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Background
Mitosis is the process by which a cell divides itself into two identical cells [1]. Observing 
and analysing cell behaviours is advantageous in multiple applications, such as predict-
ing breast cancer, drug discovery, identifying stem cells, and developing abnormal skin 
structures. The conventional techniques for detecting and counting mitotic cells are per-
formed manually by specialists.

Abstract 

Background:  To effectively detect and investigate various cell-related diseases, it is 
essential to understand cell behaviour. The ability to detection mitotic cells is a funda‑
mental step in diagnosing cell-related diseases. Convolutional neural networks (CNNs) 
have been successfully applied to object detection tasks, however, when applied to 
mitotic cell detection, most existing methods generate high false-positive rates due to 
the complex characteristics that differentiate normal cells from mitotic cells. Cell size 
and orientation variations in each stage make detecting mitotic cells difficult in 2D 
approaches. Therefore, effective extraction of the spatial and temporal features from 
mitotic data is an important and challenging task. The computational time required for 
detection is another major concern for mitotic detection in 4D microscopic images.

Results:  In this paper, we propose a backbone feature extraction network named full 
scale connected recurrent deep layer aggregation (RDLA++) for anchor-free mitotic 
detection. We utilize a 2.5D method that includes 3D spatial information extracted 
from several 2D images from neighbouring slices that form a multi-stream input.

Conclusions:  Our proposed technique addresses the scale variation problem and can 
efficiently extract spatial and temporal features from 4D microscopic images, resulting 
in improved detection accuracy and reduced computation time compared with those 
of other state-of-the-art methods.
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Mitotic cells are detected and counted by observing a sample preserved between glass 
slides under a microscope [2–4]. While three-dimensional (3D) images are normally 
involved, instead, a sequence of 2D images is captured at different times. Although vari-
ous methods have been proposed to solve mitotic cell detection problems [5, 6], a cell 
may freely perform mitosis in any orientation. Thus, capturing mitotic cells in 2D images 
may lead to a loss of spatial features due to different cell orientations.

Because cell orientation is critically important for determining various cell types dur-
ing developmental periods [7, 8], the two-photon microscope was proposed as an alter-
native to manually examining samples in glass slides for epidermal imaging [9, 10]. This 
examination method is utilized to capture 4D data (time sequences of 3D images) and 
analyse cellular behaviour. Skin diseases, such as cancer, ichthyosis vulgaris, atopic der-
matitis, and abnormal skin structures, can be predicted from a comprehensive analysis 
of cellular behaviour [11–13]. Augmenting the information by using 4D data reduces the 
resources and time needed to detect mitotic cells but also increases the required effort. 
Fig. 1 depicts cell images at various slice indexes {s − 1, s, s + 1} (spatial information) and 
time frames {t − 1, t, t + 1} (temporal information) from a 4D microscopic image (the 
mitotic cells are indicated by the bounding boxes).

Fig. 1  Samples of three neighbouring slices ( s− 1, s, s+ 1 ) of a mitotic event at different time periods 
( t − 1, t , t + 1 ). The red boxes indicate mitotic events
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Manually detecting mitotic cells in 4D microscopic images is a labour-and time-inten-
sive task, which makes the ability to perform automatic cell detection in 4D microscopic 
images desirable. Although several automatic methods have been proposed for mitotic 
cell detection [5, 6, 14, 15], the existing challenges are as follows: First, mitotic cells can 
be grouped into several stages from prophase to mitosis, and cell size varies drastically 
among these stages. We need to develop a scale-invariant detection method to address 
scale variance, which dramatically affects mitotic detection. Second, the cells may divide 
while oriented in any direction, and the direction may change over time. Therefore, we 
need an orientation-robust method that considers 3D spatial and temporal information. 
Third, to detect mitotic events in 4D images while reducing the computational time, we 
need an efficient and fast detection method.

Recently, high-performance object detection has been developed utilizing convolu-
tional neural network (CNN) models. These object detection networks can be catego-
rized into two classes, anchor-based and anchor-free networks, based on their detection 
procedure. Numerous anchor-based detection approaches, such as single-shot multi-
box detectors (SSDs) [16], Faster R-CNN [17], YOLO [18], feature pyramid networks 
(FPNs) [19], and Mask RCNN [20], have been proposed for object detection in natural 
images. In our previous work, we developed anchor-based detection techniques for 4D 
microscopic images and achieved improved detection performances compared to other 
existing anchor-based methods [14, 15]. However, anchor-based methods have lengthy 
runtimes (although the computation time can be reduced by running the algorithms on 
multiple GPUs), and they still produce false negatives due to scale and orientation prob-
lems [15]. Fine-tuning of anchor-based detector models usually requires hyperparam-
eter tuning, which is a critical step that affects the network’s performance.

In addition, anchor-free detection approaches have been recently proposed, including 
CornerNet [21], ExtremeNet [22], and CenterNet ( objects as points) [23] and achieve 
superior performances over anchor-based approaches. They also ameliorate the prob-
lems of hyperparameter tuning and lengthy computational times.

Anchor-based and anchor-free detection methods both consist of two parts: a fea-
ture extractor backbone network and a detection head. In this paper, we concentrated 
on improving the feature extractor for object detection to address the scale variation 
problem. We propose a full-scale connected recurrent deep layer aggregation network 
to extract effective full-scale spatial and temporal information for mitotic basal epi-
dermal cell detection from 4D microscope data. The proposed technique includes two 
main parts. The first is a full-scale connected deep layer aggregation network (DLA++), 
which is an improved version of the existing deep layer aggregation (DLA) model [24]. 
The proposed DLA++ converts low-level features to high-level features, including the 
scale information, while avoiding the loss of useful information. The second is a recur-
rent DLA++ (RDLA++), to which we added a convolutional long short-term memory 
(CLSTM) model to DLA++. This module extracts temporal information and reduces 
the number of false positives. Moreover, to reduce the number of false negatives, we use 
a 2.5D technique that extracts 3D information from a set of 2D images sourced from 
neighbouring slices, forming a multistream input that includes 3D spatial information 
[14]. To achieve accurate and fast mitotic detection, we combine the proposed RDLA++ 
with anchor-free detection heads (i.e., CenterNet). The proposed method includes three 
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main contributions. First, we propose a scale-insensitive anchor-free detection method 
for solving the scale variation problem and to perform mitotic cell detection of various 
sizes. Second, we propose an orientation-robust 2.5D recurrent model to extract full 
spatial and temporal features that enable accurate detection of 3D mitotic cells dividing 
in any direction. Third, we combine the proposed RDLA++ with anchor-free detection 
heads (CenterNet) to obtain a fast and accurate mitotic detection algorithm. Our experi-
mental results show that the proposed techniques achieve better performances than do 
other compared state-of-the-art techniques.

Related works
Detecting objects through deep learning

Deep learning methods have achieved state-of-the-art results in object detection and 
can be grouped into anchor-based and anchor-free methods.

Region proposal networks (RPNs) were first proposed as a part of Faster R-CNN [17] 
and are the concept underlying most anchor-based object detection, including SSDs [16] 
and Mask RCNN [20]. RPNs involve three main processes. The first is feature extraction, 
in which a CNN transforms an input image into high-level feature maps. The second 
process involves creating candidate bounding boxes using a set of predefined anchors to 
extract candidate objects from the feature maps. Nine anchors of three different aspect 
ratios with three scales are commonly used in RPNs. The final process involves classifi-
cation and regression of the candidate bounding boxes. The main problem is the van-
ishing features related to small objects in RPNs, which degrades RPN performances for 
smaller objects.

Recently, anchor-free detection approaches have been proposed that outperform the 
anchor-based methods. The anchor-free detection technique also addresses the problem 
of tuning the anchor hyperparameters in anchor-based approaches. CornerNet [21] is 
an anchor-free object detection method proposed by H. Law et al., who found that the 
detection results can be reconstructed using the corner points of the bounding boxes. 
Their network can be regarded as the first one-stage object detection method, and it sur-
passed the performances of two-stage object detectors such as Faster-RCNN regarding 
accuracy and computation time. An improved version of CornerNet, called ExtremeNet 
[22], was proposed by X. Zhou et al. ExtremeNet attempted to solve the bounding recon-
struction problem in CornerNet. The authors proposed using a centre point and most 
extreme points created by their network to create bounding boxes. ExtremeNet can be 
combined with the deep extreme cut (DEXTR) algorithm [25] to conduct segmentation 
tasks. X. Zhou proposed CenterNet (object as points) [23] in which a detection head was 
proposed that could work with various networks, such as residual networks (ResNets) 
[26], hourglass networks (HourglassNets) [27], and deep layer aggregation (DLA) [24]. 
CenterNet detects objects as centre points; then, the size (height and width) of each 
object’s bounding box is determined through regression. However, both approaches are 
designed to perform detection on normal images; none of the existing anchor-free net-
works concentrate on mitotic detection tasks.
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Mitotic detection methods

The use of binarization [28] or segmentation methods [29] has been proposed for the 
traditional detection methods of mitotic detection. Both methods are nondeep learn-
ing methods, thus they do not require large amounts of data to obtain higher detection 
accuracy. However, they require time-consuming alignment methods to obtain high 
detection performances.

Mao et al. (2016, 2017) proposed a hierarchical convolutional neural network (HCNN) 
[6] and a two-stream bidirectional long short-term memory (TS-BLSTM) model [5] to 
detect and identify mitotic cells, respectively. Both methods accept two types of images 
(appearance and motion images) as input. To solve the problem of HCNN, the authors 
proposed using LSTM in TS-BLSTM to extract temporal features. The performance of 
TS-BLSTM was significantly improved compared to that of HCNN. However, both tech-
niques were suitable only for mitotic cell detection from 3D microscopic images (time 
sequences of 2D images). These methods do not include spatial information when pre-
dicting the detection results.

Kitrungrotsakul et  al. [14, 15] presented a 2.5D mitotic cell detection method using 
a CLSTM [30] to detect mitotic cells in 4D microscopic images (time sequences of 3D 
images). They utilized three slices (a target slice and its neighbouring slices) as input 
images, known as 2.5D input, to obtain 3D spatial features and enhance the detection 
accuracy. However, this method still has difficulties because it omits cells not initiat-
ing mitosis within the captured image. These cells were divided into two daughter cells 
around the image boundary.

Both Mao and Kitrungrotsakul focused on anchor-based detection techniques, 
which require lengthy computational times and a preparation step to tune the 
anchor-hyperparameters.

Design and implementation
Figure  2 depicts the network architecture of our proposed detection network. In this 
study, we focus primarily on feature manipulation and feature extraction; any anchor-
free detection head can be utilized, including CenterNet, CornerNet, or others.

Full‑scale connected deep layer aggregation network (DLA++)

In DLA++, the linear skip connection in the original DLA is replaced by the hierar-
chical skip connection concept. The DLA network was designed to solve problems that 
occurred with other types of skip connections, such as those in FCN [31], FPN [19], and 
U-NET [32] by using a linear skip connection to pass same-scale features from lower to 
upper layers. Nevertheless, some feature information is lost in the networks after each 
sequential hierarchy level. To preserve the information and reutilize full-scale features, 
we applied the concept from DenseNet [33] to the DLA model and present a full-scale 
connected deep layer aggregation (DLA++).

The proposed DLA++ model (Fig. 3.c) was inspired by both DenseNet and DLA. In 
Fig. 3, the numbers 4, 8, 16, and 32 denote scale factors that represent the changes in the 
spatial dimension of each feature map (for instance, a 4 represents the original feature 
size downsampled to a size of 1/4). Smaller numbers indicate lower-level features, and 



Page 6 of 17Kitrungrotsakul et al. BMC Bioinformatics           (2021) 22:91 

larger numbers represent higher-level features. The proposed DLA++ generates fea-
tures of three different scales (Out 4, Out 8, Out 16) for mitotic detection.

As shown in Fig. 3, the proposed DLA++ integrates multiscale features by designing 
dense skip connections to pass lower- to higher-level features as well as passing lower 
features from the upper-node to other upper-node-level features at the same level. The 
full-scale-level features are then utilized for mitotic detection. We use xij to denote the 
output from node X, in which i is the level index of the downsampling layer and j repre-
sents the deformable convolutional dense layer along with the skip connection, where J 
denotes the number of dense layers,

Fig. 2  An architectural overview of RDLA++. The blue box indicates our proposed backbone RDLA++ for 
spatial and temporal feature extraction in 4D microscopy images. DLA++ depicts our proposed full-scale 
connected deep layer aggregation network, which is an enhanced version of DLA. The numbers 4, 8, and 16 
represent scale factors (for example, 4 denotes the original size downsampled to a size of 1/4). The smaller 
number indicates lower-level features. The spatial features extracted from various time frames ( t − 1, t , t + 1 ) 
by DLA++ are fed into a convolution long short-term memory (CLSTM) for temporal feature extraction. G 
denotes the upsampling operations and 1 × 1 convolutions are adopted to preserve and use the low-level 
features in the final decision. The final combined temporal and spatial features are input to the detection 
head (CenterNet). Note that the proposed RDLA++ can be integrated with any anchor-free detection header

Fig. 3  A comparison of a DLA, b the DLA of CenterNet, and c the DLA++ in our proposed network. The 
numbers 4, 8, 16, and 32 in each box denote scale factors that represent the feature map sizes (smaller 
numbers indicate lower-level features, and larger numbers indicate higher-level features). The proposed 
DLA++ represents full-scale skip connections, which incorporate low-level details with high-level semantics 
from feature maps at full scales. Three features from different levels (Out 4, Out 8, and Out 16) are output to 
detect mitotic events
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and H(·) denotes a set of functions as a convolutional operation followed by ReLU acti-
vation. U(·) denotes an upsampling operation, and [·] represents a concatenation-layer 
function. In the equation, at least two inputs are received by all nodes at each i level from 
the deformable convolution layer and the same i level as well as upsampling from the 
upper level (i + 1) . However, the nodes at each dense level j = 0 receive only one input. 
In addition to the two inputs from deformable convolution and upsampling, other fea-
ture inputs are received by all nodes where j > 0 from the previous nodes at the same 
level i since these input features indicate a dense level skip connection (DLA++). The 
reutilization of features in DLA++ reduces the number of network parameters and con-
stitutes an efficient way to improve network performance.

Recurrent DLA++ (RDLA++)

As explained in the DLA++ section, the proposed DLA++ effectively extracts full-
scale features to achieve scale-insensitive object detection (2D mitotic cell detection). 
To solve the orientation problem in mitotic cell detection, in addition to DLA++, 
we propose recurrent DLA++ (RDLA++). RDLA++ extracts spatial and temporal 
features from 4D microscopic images, resulting in accurate and orientation-robust 3D 
mitotic cell detection. The multistream concept is utilized to form a 2.5D network 
that extracts spatial information, as explained in previous works [14, 15]. The CLSTM 
is utilized to extract temporal features from the 4D microscopic image at time t from 
each level i in the DLA++ network. Upsampling and 1 × 1 convolution are used to 
preserve these features; then, these lower-level features are used in the final decision 
process. Using both spatial and temporal features, we can obtain features with the 
same shape and extract multiscale features. We use x̂s to denote the output from node 
Gs , where s represents the indexes of the scale layer,

C(·) represents the convolution LSTM operation on the outputs of the DLA++ network 
on the microscopic image (m) and index level i, I indicates the number of network levels, 
and H1×1 denotes the upsampling operation by a 1× 1 convolutional layer.
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The refinement for 4D cell detection

This work mainly aimed at performing mitotic detection on 4D microscopic images. 
We attach an anchor-free detection head such as CenterNet or CornerNet to our 
backbone network as discussed in the previous section (see Fig.  2). In this study, 
we consider only bounding boxes ( Bt

s,i =< p, x, y,w, h > ) because the results vary in 
the ultimate outputs based on the detection head. The p represents the prediction 
of bounding box i, where the point x, y denotes its location, and w and h denote its 
width and height, respectively, at slice index s and time sequence t.

Due to the high similarity between a temporal frame (t ± k) and the neighbouring 
spatial slice (s ± j) of each slice, we calculate a refined value of the predicted p of each 
bounding box from its neighbours as follows:

where ˆ̂pts,i denotes the refined value of the prediction at bounding Bt
s,i and W represents 

a weighted distance between the neighbouring and target slices: the greater the distance 
is, the lighter the weight is. N denotes the number of neighbouring slices (spatially), and 
T represents the temporal slices (Fig. 4). In this experiment, we set N equal to 4 and T 
equal to 6 to enhance the detection results.

Results
Experimental setup

Dataset

In this section, we evaluate the performance of various mitotic detection approaches on 
4D microscopic images (Japan Society for Precision Engineering, Technical Committee 
on Industrial Application of Image Processing Appearance inspection algorithm contest 
2017 (TC-IAIP A-IA2017) [34]) using a total of 16 datasets. The average size of each 
dataset is 480×480×37, and it includes 80 temporal 3D frames. Each dataset instance 
includes at least one and a maximum of three mitotic cells, and bounding box annota-
tions of the mitotic cells are provided. However, the mitotic cell stages were not pro-
vided; therefore, binary classification and detection were performed in this work.

Considering the limited data and to avoid overfitting, we utilized the 2.5D method 
(where a target slice image and its neighbouring slices are utilized as input to extract 
3D spatial information) [14] for mitotic detection rather than directly using 3D 
images. Each slice image (s) and its two neighbouring slices ( s − 1, s + 1 ) are employed 
as one sample. We also applied data augmentation techniques to increase the size of 
the data, which results in improved accuracy and avoids overfitting. Image rotation, 

(3)p̂t+k
s+j,i =

{

1, if pt+k
s+j,i ≥ 0.5

0, else
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s+j,i = 1−
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scaling, flipping, and random cropping were performed with 15◦ rotation and random 
scaling between 0.8 and 1.2. The total data generated from these methods augmented 
the original data by more than 100-fold.

Implementation details

We used the Adam optimizer with the initial learning rate set to 0.5× 10−5.The learn-
ing rate was changed to 10−7 . Training was conducted for 60,000 iterations. In total, 
we set seven time sequences with three forward and backward sequences in our bidi-
rectional CLSTM. The RDLA++ uses three consecutive slices as input to extract spa-
tial information.

Ablation studies

To verify the proposed network’s effectiveness, we performed ablation studies based on 
the CornerNet and CenterNet detection heads. The results are reported in Table 1.

Backbone. First, to demonstrate the effectiveness of a full-scale dense connection, 
we compared the results of the CornerNet head using Hourglass and DLA++ and the 
CenterNet head using DLA and DLA++. The results of both comparisons indicate that 

Fig. 4  The 4D bounding box refinement. The red boxes represent output bounding boxes from the network. 
The yellow boxes indicate refinement bounding boxes created by Eq. (5)
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DLA++ achieves better performances compared to the DLA and Hourglass backbones. 
Due to their poor performances, these methods cannot be used in real applications; 
their precision is less than 0.2 even for the best performances. We observed that normal 
cells were falsely detected and classified as mitotic cells.

Multi-scale (backbone). The output of DLA++ (Fig. 3c) was scaled to 4, 8, and 16; 
however, DLA++ was used by CenterNet2 in Table  1 only with output scale 4 when 
conducting the detection task. We assessed the effectiveness of multiscale output for 
detecting multiscale mitotic cells. Based on DLA++, we added an upsampling opera-
tion followed by a 1 × 1 convolution and enlarged the output to scales of 16 and 8. We 
concatenated the 4, 8, and 16 scales and then conducted the detection task. The results 
are shown as CenterNet3. The multiscale output achieves enhanced performances com-
pared to a single-scale output.

2.5D (spatial). Based on CenterNet2 and CenterNet3, we added an additional experi-
ment to demonstrate the effectiveness of the spatial information (CenterNet4, Cen-
terNet5). In this experiment, the spatial strategy was the same as that shown in Fig. 2; 
however, there were no GCLSTM blocks, and we used a 1 × 1 convolution operation to 
merge spatial information. The 2.5D strategy enables the model to detect spatial informa-
tion more accurately. The CenterNet2 results improved from 0.1877 to 0.5030 (Center-
Net4), while the accuracy of CenterNet3 improved from 0.2319 to 0.5640 (CenterNet5).

Recurrent (temporal). To form an RDLA++ network, we used DLA++ with mul-
tiscale (backbone), 2.5D (spatial), and recurrent (temporal) components (Fig.  2). 
According to Table 1, RDLA++ further enhances the performance of CornerNet2 and 
CenterNet5 to CornerNet 3 and CenterNet6, with a precision of approximately 0.8 and 
an F1 score of more than 0.83. We observe that CenterNet6 achieves the best perfor-
mance compared to the other state-of-the-art methods. We refer to this model as Cen-
terNet (RDLA++) in the next two sections.

Comparison of the state‑of‑the‑art mitotic detection

In this section, we divided the volume data into 2D slices to assess our network perfor-
mance along with those of other state-of-the-art 2D detection methods. In total, the 2D 
images from the slicing volume constituted approximately 3200 slices, where 1200 slices 
contained mitotic cells and 2000 slices contained only normal cells. To efficiently evalu-
ate the performance of the proposed network, we compared our networks with other 

Table 1  Results of an ablation experiment with CenterNet and CornerNet heads

Detector Hourglass DLA DLA++ Multi-scale 
(backbone)

2.5D 
(spatial)

Recurrent 
(temporal)

Precision Recall F1 score

CornerNet1 X 0.0715 0.8933 0.4823

CornerNet2 X 0.1209 0.8798 0.4953

CornerNet3 X X X X 0.7910 0.8778 0.8344

CenterNet1 X 0.1002 0.9018 0.5010

CenterNet2 X 0.1877 0.8822 0.5350

CenterNet3 X X 0.2319 0.8960 0.5647

CenterNet4 X X 0.5030 0.7511 0.6300

CenterNet5 X X X 0.5640 0.7409 0.65245

Center‑
Net6

X X X X 0.8339 0.8752 0.8546
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state-of-the-art mitotic detection methods, including SSD [16], EDCRF [35], 2D and 
3D FASTER R-CNN [17], TS-BLSTM [5], SVM [36], HCNN [6], CasDetNet_CLSTM 
[14], a 2.5D network with 2D anchors, and CasDetNet_CLSTM_3DAnchor [15]. The 
performances of these networks were evaluated based on precision, recall, and F1-score 
metrics. A bounding box was considered correct when its IoU with the ground truth 
bounding box exceeded 0.6.

Table  2 represents the comparisons between DLA++, RDLA++, and other state-
of-the-art methods. SVM and EDCRF are not deep learning methods, but their per-
formances are better than some deep learning-based detection methods designed for 
normal image detection, such as Faster R-CNN, CornerNet, SSD, and CenterNet. These 
methods were designed to solve the high false positive problem of cell similarity algo-
rithms. Faster R-CNN and CenterNet with the DLA backbone achieve high recall rates 
(0.93 for Faster R-CNN and 0.9 for CenterNet (DLA)); however, they have low precision-
approximately 0.1 for both methods.

The result of Faster R-CNN with 3D convolution was used as the spatial information. 
However, the result was not as good as that of the original 2D Faster R-CNN because 
the detection model overfitted when training on the data samples (3D volume). Simi-
lar to Faster R-CNN, SSD exhibits poor performance in mitotic detection; both models 
generate large numbers of false positives. TS-BLSTM and HCNN were both designed 
to perform mitotic detection from 2D images and use motion as an extra input. These 
methods outperform the other methods (0.6957 and 0.7817); their main problem is that 
they were not designed for 4D data and do not include spatial information in their pre-
diction. Moreover, another factor limiting the performance of TS-BLSTM is that the 
dataset does not include labels for the different mitosis stages. For stage refinement, we 
implemented the TS-BLSTM network without a bidirectional LSTM and trained the 
model for binary classification. CasDetNet_CLSTM, CasDetNet_CNN, and CasDet-
Net_CLSTM_3DAnchor were designed and applied to mitotic detection in 4D micro-
scopic images. These CasDetNet variants achieve better detection results than do the 

Table 2  Results of  a  quantitative comparison among  the  proposed network, non-deep 
learning methods, and deep learning methods

Method Precision Recall F1 score

EDCRF [35] 0.6829 0.6210 0.652

SVM [36] 0.3782 0.9035 0.6409

2D Faster R-CNN [17] 0.0870 0.9310 0.509

3D Faster R-CNN 0.0592 0.4143 0.2367

SSD [16] 0.0411 0.7221 0.3816

CornerNet(Hourglass) 0.0715 0.8933 0.4823

CenterNet (DLA) 0.1002 0.9018 0.5010

HCNN [6] 0.7003 0.6910 0.6957

TS-BLSTM [5] 0.7883 0.7751 0.7817

2.5D Faster R-CNN [14] 0.3591 0.7532 0.5562

CasDetNet_CNN [14] 0.7228 0.70358 0.7132

CasDetNet_CLSTM [14] 0.8195 0.7974 0.8085

CasDetNet_3DAnchor [15] 0.8356 0.8442 0.8399

CenterNet(RDLA++) 0.8339 0.8752 0.8546
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other methods (0.71 for CasDetNet_CNN, 0.81 for CasDetNet_CLSTM, and 0.84 for 
CasDetNet_CLSTM_3DAnchor). Compared to the CasDetNet networks, our RDLA++ 
enhanced the performance of CenterNet and yielded a higher detection accuracy. The 
precision of RDLA++ is almost identical to that of CasDetNet_CLSTM_3Danchor, 
with a difference of only 0.0017, but its recall and F1-scores are higher (0.875 and 0.855, 
respectively).

The detection results from two typical microscopic slice images by Faster R-CNN, 
CenterNet, CenterNet (DLA++ multislice), and CenterNet (RDLA++) are visu-
alized in Fig.  5a–d. The green bounding boxes represent correct detection or true 
positive (TP) results, the red bounding boxes denote overdetected or false positive 
(FP) results, and the yellow bounding boxes represent underdetected or false nega-
tive (FN) results. As shown in Fig. 5, several FPs (red bounding boxes) occur in the 
detection results of Faster R-CNN (Fig. 5a) and CenterNet (Fig. 5b). Moreover, Faster 
R-CNN (Fig.  5a) fails to detect mitotic cells and it generates FN results (the yellow 
bounding box) on sample 1. A comparison of the conventional CenterNet (Fig.  5b) 
and the proposed CenterNet with DLA++ (Fig.  5c) shows that the latter can solve 
the overdetection problem. Only one overdetection was found in the results (sample 
2) of CenterNet with DLA++. By including temporal information, CenterNet with 
RDLA++ (Fig.  5d) can clearly separate mitotic cells from normal cells and mitotic 
cells. In the results of the proposed CenterNet with RDLA++, no FPs were detected 
(only mitotic cells were detected) in both sample 1 and sample 2.

Evaluation of 4D mitotic cell detection

To evaluate the 4D detection performance, we determined the average IoU for each 
slice from the same region in 5 continuous slices. Average IoU scores above 0.5 were 
classified as true positives; otherwise, they were classified as false negatives. We 

Fig. 5  Visualization results of the detection methods for two typical microscopic slice images. a Faster 
RCNN, b CenterNet, c CenterNet (DLA++ multislice), and d CenterNet (RDLA++). The green bounding box 
represents a correct detection (TP) result, a red bounding box denotes overdetected (FP) results, and the 
yellow bounding box represents an underdetected (FN) result
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considered the detection results as false positives when the average IoU from the 
same region in 5 continuous slices was greater than 0.5 but not with the ground truth.

In the 4D evaluation, we compared our technique with Faster RCNN, CasDetNet_
CLSTM 3DAnchor, CenterNet (DLA), and Sugano (the winner of the TC-IAIP AIA 
2017, which is a non-deep learning method). All approaches used IoU to calculate the 
4D results except Sugano, the results of which were provided by TC-IAIP AIA 2017. 
Table 3 represents the methods’ results along with the results of the 4D evaluation.

The Sugano method is a nondeep learning method that won the TC-IAIP AIA 2017 
challenge [37]. This method has false positive problems similar to Faster R-CNN. Here, 
the Sugano technique is affected by the false positive problem only on samples 2, 10, 14, 
15, and 16; however, Faster R-CNN exhibits the false positive problem for all the data. 
Samples 11, 12, and 13 include a problematic orientation of mitotic cells. Consequently, 
these cells are not detected by most of the other methods except for CasDetNet_CLSTM.

The example results (case 5) of CasDetNet_CLSTM_ 3DAnchor [15] and CenterNet 
(RDLA++) are shown in Table 3. The two mitotic cells were not detected by CasDet-
Net_CLSTM_3DAnchor [15]; however, they were detected perfectly by the proposed 
method. In addition to accurate detection, the proposed technique detects mitotic cells 
faster than does CasDetNet_CLSTM_3DAnchor [15]. Table 4 shows a computation time 
comparison. The computation time of the proposed method with postprocessing is 1.8 
times faster than that of CasDetNet_CLSTM_3DAnchor when both are run on 1 GPU. 
Moreover, the computation time of the proposed method running on 1 GPU was nearly 
the same as that of CasDetNet_CLSTM_3DAnchor running on 4 GPUs. When con-
sidering only detection time (without postprocessing), the proposed method performs 
up to 3 times faster than CasDetNet_CLSTM_3DAnchor running 4 GPUs and 9 times 
faster CasDetNet_CLSTM_3DAnchor running on 1 GPU.

Discussion
As shown in Table 2, machine learning and shallow learning models (SVM and EDCRF) 
can show better results than do the conventional deep learning methods proposed to 
perform detection tasks using normal images. This result occurs for two reasons. First, 
deep learning-based detection methods require large numbers of training samples, while 
the shallow learning models do not require such large numbers of training samples. In 
this research, the number of training samples is limited to 16, which may significantly 
decrease the performances of existing deep learning-based approaches designed for 2D 
image detection. Second, some shallow learning models such as EDCRE are designed 
specifically for mitotic tasks with temporal information, while the conventional deep 
learning-based methods (i.e., Faster R-CNN, SSD, CenterNet, and CornerNet) are 
designed for 2D image detection, and they extract 2D spatial features without temporal 

Table 4  Detection time comparison (ms/slice)

Method Detection time

CasDetNet (1 GPU) [15] 4641

CasDetNet (4 GPUs) [15] 2412

CenterNet(RDLA++) (1 GPU) 2533
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information. We observed that the deep learning methods designed for mitotic cell 
detection (HCNN, CasDetNet CLSTM and TS BLSTM) yield better performances and 
that all these networks consider temporal information. These experiments demonstrate 
that temporal information is important for the mitotic detection task.

Compared to 2D Faster R-CNN (which utilizes only a target 2D slice image as input) 
and 3D Faster R-CNN (which uses a 3D volume as input), 2.5D Faster R-CNN (which 
takes the target slice image and its neighbouring slices as input) achieved a better per-
formance. This result occurs because the 2.5D CNN is able to extract 3D spatial infor-
mation while the 2D CNN cannot extract 3D information, which results in lower 
precision. Moreover, although a 3D CNN can extract 3D spatial information, it includes 
more parameters and requires several 3D volumes for training; thus, the performance 
of 3D Faster R-CNN was significantly degraded by the limited data. Therefore, the 2.5D 
method is important for mitotic detection in 4D microscopic images.

According to the experimental results, the performance of our proposed method 
exceeds that of other state-of-the-art methods in terms of both computation time and 
detection accuracy. The 4D mitotic cell detection of CasDetNet CLSTM 3DAnchor and 
our network may be identical when they are evaluated on the same region of 5 continu-
ous slices (> 0.7 of IoU); however, by reducing the average IoU to 0.5 with 5 continuous 
slices, our method solves the problem of false negatives in the data. Nevertheless, reduc-
ing the IoU threshold is not the best technique to obtain satisfactory results. Thus, there 
is still a need to improve the performance of the network because it achieves insufficient 
detection results for some data.

Conclusion
In this study, we proposed a full-scale connected recurrent deep layer aggregation 
(RDLA++) network for mitotic detection from 4D microscopic images. The proposed 
dense level skip connections (DLA++) are utilized to improve the scale features and 
reduce the network parameters. The network performs more efficiently due to its fea-
ture reuse. The recurrent connections are designed to extract temporal and spatial 
information from 4D data and integrate them into the 2.5D concept. With DLA++ and 
RDLA++, the scale, temporal, and spatial features are enhanced to improve the detec-
tion accuracy. Both RDLA++ and DLA++ can be integrated with any detection head 
from as state-of-the-art anchor-free method such as CornerNet or CenterNet. The limi-
tation of our method is that it requires a 4D dataset for network execution a 3D vol-
ume and time sequences. Without the 4D information, the performance of our method 
is decreases drastically. The other methods that are considered in our experiments are 
designed for 2D or 3D datasets. These methods perform mitotic detection either with-
out spatial information from a 3D volume or without temporal information from time 
sequences.
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