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Abstract 

Background:  The cause of infertility remains unclear in a significant proportion of reproductive-age couples who fail 
to conceive naturally. Chromosomal aberrations have been identified as one of the main genetic causes of male and 
female infertility. Structural chromosomal aberrations may disrupt the functioning of various genes, some of which 
may be important for fertility. The present study aims to identify candidate genes and putative functional interaction 
networks involved in male and female infertility using cytogenetic data from cultured peripheral blood lymphocytes 
of infertile patients.

Methods:  Karyotypic analyses was done in 201 infertile patients (100 males and 101 females) and 201 age and 
gender matched healthy controls (100 males and 101 females) after 72 h peripheral lymphocyte culturing and GTG 
banding, followed by bioinformatic analysis using Cytoscape v3.8.2 and Metascape.

Results:  Several chromosomal regions with a significantly higher frequency of structural aberrations were identified 
in the infertile males (5q2, 10q2, and 17q2) and females (6q2, 16q2, and Xq2). Segregation of the patients based on 
type of infertility (primary v/s secondary infertility) led to the identification of chromosomal regions with a signifi-
cantly higher frequency of structural aberrations exclusively within the infertile males (5q2, 17q2) and females (16q2) 
with primary infertility. Cytoscape identified two networks specific to these regions: a male specific network with 99 
genes and a female specific network with 109 genes. The top enriched GO terms within the male and female infertil-
ity networks were “skeletal system morphogenesis” and “mRNA transport” respectively. PSME3, PSMD3, and CDC27 
were the top 3 hub genes identified within the male infertility network. Similarly, UPF3B, IRF8, and PSMB1 were the top 
3 hub genes identified with the female infertility network. Among the hub genes identified in the male- and female-
specific networks, PSMB1, PSMD3, and PSME3 are functional components of the proteasome complex. These hub 
genes have a limited number of reports related to their respective roles in maintenance of fertility in mice model and 
humans and require validation in further studies.

Conclusion:  The candidate genes predicted in the present study can serve as targets for future research on infertility.
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Background
Human beings, despite a substantial growth in their 
population, can be considered a relatively infertile spe-
cies [1]. Infertility is defined as a condition marked by the 

inability of a couple to conceive after one year of unpro-
tected intercourse [2].

An estimated 8% to 12% couples of reproductive age 
worldwide are affected by infertility. Approximately 50% 
of total cases involve a diagnosis of infertility in the male 
partner [2, 3]. Male infertility can be caused by various 
mechanical, lifestyle and genetic factors. The genetic 
causes of male infertility include structural and numeri-
cal chromosome abnormalities, Y chromosome deletions, 
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single gene disorders, and multifactorial causes [2]. 
Among the genetic factors, chromosomal anomalies have 
been identified as one of the main causes of male infertil-
ity [4]. With at least 2000 genes believed to be involved in 
spermatogenesis, the number of genetic anomalies asso-
ciated with male infertility is growing steadily [5].

On the other hand, female infertility can be caused by 
developmental, endocrine, immunological, metabolic, 
microbial, surgical or genetic factors [6, 7]. The genetic 
causes of female infertility include chromosomal aberra-
tions due to meiotic non-disjunction errors, copy num-
ber variants (CNV’s), single gene disorders and polygenic 
disorders [7].

Cytogenetic aberrations are included among the main 
genetic causes of infertility [4, 8]. Therefore, identifica-
tion of chromosomal loci frequently involved in aberra-
tions can help in identifying the genes/pathways involved 
in infertility using in-silico tools. Keeping these facts in 
mind, the present study uses a combination of cytoge-
netics and bioinformatic tools for the prediction of 
candidate genes which are actively involved in the patho-
genesis of infertility.

Methods
Cytogenetic analysis
In order to study the cytogenetic aberrations associated 
with infertility, 201 infertile patients (100 males and 101 
females) and 201 age and gender matched controls (100 
males and 101 females) from a North-Indian popula-
tion of Punjab, India were karyotyped after 72 h periph-
eral blood lymphocyte culturing and GTG-banding. The 
inclusion and exclusion criteria for recruitment of the 
infertile patients are given in Additional file 1: Table S1. 
The phenotypic presentations of the infertile males and 
females are given in Additional file  1: Table  S2. The 
patients included in the present study were clinically 
diagnosed as infertile after failure to conceive via natu-
ral methods, with medications and also experiencing 
in-vitro fertilization (IVF) failure. These include a subset 
of patients wherein the fertility assessment parameters 
(spermiogram in males, hormonal profiles and reproduc-
tive imaging in females) were within the standard clinical 
limits in both the male and female partners undergoing 
IVF (Additional file 1: Table S2).

The cytogenetic analysis of the cultured peripheral 
blood lymphocytes of the patients and controls involved 
scoring of chromosomal aberrations as total metaphases 
showing any chromosomal aberration (TAM), meta-
phases showing only numerical aberrations (TMNA), 
metaphases showing only structural aberrations (TMSA), 
and metaphases showing both structural and numerical 
aberrations (TM(NA + SA)) in 50 to 100 metaphases per 
subject. The comparison of frequency of chromosomal 

aberrations in cases and controls was done using Stu-
dent’s t-test. The cut off p-value adopted for statistical 
significance was 0.05.

Bioinformatic analysis
The cytogenetic analysis helped in the identification of 
several chromosomal regions with a significantly higher 
frequency of structural aberrations among the infer-
tile patients as compared to controls. The genes har-
bored within these loci were assessed by in-silico tools 
to predict candidate genes and pathways which might be 
impaired in infertile males and females. The cytogenetic 
loci observed within these regions were used as the input 
query for National Centre for Biotechnology Information 
(NCBI) Gene database (https://​www.​ncbi.​nlm.​nih.​gov/​
gene) to identify the constituent genes. The data provided 
by NCBI Gene was filtered according to species (“Homo 
sapiens”), chromosome number (chromosomal regions 
not queried were removed) and number of exons (only 
genes containing one or more exons were included).

Cytoscape v3.8.2 [9] was used to generate various 
interactive biological networks from the genes anno-
tated to the different chromosomal regions. In the pre-
sent study, the ‘Gene Set/Mutation Analysis’ tool of the 
‘Reactome Functional Interaction (FI)’ Cytoscape plugin 
[10] was used to generate the different interaction net-
works. For this purpose, the 2019 ‘Reactome FI Network’ 
dataset and ‘Show genes not linked to others’ options 
were used to create interaction networks without the 
addition of any linker gene. The cytoHubba plugin [11] 
within Cytoscape was used to identify the various hub 
genes within the male and female networks. The set of 
genes located within the different networks was used as 
the input for the web-based tool, Metascape [12], to iden-
tify the genes and pathways enriched within the infertile 
males and females.

Results
Cytogenetic analysis
The comparison of chromosomal aberrations between 
the infertile cases and age-matched controls revealed 
a significantly higher mean frequency of aberrations 
among the infertile cases (Table 1). A similar trend was 
observed upon segregating the cases and controls by 
gender and type of infertility (primary versus secondary 
infertility) (Tables 2, 3). Among the infertile patients, 5 
males and 8 females were identified as carriers of con-
stitutional anomalies. These patients were removed 
from further analysis resulting in 188 infertile patients 
(95 males and 93 females) and 188 age-matched con-
trols (95 males and 93 females) remaining for further 
analysis. A significantly high mean frequency of struc-
tural aberrations (deletions, chromatid/chromosomal 
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breaks and gaps) was identified in certain chromo-
somal regions within these subsets of patients (Table 4). 
The representative karyotypes for a subset of infertile 
patients and healthy controls are depicted in Additional 
file 1: Table S3.

Upon segregating the patients based on type of infer-
tility (primary vs. secondary infertility), chromosomal 
regions with a significantly high mean frequency of 
structural aberrations were identified only within the 
primary infertility patients (Table  5). The cytogenetic 
loci affected within these regions (Tables 4 and 5) were 
subjected to bioinformatic analysis.

Bioinformatic analysis
NCBI Gene returned a list of the genes present at the 
cytogenetic loci queried: 731 genes in the male dataset 
and 901 genes in the female dataset. Querying Reac-
tome FI with the aforementioned gene sets led to the 
generation of a network of 99 genes in the male-specific 
network (Fig.  1) and 109 genes in the female-specific 
network (Fig.  2). Further analysis by cytoHubba led to 
the identification of hub genes within the male (PSMD3, 
PSME3, and CDC27) and female (UPF3B, IRF8, and 
PSMB1) networks. Metascape identified “skeletal system 
morphogenesis” as the top enriched term within the male 

Table 1  Cytogenetic profile of infertile cases and healthy controls

Significant p-values (< 0.05), calculated by t-test, are shown in bold

Variable Male cases Male controls p-value Female cases Female controls p-value

No. of subjects 100 100 – 101 101 –

Age (Mean ± SD) in years 34.61 ± 7.21 34.91 ± 7.66 0.7758 32.58 ± 6.28 34.88 ± 7.45 0.0186
Mean (%) aberrant metaphases 28.37 ± 13.46 11.28 ± 7.28  < 0.0001 29.16 ± 14.02 13.60 ± 7.03  < 0.0001
Mean (%) metaphases with structural aberrations 16.81 ± 10.99 5.44 ± 5.37  < 0.0001 17.94 ± 12.71 5.30 ± 4.37  < 0.0001
Mean (%) metaphases with numerical aberrations 7.82 ± 6.18 4.98 ± 3.98 0.0002 7.51 ± 5.32 7.03 ± 4.72 0.4984

Mean (%) metaphases with both structuraland 
numerical aberrations

3.57 ± 3.15 0.59 ± 1.01  < 0.0001 4.16 ± 3.80 1.43 ± 2.29  < 0.0001

Table 2  Comparison of cytogenetic profiles of primary infertility cases (male and female) with age and gender matched controls

Significant p-values (< 0.05), calculated by t-test, are shown in bold

Variable Male primary 
infertility cases

Age-matched 
male controls

p-value Female primary 
infertility cases

Age-matched 
female controls

p-value

No. of subjects 66 66 – 66 66 –

Age (Mean ± SD) in years 33.94 ± 6.93 34.24 ± 7.23 0.8081 31.80 ± 6.0 33.94 ± 7.28 0.0676

Mean (%) aberrant metaphases 26.96 ± 12.52 11.31 ± 7.02  < 0.0001 27.22 ± 12.34 13.44 ± 7.12  < 0.0001
Mean (%) metaphases with structural aberrations 16.17 ± 10.74 5.29 ± 5.06  < 0.0001 16.74 ± 11.87 5.42 ± 4.83  < 0.0001
Mean (%) metaphases with numerical aberrations 7.24 ± 5.50 5.34 ± 4.27 0.0284 7.4 ± 5.33 6.96 ± 4.80 0.6191

Mean (%) metaphases with both structural and 
numerical aberrations

3.25 ± 2.99 0.55 ± 1.04  < 0.0001 3.49 ± 2.9 1.34 ± 2.15  < 0.0001

Table 3  Comparison of cytogenetic profiles of secondary infertility cases (male and female) with age and gender-matched controls

Significant p-values (< 0.05), calculated by t-test, are shown in bold

Variable Male secondary 
infertility cases

Age-matched 
male controls

p-value Female 
secondary 
infertility cases

Age-matched 
female controls

p-value

No. of subjects 34 34 – 35 35 –

Age (Mean ± SD) in years 35.91 ± 7.66 36.21 ± 8.39 0.8781 34.06 ± 6.62 36.66 ± 7.55 0.1302

Mean (%) aberrant metaphases 31.12 ± 14.9 11.23 ± 7.88  < 0.0001 32.67 ± 16.24 13.91 ± 6.92  < 0.0001
Mean (%) metaphases with structural aberrations 18.29 ± 11.3 5.73 ± 5.99  < 0.0001 20.12 ± 14.01 5.06 ± 3.38  < 0.0001
Mean (%) metaphases with numerical aberrations 8.6 ± 7.4 4.29 ± 3.29 0.0028 7.51 ± 5.39 7.16 ± 4.62 0.7714

Mean (%) metaphases with both structural and 
numerical aberrations

4.3 ± 3.4 0.68 ± 0.94  < 0.0001 5.38 ± 4.85 1.60 ± 2.55 0.0001
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infertility network (Fig. 3) and “mRNA transport” as the 
top enriched term within the female infertility network 
(Fig. 4).

Discussion
The human interactome is a highly complex network of 
functionally interacting cellular components, including a 
multitude of genes, proteins, metabolites, and RNA mol-
ecules [13]. It is now believed that many diseases mani-
fest as a result of disruption of biological cascades due to 
altered interaction of various network components [14].

Among the structural aberrations identified in the pre-
sent study, deletions, chromatid/chromosomal gaps and 
breaks were the most frequentin the infertile patients. In 
the present study, terminal deletions were observed in 
the 6q, 16q, and Xq region in infertile females. Deletions, 
either terminal or interstitial, result in loss of chromo-
somal segments and a subsequent haploinsufficiency of 
the gene(s) located in the deleted segments [15].Besides 
deletions, chromatid/chromosomal gaps and breaks 
were observed in both males (5q2, 10q2, and 17q2) and 
females (6q2 and Xq2). These aberrations occur as a con-
sequence of DNA damage through exposure to physical 
and/or chemical agents, or as a result of recombination 
events [16]. If left unrepaired, chromosomal breaks can 

result in deletions (small- or large-scale) and transloca-
tions [17].

In the bio-informatic analysis in the present study, the 
top enriched gene ontology (GO) category within the 
male infertility network was GO:0048705—“skeletal sys-
tem morphogenesis” (Fig. 3). The genes enriched within 
this category included APC, BRCA1, CHAD, COL1A1, 
COL13A1, FZD2, HOXB1, HOXB2, HOXB3, HOXB4, 
HOXB5, HOXB6, HOXB7, HOXB8, HOXB9, ITGA3, 
ITGB3, KAT2A, KRT19, MMP21, NEUROG3, PLCD3, 
RARA​, TBX21, THRA, WNT3, WNT9B, ZMIZ1. Twenty-
two genes enriched within this category have published 
reports on roles in maintenance of male fertility (APC, 
BRCA1, COL1A1, COL13A1, FZD2, HOXB1, HOXB2, 
HOXB4, HOXB5, HOXB6, HOXB7, HOXB8, HOXB9, 
ITGA3, KAT2A, KRT19, NEUROG3, RARA, THRA, 
WNT3, WNT9B, ZMIZ1) (Additional file  1: Table  S4). 
Among the male infertility network, sixty-two genes had 
literature published on roles in male fertility (Additional 
file 1: Table S4).

The top enriched category within the female infertility 
network was GO:0051028—“mRNA transport” (Fig.  4). 
The genes enriched within this category included CETN2, 
CSTF2, EMD, EZR, FLNA, FMR1, HCFC1, IKBKG, 
KPNA5, NUP43, NXF2, NXF3, NXF5, NXT2, SLC25A5, 
TAB2, TBP, TCP1, THOC2, UPF3B. A dozen genes 

Table 4  List of chromosomal regions with a significantly higher frequency of structural aberrations in infertile males and females

Significant p-values (<0.05), calculated by t-test, are highlighted in bold

*The zero values were omitted during the calculation of Mean and Standard Deviation due to presence of a high number of zeros in the data

Gender Chromosome/chromosomal arm/
chromosomal region

Frequency of aberrations in 
infertility cases
(Mean ± SD)

Frequency of aberrations in healthy 
age-matched controls
(Mean ± SD)*

p-value

Male 5q2 1.67 ± 0.58 1.00 ± 0.00  < 0.0001
10q2 1.50 ± 0.71 1.00 ± 0.00  < 0.0001
17q2 1.33 ± 0.58 1.00 ± 0.00  < 0.0001

Female 6q2 1.17 ± 0.41 1.00 ± 0.00  < 0.0001
16q2 1.50 ± 0.71 1.00 ± 0.00  < 0.0001
Xq2 2.00 ± 1.18 1.00 ± 0.00  < 0.0001

Table 5  List of chromosomal regions with a significantly higher frequency of structural aberrations in males and females diagnosed 
with primary infertility

Significant p-values (<0.05), calculated by t-test, are highlighted in bold

*The zero values were omitted during the calculation of Mean and Standard Deviation due to presence of a high number of zeros in the data.

Gender Chromosome/chromosomal arm/
chromosomal region

Frequency of aberrations in 
infertility cases
(Mean ± SD)

Frequency of aberrations in healthy 
age-matched controls
(Mean ± SD)*

p-value

Male 5q2 1.50 ± 0.71 1.00 ± 0.00  < 0.0001
17q2 1.50 ± 0.71 1.00 ± 0.00  < 0.0001

Female 16q2 1.50 ± 0.71 1.00 ± 0.00  < 0.0001
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enriched within this category have published reports on 
roles in maintenance of female fertility (CETN2, CSTF2, 
EZR, FLNA, FMR1, HCFC1, IKBKG, NUP43, NXF5, 
SLC25A5, TAB2, UPF3B) (Additional file  1: Table  S5). 
Among the female infertility network, sixty-eight genes 
had literature published on roles in female infertility 
(Additional file 1: Table S5).

In the male infertility network, the top 3 hub genes 
identified were PSME3, PSMD3, and CDC27. Research 
on mice models have shown that double knockout of 
Psme3 and Psme4 results in complete infertility in males 
[18]. In an additional report, male mice with PSME3 (also 
known as REGγ) deficiency exhibited subfertility due to 
a decrease in the activity and concentration of sperma-
tozoa [19]. The comparison of gene expression profiles 

of high motility sperm samples between healthy normo-
zoospermic and asthenozoospermic individuals showed 
that PSMD3, CDC27 and many other proteins involved 
in protein polyubiquitination were significantly down-
regulated in asthenozoospermic individuals [20]. The 
ubiquitin–proteasome system (UPS) has been reported 
to play an important role in sperm capacitation and fer-
tilization [21]. Therefore, the UPS components involved 
in the sperm proteasome can be considered as potential 
candidates for further research on male infertility.

In the female infertility network, the top 3 hub genes 
identified were UPF3B, IRF8 and PSMB1. Copy number 
variation in the 6q27 region (which includes PSMB1) 
have been speculated to be the cause of premature ovar-
ian failure (POF) in a patient from a POF cohort [22]. In 

Fig. 1  Biological interaction network generated using Cytoscape v3.8.2 for the male infertility dataset
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recent publications, IRF8 positive cells were reported to 
be increased during the proliferative phase of the men-
strual cycle in the endometrium of women with endo-
metriosis [23]. Additionally, IRF8 and MEF2C have been 
reported to be regulated at both mRNA and protein 

level in the endometrial epithelium during the window 
of implantation [24]. Upf3b was predicted to be a target 
gene for the rno-miR-141-5p microRNA. This miRNA 
was reported to possibly play a role in modulating endo-
metrial receptivity in rats with endometriosis [25]. 

Fig. 2  Biological interaction network generated using Cytoscape v3.8.2 for the female infertility dataset

Fig. 3  A list of the top 20 enriched gene ontology categories identified by Metascape for the male infertility dataset
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Currently, limited reports are available on the roles of 
these genes in maintenance of female fertility, warranting 
further research on these candidates.

Analysis of the predicted loss-of-function (pLOF) 
variants in the Genome Aggregation Database (gno-
mAD) browser [26] suggests that the hub genes, CDC27, 
PSMD3, PSME3 (male-specific network), PSMB1, UPF3B 
(female-specific network) are intolerant to loss-of-func-
tion variants. In the clinical setting, microarray-based 
comparative genomic hybridization (aCGH) coupled 
with multiplex ligation-dependent probe amplification 
(MLPA) would be a better alternative to identify genomic 
imbalances within infertile patients having structural 
aberrations (especially deletions) within the chromo-
somal regions harboring these genes [27].

There are few limitations associated with the present 
study. A cytogenetic approach has been used in the pre-
sent study to identify possible candidate genes located 
in chromosomal regions with a high mean frequency of 
structural aberrations in infertile patients, compared to 
healthy control individuals. GTG banding has been used 
for cytogenetic analysis. Compared to other microscopy-
based alternatives, G-banding has a lower resolution [28].
Finally, there is no expression-based data for the pre-
sent dataset which can reveal the differentially expressed 
genes associated with the infertility subsets.

Conclusion
The present study has identified several candidate genes 
associated with male and female infertility based on 
information of aberrations available from chromosomal 

analysis in G-banded cultured peripheral blood lym-
phocytes. Among the hub genes, the PSMB1 (female-
specific network), PSMD3, and PSME3 (male-specifc 
network) are components of the proteasome complex. 
Currently, limited research has been conducted in 
human infertility on the roles of most of the genes pre-
dicted in the present study with a majority of the availa-
ble reports limited to murine models. Therefore, future 
research may focus on determining the role of these 
genes in the maintenance of human fertility.
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