−1 − r�k,2i), (8)

for l = 3, . . ., L − 1, i = 1, . . ., 2L − �− 1 and k = 1, 2�− 1.

The long range interactions in the pulvinar are mediated
through large GABAergic interneurons (Imura and Rockland,
2006). Thus the connections between units in different pulv-
inar layers are through inhibitory synapses. Nevertheless, as for
cortico-cortical interactions, the effective coupling can be positive
or negative, depending on whether the postsynaptic target neu-
rons are excitatory or inhibitory. The input J �k,i(PP) from the rest
of the pulvinar satisfies:

J �2k−1,i(PP) = 1

1 + WLP
(WFP [s�−1

k,2i−1 + s�−1
k,2i ]

+ WLP

2
[J �−1

k,2i−1(PP)+ J �−1
k,2i (PP)])

J �2k,i(PP) = 1

1 + WLP
(WFP [s�−1

k,2i−1 − s�−1
k,2i ]

+ WLP

2
[J �−1

k,2i−1(PP)+ J �−1
k,2i (PP)]), (9)

Here we have used s�k,i denote the rate of the pulvinar units. The
units in pulvinar layer 1 do not receive input from the rest of the
pulvinar, J 1

k,i(PP) = 0, while for pulvinar layer 2 we assume that
J (PP) is given by

J 2
2k−1,i(PP) = WFP [s1

k,2i−1 + s1
k,2i]

J 2
2k,i(PP) = WFP [s1

k,2i−1 − s1
k,2i]. (10)

This specifies how the pulvinar input to pulvinar units depends
on the activity in the previous areas. For example in pulvinar layer
4, the input J 4

k,i(PP) for k = 1 is given by the combination of the
pulvinar-feedforward and the long range connections

J 4
1,i = WFP

1 + WLP
[s3

1,2i−1 + s3
1,2i]

+ WLP

2(1 + WLP )
[J 3

1,2i−1(PP)+ J 3
1,2i(PP)]

= WFP

1 + WLP

(
[s3

1,2i−1 + s3
1,2i]

+ WLP

2(1 + WLP )
[s2

1,4i−3 + s2
1,4i−2 + s2

1,4i−1 + s2
1,4i]

)
+
(

WLP

2(1 + WLP )

)2

[J 2
1,4i−3(PP)

+ J 2
1,4i−2(PP)+ J 2

1,4i−1(PP)+ J 2
1,4i(PP)]

= WFP

1 + WLP
([s3

1,2i−1 + s3
1,2i]

+ WLP

2(1 + WLP )
[s2

1,4i−3 + s2
1,4i−2 + s2

1,4i−1 + s2
1,4i]

+
(

WLP

2(1 + WLP )

)2

[s1
1,8i−7 + s1

1,8i−6 + s1
1,8i−5

+ s1
1,8i−4 + s1

1,8i−3 + s1
1,8i−2 + s1

1,8i−1 + s1
1,8i]).

(11)

A direct expression of J �k,i in the activity of units in the previous
layers for different values of k and � is straightforward.
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Finally, the input from pulvinar to cortex, I (CP), is given by:

I �2k−1,i(CP) = WCP [s�−1
k,2i−1 + s�−1

k,2i ]
I �2k,i(CP) = WCP [s�−1

k,2i−1 − s�−1
k,2i ], (12)

where s�k,i is the output of pulvinar unit for k = 1, 2, 2�− 1, 2�, and

s�k,i = 0 otherwise.

2.3. LGN INPUT
The spatial filtering properties of LGN neurons is such that for
natural visual stimuli the response of different LGN neurons is
uncorrelated (Simoncelli and Olshausen, 2001). In accordance
with this we assume that for visual stimuli the effective output,
r0

i , of the LGN units at position i can be written as

r0
i = σxi , (13)

where the variables xi are independently drawn from Gauss-
ian distribution. Note that as for the cortical and pulvinar
units the effective rate is the difference between the response
of the “On” and “Off” cells and hence can be either positive or
negative.

The prefactor σ in equation (13) is an increasing function of
the contrast and scales the whole LGN response where σ = 1 rep-
resents an input with contrast 100%. A basic assumption in study
is that, if the same visual scene is presented at different contrasts,
the effect the contrast cage on the LGN output is to modulate
the output of all LGN units by the same factor. Thus increasing
the contrast amounts to increasing σ , while keeping the random
variables xi the same. On the other hand if one considers differ-
ent visual scenes with the same contrast, σ should be kept the
same, while different random variables xi should be drawn for
each scene.

2.4. OPTIMIZATION CRITERIA
We analyze networks in two conditions, and so, we work out two
different optimization procedures. We first explore the behavior
of networks when a homogeneous input, r0

i = r0, is applied to the
first layer. This give some insight of the properties of the model.
Secondly, we assume a visual stimuli where properties have been
described in the previous section.

2.4.1. Homogeneous input
The activity of the last cortical area is the summary of the previous
ones. When a discontinuous or very small change of its response
occurs for an increase in contrast of the input, the output is not
very useful to estimate the stimulus. The optimal output of layer
L is one that spans the whole range of outputs and varies more or
less linearly with the input, r0. However, these two requirements
are in conflict. For example, when a homogeneous input from −1,
1 is applied to the feedforward model, a large WFF assures utiliza-
tion of the whole dynamic range between −1 and 1, but yields
an extremely non-linear curve. Instead, for small WFF the curve
that plots rL against r0 appears much more linear, but only covers
a small part of the output range. An optimization criterion that
penalizes both these extreme cases and measures how good the

network is able to transmit information about stimulus contrast
is the entropy of the output distribution if the r0 is distributed
homogeneously between −1 and 1. The entropy is low both in the
case where the input-output relation is close to a step-function
and also when the output range is small. Thus, to optimize the
output of the unit rL

1,1 of different networks when a homogeneous
input is applied in layer 1, we determine parameters for which the
entropy, H, given by

H = −
∫ 1

−1
drPL(r) log PL(r) (14)

is maximal. Here, PL(r) is the probability density distribution of
the Lth layer.

We now derive an expression for H, where the relation
rL = F(r0) is known and r0 is drawn from a homogeneous distri-
bution between −1 and 1. For a small�r this probability will be

PL(r)�r = Prob(r < rL < r +�r). (15)

Since rL = F(r0), this is equal to

PL(r)�r = Prob(F−1(r) < r0 < F−1(r +�r))

≈ Prob(F−1(r) < r0 < F−1(r)+ F ′−1
(r)�r). (16)

Here F ′−1 is the derivative of F –1, the inverse of F.
Since r0 is drawn from a uniform distribution between −1

and 1, Prob (F−1(r)< r0< F−1 (r) + F ′−1(r) �r) is equal to
F ′−1(r)�r/2. Together with F ′−1(rL) = 1/F ′(r0) this yields

PL(rL) = 1

2F ′(r0)
. (17)

Inserting this into equation (14), the entropy is given by

H = 1

2

∫ 1

−1
dr0 log 2F ′(r0), (18)

where we have used drL = F ′(r0)dr0.

2.4.2. Natural visual stimuli
That was the optimization procedure for networks in which a
homogeneous input is used, r0

i = r0. We use similar optimization
principle for the analysis of the visual input. In this case, a ran-
dom input is applied in r0

i = σxi , where σ codes for contrast and
xi is independently drawn from a Gaussian with zero mean and
unit variance. Here, changes in contrast are changes in σ without
changing xi. To ensure that the response is sensitive to contrast
and the tuning is maximally contrast invariant, we want that the
amplitude of the 2L dimensional vector �V , given by Vk = rL

k,1

varies smoothly with σ 2, while its direction changes as little as
possible as σ is varied.

We define the output amplitude, F, as the average length of
the output for LGN inputs with contrast σ , F(σ ) = 〈| �V |〉, where
the average is over the variables xi. Similar to the analysis of the
homogeneous input condition, we aim for an amplitude function
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F that is as linear as possible and uses the dynamic range max-
imally. This we ensure by imposing a cost function, HL, defined

as HL = ∫ 1
0 dσ log(F ′(σ )), for this property. If HL = L log2, the

output scales linearly and exploits the whole dynamic ranges. It
decreases if less of the dynamic range is used or the response scales
non-linearly.

To explore whether the network can maintain contrast invari-
ant tuning, we calculate the mean of separation distance S between
normalizes output vectors �e(σ ) = �V (σ )/| �V (σ )| and �e(σ ′) =
�V (σ ′)/| �V (σ ′)| for LGN inputs r0

i = σxk and r0
i = σ ′xk respec-

tively, S = ∫ 1
0 dσ

∫ 1
0 dσ ′�e(σ ) · �e(σ ′). If S = 1, the vectors are in

the same direction for all contrasts. As the direction changes more
with contrast, S decreases.

For the optimization of the network parameters define a total
error E = −2S − eHL that takes both these factors into account.
In both optimization criteria, the homogeneous and the visual
input, we attempt to minimize the error of the functions. Thus, we
want to maximize both S and HL. So, given the parameter space
of models we use the Powell’s method (Press et al., 1992).

3. RESULTS
In our model we assume that natural stimuli are characterized
by inputs r0

i which are given by r0
i = σxi , where the variables

xi are independently drawn from from a Gaussian with mean 0
and variance 1. However, to get some insight into the proper-
ties of the model, we first analyze its response to a simpler input,
r0

i = r0.

3.1. RESPONSE TO HOMOGENEOUS INPUT
3.1.1. Purely feedforward transmission
In the purely feedforward model (WFB =WCP =WPC = 0), the
activity is propagated sequentially through the cortical areas until
reach l = L. The input is varied in magnitude to mimic changes in
contrast of the stimulus.

If r0
i is the same for all units, r1

1,j will also be identical for all j.

As a result, r2
1,i will also be independent of i, etc. At the same time,

because r0
i is the same for all i, r1

2,j will be zero for all j. Extending

this logic to larger �, we see that r�k,i = 0 for K = 2, 3, . . ., 2�− 1,

while r�1,i = r� is the same for all i. The equilibrium rates are given

by r1 = f(WFFr0), and

r� = f (2WFF r�−1). (19)

for l ≥ 1.
Figure 3 shows the equilibrium rate as a plotted against r0

for layers l = 1, 5, and 10, for different values of the feedforward
strength and threshold. When WFF is small the rate in r1 increases
smoothly from approximately −1 to approximately 1 as the input
r0 varies from −2 to 2. For larger � the response is progressively
smaller, until for l = 10 the response almost stays at 0. On the
other hand, for large WFF with I th = 0, r0 shows a clear sigmoidal
response. For larger � the steepness of the sigmoid increases so
that for l = 10 the response in almost a step-function. For I th 
= 0,
the response evolves to a sum of two sigmoids, with thresholds at
−I th/WFF and I th/WFF. While these sigmoids are not as steep as
the corresponding sigmoid for I th, still in layer 10 the response
takes values near ±1 or 0, for most of the input range.

To better understand this behavior we analyze the system near
r0 = 0. Since f (0) = 0 we have that if r0 = 0, r� = 0 for all �. For
0 < r0 = δr0 � 1, r� = δr� is also much less than 1, and, to
leading order, satisfies δr� = 2WFFf ′(0)δr�− 1 for l ≥ 1. Here f′ is
the derivative of effective transfer function, f. This means that we
can write δr� as δr� =��δ0, where �= 2WFFf ′(0). Thus, when
|�|< 1 the response gets progressively smaller as � is increased,
while to |�|> 1 the size of the response increases with �. Note that
this decrease/increase is geometric, so that even for � relatively
close to 1, δr� will deviate a lot from δr0 for large �. As a result, for
� 
= 1, at r0 = 0, the slope of the function that plots r� against r0

will be either very large or very small when � is large.
Using equation (4) we have that f ′(0) = [1 + cosh(I th)]−1.

If I th = γWFF, � is given by �= 2WFF/[1 + cosh(γWFF)]. For
γ = 0, �=WFF and, near r0 = 0, the slope of the transfer is very
low for WFF< 1 for large �, while for WFF> 1 it becomes very
steep. If γ > 0,� increases with WFF for small WFF, but it decreases
asymptotically to 0 as WFF is increased further and further. This
is because for large WFF, cosh(γWFF) increases faster than WFF.
So as WFF is increased from 0, � first increases from 0, until it
reaches its maximum, then it decreases again to 0. The maximum
value� takes depends on γ . If γ is to large, maximum value of �
is less then 1, so that for large γ the slope of the transfer function

FIGURE 3 | Response of the feedforward network when a spatially

homogeneous input is applied. When WFF is small the response is
progressively weaker as � is increased, so that for l = 10 the response is

negligible. For large WFF, the response in the last layer is close to a step from
−1 to 1, for Ith = 0, while for Ith 
= 0 it evolves to a 2 step response, from −1
to 0 at r 0 = −Ith/WFF and from 0 to 1 at r 0 = Ith/WFF.
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near r0 = 0 is small for any value of WFF. This is demonstrated in
Figure 4, where� is plotted against WFF for different values of γ .

We will no examine the implications of these findings in the
limit where the total number of layers L becomes infinite.

If we have a long chain of layers, the rates r� for large � will
approach a constant value. The values it can approach are the
stable solutions of the equation r∞ = f (2WFFr∞). With I th = 0
one solution of this equation is r∞ = 0, for any value of WFF. For
WFF< 1 the curve of f will have a slope of less than 1 at r = 0, and
r∞ = 0 is a stable solution. It is also the only solution. For larger
WFF the slope at r = 0 is larger than 1 and there are two extra
solutions, one with r∞< 0 and one with r∞> 0 (see Figure 3A).
In this case the solution r∞ = 0 is unstable, that is, if r0 devi-
ates slightly from 0, the deviation from this value increases as � is
increased. For an infinite chain of hierarchical levels, r� approaches
one of the other two solutions with increasing �. r� Goes to the
smaller value if r0< 0, while it goes to the larger value for r0> 0.
As show in Figure 5A, as WFF in increased, the two stable non-zero
solutions approach −1 and 1 respectively.

When I th = γ WFF 
= 0, the solution r∞ = 0 also exists for all
values of WFF. However, the stability of this solution depends on
γ . For sufficiently small γ there is a transition from a stable to an
unstable solution, followed by a second transition from unstable
to stable, as WFF is increased. The first transition is the same as
that for the case where I th = 0. Below this transition r∞ = 0 is
a unique solution which is also stable. Above the transition two
new stable solutions appear. These solutions approach −1 and 1
as WFF is increased. The second transition is also a pitchfork bifur-
cation of the r∞ = 0 solution. The r∞ = 0 switches from unstable

Λ

FIGURE 4 | Behavior of the transmission slope, �, near the point 0

when strength WFF increases. Different values of threshold, Ith are plotted
to observe changes of firing rate transmission at large �. At Ith = 0, the
straight solid line crosses �= 1 only once, so the activity passes from low
to high magnitudes in one transition. For other values of Ith, except for
Ith = 1, curves cross twice the value �= 1. The range of these two
intersection points in WFF becomes shorter as curves Ith →WFF. Thus, at
large �, firing rate decreases, increases, and again decreases as WFF moves
progressively to high values. When Ith =WFF, the curve never crosses the
values of �= 1, so any change in the transmission of the activity is
observed around 0.

to stable and two more solutions appear. These are unstable and
asymptotically approach the values ±γ /2. The value of WFF at
which the first bifurcation occurs increases with γ , from WFF = 1,
the bifurcations point of the I th = 0 solution. The point where

A

C

B

FIGURE 5 | Fixed-points solutions, r ∞, are plotted as a function of

increasing WFF at three I th values. Solid lines correspond to a stable and
dashed line to an unstable solution. In (A), at Ith = 0 and WFF = 1, the
system undergoes a pitchfork bifurcation in which three solutions appear.
The solution at r ∞ = 0 becomes unstable and the other two are stable. For
(B,C), at Ith 
= 0, the bifurcation point around r ∞ = 0 depends of
f ′(0) = 2[WFF/(1 + cosh(WFF Ith))] while the critical point of bifurcation is no
longer WFF = 1. In (B), after the first bifurcation, a second pitchfork
bifurcation appears when WFF increases. The system has five final
fixed-point solutions. Here, fixed-point that was unstable at r ∞ = 0
becomes stable, and two new unstable fixed-points emerge at ±γ /2. In
(C), both previously described bifurcation have merged and from one stable
solution the system passes suddenly to five final fixed-points as WFF

gradually increases.
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the second bifurcation occurs starts at WFF → ∞ for γ → 0 and
decreases with increasing γ . See Figure 5B.

These two critical values of WFF converge in one bifurcation
point as γ increases. We have observed that at the first transi-
tion point we move from 1 solution to 3 solutions. At the second,
we move from 3 to 5 solutions. As γ is increased the separation
between both bifurcation points becomes narrower and narrower.
When distance between these two points reaches 0, both points
converge turning out only one critical value. At this value we have
a transition from 1 to 5 solutions. For still higher values of γ
there no longer is a bifurcation from the solution r∞ = 0, this
solution stays stable. Instead at a critical value of WFF two new
pairs of solutions emerge. For r > 0 a stable solution with large
r∞ appears, together with an unstable solution that lies between
this solution and the r∞ = 0 solution. There is also a correspond-
ing pair of solutions with r < 0. These solutions are shown in
Figure 5C.

To obtain the regions that 1, 3, or 5 fixed-point solutions we
determine the number of solutions in the plane (WFF, γ ). The
transition from 1 solution to 3 solutions and from 3 to 5 solutions
are the solutions of �= 1 with the smaller and larger solution
respectively of WFF at fixed γ . These are obtained by solving

WFF = cosh(γWFF )+ 1

2
. (20)

Taking the parametrization x = γ WFF, this can be separated in a
set of two equations:

WFF (x) = cosh(x)+ 1

2
, γ (x) = 2x

cosh(x)+ 1
. (21)

Using this, we plot 1/WFF against γ in relationship with the para-
meter x. Figure 6 shows the solutions of the purely feedforward
model when a spatial homogeneous input is applied in layer 1. In
the plane, the region for 1 solution is the only stable solution for
WFF small. As WFF increases and γ is small, 3 solutions appear
while two of them are stables. Holding the previous threshold
condition and increasing WFF even further, 5 solutions show up
three stables fixed-points and 2 unstable ones. As γ is progressively
increased to 1, the range over which there are 3 solutions shrinks.
When γ ≈ 0.89 both boundaries are merged. For γ > 0.89 there
is a transition from 1 solution to 5 solutions. This transition was
determined from solving the fixed-point equations directly.

3.1.2. Model with feedforward and feedback connections
We now explore the effects of feedback connections when a homo-
geneous input is applied. As before r�k,i = 0 for k ≥ 2 and we can

write r�1,i = r�. In this case, the input for equation (1) have WFB 
= 0
and WCP = 0. The new system is described by the equations

τr
dr�
dt

= −r�+f (2WFF r�−1+WFBr�+1), l = 1, ..., L−1 (22)

and

τr
drL

dt
= −rL + f ([2WFF + WFB]rL−1). (23)

FIGURE 6 | Number of solutions for the feedforward model as WFF and

γ are varied. 1, 3, and 5 fixed-point solutions appear in the plane as
described in Figure 5. When WFF ≤ 1 only one stable solutions is produced.
In the plane, from 1 stable fixed-point solution, the system can pass directly
to 3 or 5 fixed-point solutions as WFF or γ change.

Effective WFF values of the new system – The objective here
is to analyze if the feedback connections improve the sequential
transmission through the cortical hierarchy. As we know from the
analytical results of the feedforward model there are two possibles
final states. Here, we look for the influence of the factor WFB on
the behavior of this final states. We consider the system equations
(22) and (23) in the steady state for a constant input, r0

r� = f (2WFF r�−1 + WFBr�+1), l = 1, ..., L − 1 (24)

and

rL = f ([2WFF + WFB]rL−1), (25)

As before, for r0 = 0 the solution is r� = 0. For small input r0 = δr0

we can expand the solution, and write

δr� = f ′(0)[2WFF δr�−1 + WFBδr�+1], (26)

and

δrL = f ′(0)[2WFF + WFB]δrL−1. (27)

Making the Ansatz δr� =��δr0, we obtain from equation (26) that
� has to satisfy

� = f ′(0)[2WFF + WFB�
2], (28)

which has the solutions�+ and�−. These solutions are given by

�± = 1

2f ′(0)WFB

[
1 ±

√
1 − 8[f ′(0)]2WFF WFB

]
. (29)
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The general solution to the system can be written as

δr� = (ψ+��+ + ψ−��−)δr0, (30)

where ψ+ and ψ− are two constants.
From boundary condition, equation (27) we obtain that

ψ−�L− + ψ+�L+ = f ′(0)[2WFF + WFB][ψ+�L−1+ + ψ−�L−1− ],
(31)

while from l = 0 we have ψ+ +ψ− = 1.
After some algebra, one obtains that δr� is given by

δr� = ��− − κ�L−/�L−�+
1 − κ�L−/�L+

δr0, (32)

where κ = [1 – f ′(0)(2WFF +WFB)/�_]/[1 – f ′(0)(2WFF +WFB)/
�+]. If 8[f ′(0)]2W FFWFB< 1, |�−/�+|< 1, otherwise |�−/�+|
= 1. So, in the large L limit δrL = �L−[1−κ]/[1−κ(�−/�+)L]δr0

goes to zero in the large L limit, if |�−|< 1, while for |�−|> 1
δrL becomes very large. The transition occurs when �− = 1, or
f ′(0)[2WFF +WFB] = 1.

Let us now consider the behavior high up in the hierarchy when
r0 is not approximately 0. As in the network with only feedforward
connections, for arbitrary r0, r� will approach a set of fixed value
as � is increased. Here, these fixed values are the stable solutions of

r∞ = f ([2WFF + WFB]r∞). (33)

Thus we can conclude that a network with feedback connections
with strength WFB and feedforward connections with strength
WFF, behaves very similarly to a purely feedforward network in
which the strength is W̃ FF = WFF + WFB/2. Both networks have
the same fixed values to which the rates evolve as � is increased, and
if r0 is small, for both the rate geometrically increases (decreases)
when 2f ′(0) W̃ FF < 1 (>1). Thus adding feedback connections
does not qualitatively improve the ability of the network to have
an output in the higher areas of the hierarchy that vary smoothly
with r0.

3.1.3. Feedforward and pulvinar model for a homogeneous input
We now consider the effect of adding a Pulvinar like structure
(WCP 
= 0 and WPC 
= 0) on the response of the network to con-
stant input, r0

i = r0. To simplify the calculations we assume that
there are no feedback connections (WFB = 0). The model with
feedback connections behaves qualitatively similar.

It is straightforward to verify that, as before, r�k,i = 0 for k 
= 1

and that r�1,i = r�. Likewise, for the Pulvinar we have that s�k,i = 0

for k 
= 1 and s�1,i = s�. Taking this into account, the equilibrium
rates, r� and s�, are, for l = 1, 2, . . ., L, given by

r� = fctx (2WFF r�−1 + WCP s�−1) s� = fpul(2WPC r� + J�). (34)

Here fctx and fpul are the transfer functions of the cortical and
Pulvinar units respectively, while s0 = 0, J 1 = 0, J 2 = 2WFPs1, and
J� = (2WFPs�− 1 +WLPJ �− 1)/(1 +WLP).

Due to the parallel processing and long range connections, a
full analysis of this system is much more involved that the analysis
of the system without Pulvinar that we have analyzed above. This
analysis is beyond the scope of this paper, here we will concentrate
on the response of the system to small input, r0 = δr0 and indi-
cate how the system behave differently from the network without
Pulvinar.

If r0 = δr0 is small, the response of all layers of the cortex and
Pulvinar will be small, r� = δr� and s� = δs�, with

δr� = Fctx [2WFF δr�−1+2WCPδs�−1] δs� = Fpul [2WPCδr�+δJ�],
(35)

where δJ� = (2WPFδs�− 1 +WLPδJ �− 1)/(1 +WLP), Fctx = f ′
ctx (0)

and Fpul = f ′
pul(0).

Analogous to what happened in the cortical network with feed-
back we can here, for l ≥ 2, write δr� = (ψ−��− + ψ+��+)δr0.
For δs� we have δs� = (φ−��− + φ+��+)δr0. After some tedious
algebra one can show that if the largest of eigenvalues,�+, is larger
than 1, δrL is much larger than δr0, while if it is smaller, δrL will
be much smaller than δr0. Thus for a gradual increase of rL with
r0,�+ should be close to 1.

The eigenvalues�+ and�− can be found by making the Ansatz
δx� =��δx0, where x is r, s or J. Inserting this into equations (35)
we obtain

��δr0 = Fctx [2WFF�
�−1δr0 + WCP�

�−1δs0],
��δs0 = Fpul [2WPC�

�δr0 +��δJ0], (36)

while from δJ� = (2WPFδs�− 1 + WLPδJ �− 1) we obtain

��δJ0 = 1

(1 + WLP )
(2��−1WFPδs0 +��−1WLPδJ0). (37)

Solving these equations under the assumption δr0 
= 0, we find
that� satisfies the quadratic equation

�2 −�

(
2WFF Fctx + 2B + WLP + 2Fpul WFP

WLP + 1

)
+ 2Fctx WFF WLP + 2BWLP + 4Fctx Fpul WFF WFP

WLP + 1
= 0 (38)

where B =WFFWPCWCPFctxFpul. Thus �+ and �− satisfy the
equation

�± = WFF Fctx + B + 1/2 + Fpul
WFP
WLP

1 + 1
WLP

±
√√√√(WFF Fctx + B − 1/2 + Fpul

WFP
WLP

1 + 1
WLP

)2

− 4BFpul
WFP
WLP

1 + 1
WLP

.

(39)

It might seem that we have not gained much by adding the Pul-
vinar. As before we have 2 eigenvalues whose values depend on
the network parameters, so it would seem that we again need fine-
tuning of the parameters to get an output δrL of the same order
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as δr0. Like before, for these fine-tuned parameters we may obtain
that rL is comparable to r0 for small r0, but not if r0 becomes
larger.

However, this is not the case: If we take that WLP � 1
the two eigenvalues satisfy�+ ≈ 2FctxWFF(1 +WCPWPCFpul) and
�− ≈ 1. Thus in this case δrL is comparable to δr0, provided that
|�+|< 1.

When the activity in area L is plotted as a function of the
input, the best relation is one that show a smooth linear incre-
ment of firing rate when the contrast gradually increase. This
relation in the feedforward-pulvinar model is observed when the
relation δr� ≈ δr0 is satisfied, so �= 1. Therefore, we require
1 = 2FctxWFF(1 +WCPWPCFpul) when WLP is large with the con-
straint of an arbitrary WFP<WLP. Without loss of generality, we
consider when I cx

th = 0, so Fctx = 1/2, and we plug this result in�1

to obtain

[WFF ]cr = 1

1 + Fpul WCP WPC
, (40)

where [WFF]cr is the value of the cortical gain of the effective
transfer function equation (2).

Analytical and Numerical results of the models – The analyt-
ical treatment has shown that the cortico-cortical and the cortico-
pulvinar-cortical network behave differently when a spatially con-
stant input is applied. In the case of the purely feedforward model,
considering L large, the rate will approach r∞ to fixed-point solu-
tions depending of the value of the threshold and the gain, WFF.
In the unimodal transmission, I th = 0, the solutions go to one
stable rate to two stable and one unstable as one moves from
small to large WFF. This bifurcation also exists at the bimodal
transmission, I th 
= 0, but here occurring twice as the gain is pro-
gressively increased given at the end 5 solutions, three of them
stables and two unstable. If we plot r∞ against r0 at large WFF in
the bimodal transmission, a double step response appears while
both inflections points will be at ±I th.

The meaning of these results is that for small WFF when I th = 0,
the response, r�, always approaches 0 with increasing � for any
input r0, while for large WFF it approaches upper stable solution
for r0> 0 and the lower one for r0< 0. For I th 
= 0, solutions
approach similar as before, but for WFF large 2 unstable fixed-
points appears in r0 = ±I th/2 and the 2 stables responses move
forward to r0 = ±1. As I th> 0.9, r� = 0 becomes stable and the
other 4 solutions maintain the same previous stability. Thus, infor-
mation about r0 is lost in the higher areas for any value of WFF

either for I th = 0 or otherwise.
Adding feedback connections only, WFB 
= 0 and WCP = 0, does

not qualitatively improve the situation. The bifurcation point is
adjusted to [WFF]cr = 2/WFF(2 +WFB), but for a sufficiently large
L we still have an almost constant output for small WFF and a step
or double step response for larger WFF when I th = 0 or I th 
= 0,
respectively.

The response of the network to spatially constant input with
the pulvinar included,WCP 
= 0 and WPC 
= 0, could also be treated
analytically. One solution that will satisfy a smooth linear incre-
ment of firing rate when the contrast input gradually increases
will show up. This relation in the feedforward-pulvinar model

is observed when WLP � 1 with the constraint WFP<WLP. At
I cx
th = 0, this process is satisfied as WFF = 1/(1 + FpulWCPWPC),

where WFF is the cortical gain and Fpul the derivative of the effec-
tive transfer function for the pulvinar. This improvement in the
last area’s activity is because pulvinar area � receives input from
all lower areas and passes directly to higher areas. Because of
these long range interactions, responses in the higher pulvinar
regions may not tend to a bimodal output distribution. This will
be confirmed by numerical simulations.

3.1.4. Optimization
In this part we investigate what are the values of parameters
that better explain a smooth linear increment of firing rate at
rL when an input is gradually varied in contrast. The optimal
output of layer L is one that spans largely the dynamic range of
outputs and conserves as much as possible a linear relation with
the input, r0. In the simulations, when a homogeneous input −1,
1 is applied to the feedforward model, a large WFF assures uti-
lization of the whole dynamic range between –1 and 1, but yields
an extremely non-linear curve. Instead, for small WFF the curve
that plots rL against r0 appears much more linear, but only covers
a small part of the output range. So, to combine properly these
two requirements we work out the entropy of the output dis-
tribution by assuming that the r0 is distributed homogeneously
between −1 and 1. The entropy is high both in the case where
the input-output relation is linear and also when the output
range is large (see Materials and Methods for the mathematical
description).

We look for the parameters values that maximize the entropy
of the rate distribution of the last layer. Because, most of the ana-
lytical treatment considered both unimodal and bimodal trans-
missions, we analyze separately the cases where I th = 0 and
I th 
= 0. Tables 1 and 2 recapitulate the results for the differ-
ent models. We consider as networks the purely feedforward
(FF), feedforward-feedback (FF-FB), feedforward-pulvinar (FF-
Pul), and feedforward-feedback-pulvinar (FF-FB-Pul). The high-
est entropy is obtained for models that have Pul. The lowest
entropy is observed for the purely feedforward model. How-
ever, qualitatively FF and FF-FB are almost the same for both
I th = 0 and I th 
= 0. In spite of the several results, for I th = 0, FF-
FB-Pul always was more informative than the feedforward and
feedforward-feedback model. For I th = 0, FF-Pul has this role.
Figure 7 shows the output of the four models with the optimal
parameters.

Compare with the cortico-cortical networks, a smooth linear
increase of firing rate is present when the Pul is included and
almost the whole output range is used. For the FF-Pul model this
solution is obtained when WLP � 1 with WFP<WLP. For I th = 0,
WFF was worked out with equation (40) and it was the best opti-
mization value of the entire possibles values of variables analyzed
(∗ in Table 1). To get these values for the networks with Pul, we
also fit the reciprocal connections as WCP>WPC. Moreover, in
the case of I cx

th 
= 0, WCP were much stronger than that for the
WPC. However, without the reciprocal connectivity from the Pul
the model present a low entropy finishing a constant rate in rL. So
that, the output for Pul models encodes optimally better an input
than that for cortico-cortical networks.
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Table 1 | Maximal entropy and optimal values of the network parameters with uniform input, when I cx
th = 0, for network with only cortical

feedforward connections (FF), cortical feedforward and feedback connections (FF-FB), cortical feedforward connections and pulvinar (FF-Pul),

and full network (FF-FB-Pul).

Entropy WFF WFB WCP I
pul

th
WFP WLP WPC Model

−3.7537 0.962 – – – – – – FF

−3.6098 0.667 0.618 – – – – – FF-FB

−2.1012 0.816* – 0.898 3.1 2.48 24.8 1.24 FF-Pul

−1.9688 0.763 0.082 0.884 3.785 3.884 68.47 1.227 FF-FB-Pul

*Best optimization value of equation (40).

Table 2 | Maximal entropy and optimal values of the network parameters for uniform input, when I cx
th �= 0, for models as inTable 1.

Entropy I ctx
th

WFF WFB WCP I
pul

th
WFP WLP WPC Model

−3.316 1.7 1.7 – – – – – – FF

−3.392 1.5 1.5 0.15 – – – – – FF-FB

−1.984 0.342 0.685 – 1.507 2.5 5.5 25.0 0.40 FF-Pul

−2.0 0.08 0.80 0.08 0.96 0.785 3.884 72.36 0.884 FF-FB-Pul

Ith = 0 Ith ≠ 0

FIGURE 7 | Net firing rate of last cortical area is plotted against

increasing values of homogeneous spatial input for I th = 0 (Left) and

I th �= 0 (Right). Here, best solutions for each model are plotted. Curves for

feedforward (FF), feedforward and feedback (FF-FB), pulvinar-feedforward
(FF-Pul), and pulvinar-feedforward-feedback (FF-FB-Pul) models. Parameter
values are those fromTables 1 and 2.

3.2. RESPONSE TO VISUAL INPUT
Now that we have analyzed the responses of the models with dif-
ferent architectures to a spatially constant input, r0

i = r0, we are
ready to explore the results when natural visual stimuli are applied.
In modeling the response of the network to natural visual stim-
uli we take into account that for such stimuli the retina and LGN
whitens the response and reduces the kurtosis of the distribution
(Simoncelli and Olshausen, 2001). Thus visual input with natural
statistics is, in our model, described by a random input, r0

i = σxi ,
where σ codes for the contrast and xi is independently drawn from
a Gaussian with mean 0 and variance 1. We assume that the same
visual input with higher contrast is represented by an input with
the same xi but larger σ .

Before we study this case it is instructive to a simplified model in
which the transfer function is linear, F(I ) = I, and we have a purely
feedforward cortical model. In the steady state, the firing rates of
units in layer � are given by r�k,2i−1 = WFF [r�−1

2k−1,i + r�−1
2k,i ] and

r�k,2i = WFF [r�−1
2k−1,i − r�−1

2k,i ]. The output of the units in each layer
are Gaussianly distributed and one easily shows that the mean is

0 and the variance satisfies
〈
(r�k,i)

2
〉
= (2W 2

FF )
�σ 2/2. Thus, while

the random Gaussian activity moves step by step from lower to
higher layers in the network, the variance of layer � will always
depend on the firing rate variance in �− 1. When the feedforward
strength has the value, WFF = Wcr ≡ 1/

√
2 the activity level

is the same at all layers in the network. For WFF<Wcr,
〈
(r�k,i)

2
〉

decreases geometrically with �. For WFF>Wcr it increases geo-
metrically. Thus, if L is large, the response in the last layer will be
very large or very small unless WFF is close to Wcr. On the other
hand, because the whole system is linear if f (I ) is linear, a change
in contrast will rescale the response of all units in all layers by the
same fraction, so that in each layer the response will be perfectly
contrast invariant. This in the linear system the purely feedforward
model gives us exactly what we want if we set WFF =Wcr, we have
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contrast invariance of the tuning, information about the contrast
in each layer and output can exploit the whole dynamic range.

3.2.1. Effects of the gain and threshold on the non-linear
propagation of firing rate

In the network with a non-linear transfer function these require-
ments cannot be met exactly. In a purely feedforward model we
can make the transfer function effectively linear by taking a small
value of WFF. This will ensure contrast invariance of the tuning,
but in higher layers the response will by extremely small, so that,
in the presence of noise a readout of the activity will give very
little information about the stimulus. A larger WFF will exploit the
dynamic range of the system better, but introduces non-linearity
in the response which may destroy the contrast invariance of the
tuning and may make the contrast response function of the neu-
rons in areas with large � less smooth. A compromise between
these two extremes needs to be made. We will now investigate how
bad this compromise is in the purely feedforward cortical model
and whether adding feedback connections and interactions with
the pulvinar improves the network response.

3.2.2. Effects of feedforward strength and threshold on the
non-linear propagation of activity

By assuming visual propagation in the feedforward network with
a non-linear transfer function, f, the response of the system either
decreases or increases with � as the threshold, I th, and the feed-
forward strength, WFF, are varied. We investigate this sequential
propagation quantifying the firing rate from layer 1 to L, using
histograms of distribution at two values of contrast, σ = 0.1 and
σ = 1.0. As a first approximation, we analyze the response of each
layer with L = 10 keeping I th constant and varying WFF.

Independent of the contrast, the visual input passes through
the layers like in the case of linear transmission. The response of
layer L first decreases to zero, then blows as the strength, WFF, is
increased gradually from small to large values. For small WFF, any
given value of contrast produces firing rate distributions that pro-
gressively evolve from a broad to narrow distribution as l → L. The
activity moving higher through the system stays in small region

of the firing rate range surrounding the mean
〈
(r�k,i)

〉
= 0. As in

the model with linear transfer function, the network integrates
the visual input to a narrow distribution keeping only a small
representation of the contrast. On the other hand, when WFF is
increased the network changes the modality of transmission. As
WFF becomes large, the rate distribution moves widens the range
of activity and the distribution becomes multimodal as we move
from layer to layer. As can be seen from Figure 8A at WFF = 2, the
distribution in the last layer is broad and unimodal for both low
(σ = 0.1) and high (σ = 1.0) contrast. For larger WFF, the distri-
bution of the activity of units gradually becomes bimodal with
peaks at the extrema of the response. At WFF = 3, the visual input
applied to l = 1 evolves sequentially through the network ending
in net firing rates equal to –1 and 1 for most units. This tendency
of the response to saturate at the borders is enhanced when WFF

becomes even larger. In each layer the activity moves progressively
to r = −1 and r = 1 showing also a small peak around the value 0.
Three clear solutions appear at WFF ≤ 5. As we can see in Figure 8A
at WFF = 5, r1 either starts with a broad distribution or already has

net firing rates when a stimuli of low or high contrast is applied to
the network. As the activity move from low to higher areas, large
peaks are observed is at the maximum and minimum activity as
well as a small cluster surrounding zero.

The distribution of the activity in layer L can be one of types.
For small WFF the distribution is clustered around 0 for all con-
trast levels. For an intermediate strength the distribution is broad
for large σ and narrower for smaller σ . Finally for large WFF

the distribution is multimodal for all contrasts with peaks near
−1, 0, and 1. These results can be readily understood from the
transfer function of the units shown in Figure 8B. Small WFF

corresponds to a transfer function f whose maximal slope is less
then 1/

√
2, resulting in responses that get progressively small as

� is increased. For intermediate values the average slope is close
to the critical value for a significant range of inputs. For large
WFF the gain is much larger than 1/

√
2 for a significant range

around 0 and saturates at ±1 for larger values. This results in the
outputs being pushed to the extrema as � increases. The small
peak near 0 in the output distribution can be understood from
the fact that in the input we are summing two inputs from the
previous layer. If these are at the extrema, but have opposite
sign, the total input will be close to 0, resulting in a response
of almost 0.

We now explore how the response of the network depends on
the threshold. We determine the distribution of the activity in
layer L. These distributions are shown in Figure 9. Here, we test
the effect of varying WFF for five different levels of I th. In each case
the distribution of the activity has been analyzed at two values of
the contrast, σ = 0.1 and σ = 1.0. To make the presentation more
clear, we discuss separately the results for I th = 0 and for I th 
= 0.

From the linear feedforward network, the know that the activity
collapses to 0 if the transfer function has a derivative at 0, which is
less than 1/

√
2. which means, for I th = 0 that WFF has to be larger

than
√

2 to get a distribution with a finite width. This is confirmed
in Figure 9. For WFF less than approximately

√
2 the distribution

is concentrated around 0. For larger values it is it is spread out and
eventually becomes multimodal as explained above.

Now we analyze the layer L output when I th 
= 0. As in the pre-
vious case, the behavior of the system is pretty much the same on
the interval 0< I th ≤WFF/2. The activity moves from one to three
peaks at any value of contrast with a gradual transition between
both extremes. As the threshold increases, qualitatively different
behavior is observed. For σ = 0.1 the response is peaked around
0 for any value of WFF. For σ = 1 the response distribution is
broadened for WFF> 1.4 when I th = 3 WFF/4, but this distribution
narrows again for even larger values of WFF. If we take I th =WFF,
the output distribution is always narrow.

Why does the activity stays near 0 when I th =WFF? The
assumption of a linear transfer function f produces a narrow distri-
bution of rates in layer L for a small gain. For I th 
= 0, the function
f always has a bimodal derivative as WFF is sufficiently large, and
the derivative near 0 becomes very small at 0. Thus for small inputs
the response decreases as � is increased. Whether there is a signifi-
cant response for broader input distribution depends on whether
a large enough fraction of the inputs is beyond the thresholds of
the transfer function. For larger I th are further apart so that is less
likely that enough of the input exceeds the thresholds. Thus for
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FIGURE 8 | Propagation of activity through the feedforward network with

increasing values of WFF and a fix I th. (A) Signal propagation is tested with
low and high contrast and it is observed respectively in the top and the middle
set of graphs. It can be seen that a low WFF, any contrast input applied at area
1 produces a sharp response in last area. This response becomes broader for
high and low contrast when WFF = 2. A small transition is observed in early
cortical areas in which two peaks at the borders of the distribution increase in

number. At large values of WFF, these peaks are more represented in the
distribution of neurons. Given the shape of the input-output transfer function,
at WFF = 5, a small peak at net firing rate 0 appear, in addition to the peaks at
the borders. (B) Input-output transfer functions at varied WFF and Ith =WFF/2.
As in Figure 1, curves increase in non-linearity as WFF also increases. Note
when WFF = 5, the double step shape in the curve produces a peak in the
neuron distribution at the net firing rate 0. Density in arbitrary units.

I th = 3WFF/4 one can have a relatively broad output distribution
for σ = 1, while for I th =WFF this is not the case.

3.2.3. Output response tuning
In the analysis of the feedforward network we observed that the
firing rate of units in layer L, rL

k,1, stays near 0 when WFF is
small and approximately takes one of the three fixed solutions
for large WFF. In these cases the distribution of output rates is
also nearly independent of σ . Only in a small range of WFF the
model shows a gradual variation of the distribution to changes
in stimulus contrast. Adjusting the threshold does not produce
any clear improvement. The respond of the feedforward model to
variations in contrast is far from the desired result and we con-
sider alternative network architectures to see whether they give
an improvement. To do that we consider response rL

k,i of the last
cortical area, when feedback connections and interaction with the
pulvinar are included. Moreover, we will not only consider the
amplitude of the response over the network, but will also con-
sider contrast invariance of the tuning and the contrast response
function of the units. Here we take contrast invariance of the

tuning to mean that the input elicits in the last layer an output
vector rL

k,1 whose direction is independent of contrast. Smooth
increase of the contrast response means that the length of this
vector increases gradually with contrast. To account both these
properties, we varied the optimization procedure used before for
the spatially constant input.

To test whether the network response is sensitive to changes in
contrast, we measure the response rL

k,1 when the input standard
deviation, σ , is now gradually changed. We estimate two proper-
ties of the output firing rate: The output amplitude is a function of
the contrast and the mean angle between different values of con-
trast. The output amplitude, F, is defined as average length of the
response of layer L for LGN inputs with widths σ , F(σ ) = 〈|�V|〉,
where the average is over input patterns with standard deviation
σ . We aim for an amplitude function F that is as linear as pos-
sible and uses the dynamic range maximally. We use HL defined

as HL = ∫ 1
0 dσ log(F ′(σ )) as the cost-function for this prop-

erty. If HL → L log2, the output scales linearly and exploits the
whole dynamic ranges. It decreases if less of the dynamic range
is used or the response is non-linearly. To explore whether the
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σ = 0.1 σ = 1.0

FIGURE 9 | Activity of last layer in the feedforward model as WFF is

varied. Low and high contrast are tested at five values of Ith. Two gen
Figeral patterns of activity appear as one moves Ith from small to large
values. When Ith ≤WFF/2, activity is totally represented at 0 firing rate at
small WFF. As WFF gradually increases, and around WFF ≈ 1, the density of
units becomes broader represented. A transition, near WFF ≈ 2, emerges in

which the density has an almost uniform distribution. This widening ends
at larger values of WFF, where activities are mostly at −1, 0, and 1. If
WFF → ∞, only these last three firing rates show up. This behavior is
observed at low or high σ . Conversely, as Ith →WFF, this expansion in the
dynamic range progressively vanishes, and density of units is largely
represented at 0. Density in arbitrary units.
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network can maintain contrast invariant tuning, we calculate the
mean of distance S between normalizes output vectors �e(σ ) and
�e(σ ′) for LGN inputs r0

i = σxk and r0
i = σ ′xk respectively,

S = ∫ 1
0 dσ

∫ 1
0 dσ ′�e(σ ) · �e(σ ′). Here �e = �V/||�V||. If S = 1 then

vectors are in the same direction for all contrasts. As the direc-
tion changes more with contrast, S decreases. We define an error
E = −2S − eHL that takes both these factors into account.

For networks with different architectures we determine the
parameters which minimize the cost function E. We analyze sep-
arately when I th = 0 and I th 
= 0. To optimize each network
we have used Powell’s method in multiple dimensions (Press
et al., 1992). Tables 3 and 4 show the results for the different
models. We consider same systems from the homogeneous spa-
tial input analysis, but considering more cases for I th = 0. First
in models which I th = 0, we observe that the best minimiza-
tion is produced by the network FF-FB-Pul with threshold for

both cortex and Pul I
ctx ,pul
th = 0. The less improvement is for

FF, nevertheless this network presents the best S value. Between
these values, models that have both I th = 0 are better than those
that have only the I ctx

th = 0. Thus, for the cost function E,
FFIth = 0-FB-PulIth = 0 < FFIth = 0-PulIth = 0 < FFIth = 0-FB-Pul <
FFIth = 0-FB-Pul < FF-FB < FF. It is surprising that the network

with I
ctx ,pul
th = 0 has an optimal enough minimization of E that it

approaches the value for networks with I th 
= 0. The model with

I
ctx ,pul
th = 0 does better in S but the range of magnitudes is smaller.

It seems that the action of a shortcut between low and high corti-
cal levels overcomes partly the problem of non-linearity regardless
the presence of a threshold. For cases with I th 
= 0, the model that
minimize the cost function better is the FF-FB-Pul network, while
the purely feedforward system has the least optimization. How-
ever, models with feedback do not qualitatively change the cost,
compared to those without feedback. For example, the system FF-
FB-Pul has a small negative value of WFB and its presence produces
only a slight improvement in S. Indeed, networks with feedback

input tend to converge toward small negative values, except for
FF-FB. Here, the feedback input produces a slight improvement in
the HL and keeps almost the same value of S. For these networks,
the cost function E is FF-FB-Pul< FF-Pul< FF-FB< FF.

To graphically observe how the networks optimize this error
we plot the response of a neuron at contrast σ varied against
the response of the same cell at contrast σ = 1. Only feedforward
(Figure 10 Left) and feedforward-pulvinar networks (Figure 10
Right) are plotted. For both architectures the contrast invariance
of the tuning reasonable good, as reflected by the fact that the
points fall nearly on a straight line. However, for the feedfor-
ward the slope of this line does not change much as σ is varied,
reflecting the fact that the response amplitude only changes weakly
with the contrast. Furthermore the dynamic range is not fully
used here.

In the cortico-pulvinar-cortical model the dynamical range is
almost fully exploited and the response amplitude increases by
almost a factor of 5 as the contrast is increased from σ = 0.1 to
σ = 1. This is further illustrated in Figure 11. In Figure 11A we
plot the average response amplitude against the contrast for both
architectures. In Figure 11B the separation between the normal-
ized response vector for contrast σ and the normalized response
vector averaged over contrasts, is plotted against σ with I th = 0
and I th 
= 0. For both models S varies over the range 0.99 to 0.93,
but the response amplitude clearly increases more linearly and
uses more of the dynamic range for the cortico-pulvinar-cortical
model. When I th = 0, the separation response is better for the FF
network followed for the FF-FB system. The inclusion of Pul to
those system produces a sharp tuning of the separation response
while for both low and high contrast the amplitude decreases. For
the case I th 
= 0, is clearly that the small negative feedback input
produces a shift of the average response curve to the right, pro-
ducing a more linear output in the FF-FB-Pul system. However,
compare to the FF-Pul network, the separation response decreases
in amplitude as a function of the contrast. Systems without Pul

Table 3 | Minimal error and optimal values of the parameters for visual input in the when I cx
th = 0. Models as inTable 1.

Error S H WFF WFB WCP I
pul

th
WFP WLP WPC Model

−2.286 0.985209 0.313243 1.385 – – – – – – FF

−2.425 0.915816 0.593420 3.621 −1.858 – – – – – FF-FB

−2.722 0.950455 0.811195 1.807 – 2.875 1.520 −0.234 8.285 −1.936 FF-Pul

−2.890 0.958285 0.974167 2.126 – 14.699 0.0 −0.036 −1.024 −0.285 FF-PulIo
−2.733 0.948248 0.835493 1.810 −0.04 2.905 1.479 −0.259 21.663 −1.877 FF-FB-Pul

−3.151 0.94369 1.247755 2.092 −0.023 14.629 0.0 −0.032 −1.056 −0.283 FF-FB-PulIo

Table 4 | Minimal error and optimal values of the parameters for visual input in the when I cx
th �= 0.

Error S H I ctx
th

WFF WFB WCP I
pul

th
WFP WLP WPC Model

−2.625 0.955118 0.714852 1.988 2.808 – – – – – – FF

−2.659 0.95338 0.752927 2.116 3.668 −0.748 – – – – – FF-FB

−3.284 0.925888 1.432428 2.091 3.569 – 2.509 2.218 −1.030 −8.962 −5.022 FF-Pul

−3.301 0.9325135 1.436074 2.122 3.608 −0.047 2.018 1.818 −0.937 −6.858 −5.390 FF-FB-Pul

Models as inTable 1.
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σ2
A B

FIGURE 10 | Response to different contrast for models FF (Left) and

FF-Pul (Right) for I cx
th = 0. Response of last cortical activity is represented

by scatter-plot at contrast σ which is plotted against the same last cortical
response at highest contrast, σ = 1. Scatter-plot of different colors represent
10 levels of contrast σ (From 0.1 to 1 at steps of 0.1). Values used are those
fromTable 3.

present a wider and higher tuning (separation) response to con-
trast, but differences in magnitude are qualitatively similar. So that,
systems with Pul included always show a less cost function while
the improvement is produced overall for an enlargement of the
length response as a function of contrast. In almost all the cases,
this improvement occurs as |WLP | � 1 and |WFP|< |WLP|.

A recent work of Theyel et al. (2010) has shown that higher-
order thalamic nuclei can drive the activity of cortex. With the
optimization procedure we show that the best values are for the
model with Pul-Cortex while |WCP|> |WPC|. A problem with the
optimization analysis however is that we regard of qualitatively
other good solutions that satisfy for a sufficient transmission.
Then, models that included Pulvinar input can display another
optimization when |WCP|< |WPC| or |WCP|> |WPC|. Thus, we
investigate a simple case for the feedforward-pulvinar network
when WFF =WFP and I cx

th = I Pul
th , and vary gradually WCP and WPC

to observe whether exist more than a solution. As we can see in
Figure 12 solutions that minimize the cost function of the network
appear as a |WCP|/|WPC| ratio. We observe that an improvement
is present when connections from cortex to pulvinar are negative
(positive) while connections from pulvinar to cortex are positive
(negative). Surprisingly there are at least two almost equally good
solutions: in one |WCP| is large and |WPC| small. In the other |WPC|
is large and |WCP| small. Our model does well when the cortex
modulates the pulvinar while the pulvinar drives the cortex, but it
does equally well when it is the other way around.

4. DISCUSSION
The areas in the visual cortex are organized hierarchically and
it is assumed that the arrangement of feedforward connections,
together with recurrent inputs, is responsible for the increase in
complexity and size of the receptive fields of neurons as one move
up in this hierarchy. The visual areas in the cortex project to, and
receive input from the pulvinar nucleus of the thalamus (Pul).
Currently the role of Pul in the processing of visual information is
not known.

We have explored the hypothesis that Pul is necessary to trans-
mit information about the contrast of the visual scene to higher

cortical areas. To test this hypothesis we constructed a simplified
model of a path in the cortical hierarchy and connected this to
simplified Pul model. The cortical hierarchy consists of L layers,
each of which has 2L populations of neurons, which are described
by a rate model. In each layer of the hierarchy units receive feedfor-
ward input from 2 units in the preceding layer, in such a way that
the RFs increase in size and complexity as one ascends the hier-
archy. In agreement with experiments in primates (Shipp, 2001,
2003), Pul is also hierarchically organized and has similar RFs as
the cortex. Cortical units in layer � receive input from Pul units is
layer �− 1, while they send input to Pul units in layer �. However,
unlike in cortex, there are long range connections in Pul. Pul units
in layer � do not only receive feedforward inputs from units in
layer �− 1, but also from units in layers 1, 2, . . ., �− 2.

In our model the cortical network by itself can manage complex
receptive fields in the higher cortical areas, with contrast indepen-
dent tuning, but only at the cost of weak sensitivity to contrast
in the response of the higher layers. This is due to the non-linear
transfer function of the cortical populations. The non-linearity of
the transfer function will tend to make the output tuning of each
population contrast dependent and this contrast dependence will
tend to build up as the response moves up the hierarchy. Only by
using a rather small fraction of the dynamic range of the popu-
lation, over which the transfer function is approximately linear,
can the tuning of the response in the higher cortical areas have
approximately contrast independent tuning.

Adding a Pul to the system increases the capacity to code for
contrast in higher cortical levels, without destroying the complex-
ity of the RFs and compromising the contrast independence of
the tuning. How is this achieved? In an early work, Bender has
shown that lesions in striate cortex of macaque eliminates the
visual response of pulvinar neurons (Bender, 1983). This and
other experiments in the same direction (Bender and Butter, 1987;
Chalupa, 1991; Casanova et al., 1997) suggest that striate cortex is
necessary to establish the retinotopic map response in Pul. This
is reflected in the topographical cortex to Pul connections in our
model. Our assumption is that the Pul to cortex connections are
similarly well organized. This explains why connecting our model
of the visual cortical hierarchy to a Pul like structure does not
interfere with the tuning properties of the RFs in the cortex. On
the other hand, because of the long range interactions in Pul, the
graded response with contrast in the first layer of Pul is transmit-
ted all the way up to the highest layer. Because of the connection
from this layer to the highest cortical layer, the input in the latter,
and hence its response, is graded with contrast. This explains how
contrast invariance of complex RFs in higher cortical areas can
coexist with a graded response when a Pul is present.

It has been reported that RFs of pulvinar neurons have differ-
ent visual properties that resemble those of cortical rather than
subcortical neurons. As we have previously shown, that is due to
the fact that pulvinar neurons are driven by visual cortical activ-
ity. Despite that the characterization of RFs in monkey are before
the definition of classical cytoarchitectonic regions, RFs of cells in
the inferior unit are discrete (1˚–5˚ in the inferior pulvinar; Ben-
der, 1982), and they are activated by simple visual stimuli. Similar
to activation of cortical RFs, RF properties of pulvinar neurons
have shown orientation and binocular selectivity, while a subset of
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Io
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A

FIGURE 11 | (A) Average response amplitude per unit (R) against
the contrast and separation between the normalized response
vector for contrast σ and (B) the normalized response vector
averaged over contrasts (S), against σ . Values used are those from

Table 4. Total number of simulations, 200. FF, feedforward; FF-FB,
feedforward and feedback; FF-FB-Pul, feedforward, feedback, and
pulvinar networks. The subscript Io represents structure of the
network with Ith = 0.

neurons are direction selective (Bender, 1982). However, pulvinar
RFs show a pronounced variability in their response compared to
cortical RFs. Color-sensitive neurons are also found in lateral pulv-
inar (Felsten et al., 1983). Given these visual properties, it has been
argued that RFs of pulvinar neurons resemble those of complex
cells in the visual cortex (Casanova, 2003). This is reflected in our
model. These types of RFs used are k = 1, 2. The more complex
RFs, k = 2�− 1, 2�, are arbitrary defined. However, not much about
more complex RFs in the Pul has been found. While the imple-
ment of different types RFs would not change the propagation of
activity through the cortex, RFs from the Pul to the cortex have to
respect the topography of the projection. That is, RFs from the Pul
to cortex have to be similar in type. If the Pul network has more
types of RFs the firing rate propagation in the cortex becomes even
more linear. The perfect transmission will be when cortex and Pul
have the same configuration of RFs from layer 1 to �− 1.

For substantial improvement in the contrast sensitivity of
higher cortical layers, the interaction between cortex and Pul needs
to be substantial. Much experimental evidence shows that Pul,
and in general higher-order thalamic nuclei, has a strong effect
on neuronal activity in cortical areas. In a recent paper Logothetis
et al. (2010), have shown that stimulation of Pul and not of LGN

produces the activation of several cortical areas. Therefore, Pul
should be involved overall in maintaining a stable firing rate while
the feedforward cortical connections would determine which are
the pathways that the transmission has to follow. By this assump-
tion, for example, the Pul-effect observed in attentional task might
be to increase the “salience” of visual objects that are mapped in
the topographical visual cortex (Casanova, 2003; Shipp, 2004).

In our model the gradual increase with contrast of the response
in higher cortical areas crucially depends on the shortcut provided
by Pul. This shortcut is due to the explicit existence of long range
interactions in the Pul. Experimental evidence support the long
range connections. Long range interneurons have been described
in the posterior portion of the medial pulvinar (PM; Imura and
Rockland, 2006). These interneurons have widespread axon that
extend at least 2.0 mm from its origin connecting different pul-
vinar portions (Imura and Rockland, 2007). Furthermore, it has
been shown that these interneurons label for Parvalbumin (PV)
and GABA. Remarkably, in the optimization procedure we have
found that strengths for the long range interactions in Pul that
minimize the error are negative. Despite the fact that our model is
a simplification of the pulvinar architecture, and maybe long range
interneurons lack a hierarchical organization, our assumption of
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FIGURE 12 | Representative behavior of the Pul-FFN network for varied

WCP and WPC. The average error response is plotted to show an almost
symmetrical response of the network as WCP (WPC) moves from positive to
negative and WCP (WPC) goes from negative to positive values. The Pul-FF
network is analyzed with WFF =WFP = 2.0, Ictx

th = IPul
th = 0.5, γ = 0, WLP = 9,

and WFP = 0.

negative long connections is in agreement with experimental data
and the function of these long range connections could modulate
and reach cells located in neighboring subdivisions.

It should be noted that in our model the cortical hierarchy
needs to interact with the Pul, because the visual cortical hierar-
chy has many layers and effects of the non-linear transfer function
accumulate as the response traverses more and more layers. In a
visual cortex with only a few layers in the hierarchy, the CRF in the
cortex can easily be smooth throughout the hierarchy without long
range connections in the Pul. In this context it is in interesting to
note that long range interneurons have been identified in the Pul
of primates, but have not yet been identified in Pul of animals with
a much simpler organization of their visual cortex. For example,
that could be the case in the mouse in which the pulvinar is less
denoted (Cajal, 1995) and the solution to solve visual transmission
could be the direct connection from V1 to all visual areas (Wang
et al., 2012). It is also noteworthy that in our model with 10 levels
in the hierarchy, there are two choices for the connection parame-
ters that are both close to optimal, for our optimization criterion.
In one the feedforward connections in the cortex are strong and
the pulvinar feedback to cortex is relatively weak. Here the cor-
tical feedforward connections act as the driver and the pulvinar
input as a modulator. In the second the connections from pulv-
inar to cortex are strong and the cortical feedforward connections
are relatively weak. The pulvinar acts as the driver, while the corti-
cal feedforward pathway can be considered as a modulator. Thus
with respect to our optimization criterion both these theoretical
options are equivalent (Sherman, 2007).

So far we have interpreted the negative long range interac-
tion in Pul as the effect of long range inhibitory interneurons
in Pul. However, these long range interactions could also be seen
as an effective description of the interactions between Pul and

other nuclei in the thalamus, which we do not incorporate in
our model. Inhibitory inputs to Pul from the nucleus reticularis
thalami (nRT) are a candidate (Sherman and Guillery, 2000).
Another possible source of inhibition which has been observed
recently is the input from two subcortical structures: the ante-
rior pretectal nucleus (APT) and zona incerta (ZI; Lavallee et al.,
2005). In the case of APT, this extrareticular pathway produce
a powerful GABAergic afferent projections to posterior thalamic
nuclear group (Po), a higher-order nucleus. This projection con-
trols the neural activity, gating burst firing in Po neurons. In our
model, a burst activity of Pul cell populations may be seen in the
input-out transfer function when a large gain is used. In the opti-
mization procedure for a spatial uniform input, either at I th = 0
or I th 
= 0, the value of WFP is larger than the cortical gain, WFF,
suggesting that Pul firing rate has a more step-like activity than
cortical neurons as the input is applied. This evidence to observe
sustained burst activity is also supported for extracellular record-
ing of pulvinar neurons in monkeys during a visual fixation task
(Ramcharan et al., 2005). On the other hand, the same group
of authors have shown that the ZI inhibitory projection to the
thalamus influences the discharge of Po cells negatively. This feed-
forward interaction will produce an inhibition of neural activity
impeding sensory transmission. They also suggested that activ-
ity of Po neurons is mediated by a top-down disinhibition as
the layer 5 cortical projections activate populations of ZI neu-
rons. In our model, this mechanism may be captured effectively
by the inhibitory projection of cortex to Pul that disinhibition
the long range and feedforward connection. Recently, (Imura and
Rockland, 2007) have found giant pulvino-cortical neurons which
maybe are non-reciprocally projecting to their cortical targets as
in a one-way mode. To these giant cells the presence of PV stain
terminals was detected. Although the origin of the inhibitory con-
nectivity remains uncertain, ZI and APT are good candidates for
this afferent.

Another property of cortico-pulvino-cortical interactions is
the non-reciprocal connectivity between cortex and Pul. Non-
reciprocal connections appear as a key component of higher-order
thalamic nuclei (Sherman, 2007; Llano and Sherman, 2008; Theyel
et al., 2010). These interactions between cortex and thalamus have
been described in different thalamic nuclei and the prime prop-
erty would be to link two or more separate cortical areas. In our
model, our assumption of non-reciprocal connectivity is based
overall from the literature of cortex and Pul anatomical projec-
tions: cortical area �+ 1 receives both activity from cortical area
� and pulvinar area �. For the effects of a feedforward communi-
cation pathway, we have considered that two neighboring cortical
areas share a common pulvinar unit while the activity travels in
a sequential manner throughout the cortex and Pul networks.
However, also other types of connections would be included in
our model. Reciprocal connections from Pul to cortex, similar to
the connectivity from LGN to cortex (Sherman, 2007), and the
possibility that pulvinar area �= 1 could connect directly either
several cortical areas at the same or the highest cortical area of the
hierarchy (Rockland et al., 1999). In the case of reciprocal connec-
tions between Pul and cortex, in a recent work (Logothetis et al.,
2010) report that electrical stimulation of Pul generates activa-
tion of V1 neurons, among other cortical areas. In our model, the
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implementation of these connections from higher to lower lev-
els through the Pul would result in an even better input-output
response. The activity from higher cortical areas could regulate
down the activity on low levels similarly as the feedforward-
pulvinar shortcut is acting in our simulations from lower to higher
cortical areas (Cortes, 2008). On the other hand, non-specific
connectivity from Pul to cortex also could improve transmission
through the cortex. Our model, with only connections from Pul
layer �− 1 to cortical layer �may therefore be unnecessarily restric-
tive. Clearly allowing also for connections to higher cortical layers
would improve the contrast sensitivity in cortex.

There is some evidence that the Pul has a hierarchical and topo-
graphical organization. Based on cortico-thalamic and thalamo-
cortical connections, (Shipp, 2003) postulates the existence of a
“cortical gradient” inside the Pul, which the fronto-occipital axis in
the cortex is reproduced as a medio-lateral gradient in the pulvinar
(medio-lateral cortical axis rotates to a rostro-caudal gradient in
the thalamus). Two connectivity examples clarify this idea. Injec-
tions with dual tracer in V1 and V4 label preferentially respective
medio-caudal and latero-rostral pulvinar areas. This projecting
gradient is also supported by injection in V2 (lateral within Pul)
and inferior temporal areas (TEO, TF, TE; medial within Pul). On
the other hand, injections in area V1, that represent retinotopic
position of either the upper and lower contralateral hemivisual
field, label neurons in respective hemield of both the lateral (PL)
and inferior (PI) subdivisions. Two topographic map are present
within the Pul. Bender (1981), with extracellular recording show
that this retinotopically organized areas traverse the PL and PI.
The representation through the pulvinar areas contains a complete
map of the contralateral hemield of the monkey eye visual field.
One representation lies mainly within the PI extending somewhat
into the adjacent PL. The second lies entirely in the PL ending in
the ventrolateral nucleus of PL (PLvl). The upper hemield of both
areas are represented in the more ventral part of the Pul, whereas
the lower is located upwards (Kaas and Lyon, 2007). Shipp (2003)
have also postulated that these two maps found in the Pul topo-
logically reproduce those from V1 and V2. This author argued
that there is a preservation of cortical topography and topology
(at least of V1 and V2), while 1˚ and 2˚ pulvinar maps are linear
and parallel and they adopt a rostrolateralcaudo-medial alignment
instead that a ventro-dorsal localization. Under this scope, our
Pul-cortex model is quite similar to these anatomical evidences:

the Pul conserves and transmits information overall from low cor-
tical levels, and it connects with a hierarchical gradient the cortical
arrangement.

Recent work has shown that connectivity of two neighboring
cortical areas between which the communication is eliminated by
cutting cortico-cortical connections are driven by higher-order
thalamic nuclei (Theyel et al., 2010). Although the best value
in the optimization procedure of our Pul-cortex model is when
cortico-pulvinar connections are stronger than pulvino-cortical
ones, there exists a qualitatively equal response when it is in the
other direction. At the best value of optimization, we have also
observed that there is a region of good values for |WPC|> |WCP|,
when they are almost similar |WCP| ≈ |WPC|. This phenomenon
to observe either |WPC|> |WCP| or |WPC| ≤ |WCP|, is emphasized
when we simulated a equal network for Pul and cortex which
parameters have the same parameters with WLP = 9 and WFP = 0.
Here, solutions are symmetrical and either cortex can drive Pul or
Pul can drive cortex. In the case of the best optimization, if there
is some firing rate influence between both structure the weight
of the connections presented should be very high. Maybe, the
existence of this high interaction is due to the lack of reciprocal
connections between Pul and cortex and both structures have to
be in balance to compensate the existence of a coherence activ-
ity. In the same direction, the result that we have observed when
positive (negative) and negative (positive) respectively cortico-
pulvino and pulvino-cortical interactions are symmetrical suggest
a balance state between both structures (Sherman and Guillery,
1998, 2011). Despite the fact that anatomical data in both pulvino-
cortical and cortico-pulvinar projections of primates is not very
extended, our result may clarify that in some cognitive task, i.e.,
attentional processes, Pul is activated and it can drive cortical activ-
ity. Perhaps, the effective connectivity of the Pul-cortex network
is in a driver/modulator ratio while both solutions are possible
because the different cognitive states of the subjects analyzed. The
Pul-cortex network may switch dynamically in these two states,
driver/modulator, without alternate the transmission of activity
through the cortex. More details theoretical works have to be
done for explain better the dynamic of the cortico-pulvino and
pulvino-cortical projections, including for example the nature of
the different cortico-pulvino terminals observed (Rockland, 1996)
and the burst activity of pulvinar neurons (Ramcharan et al.,
2005).
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