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During tumor growth the extracellular matrix (ECM) undergoes dramatic remodeling. The
normal ECM is degraded and substituted with a tumor-specific ECM, which is often of
higher collagen density and increased stiffness. The structure and collagen density of the
tumor-specific ECM has been associated with poor prognosis in several types of cancer.
However, the reason for this association is still largely unknown. Collagen can promote
cancer cell growth and migration, but recent studies have shown that collagens can also
affect the function and phenotype of various types of tumor-infiltrating immune cells such
as tumor-associated macrophages (TAMs) and T cells. This suggests that tumor-
associated collagen could have important immune modulatory functions within the
tumor microenvironment, affecting cancer progression as well as the efficacy of cancer
immunotherapy. The effects of tumor-associated collagen on immune cells could help
explain why a high collagen density in tumors is often correlated with a poor prognosis.
Knowledge about immune modulatory functions of collagen could potentially identify
targets for improving current cancer therapies or for development of new treatments. In
this review, the current knowledge about the ability of collagen to influence T cell activity
will be summarized. This includes direct interactions with T cells as well as induction of
immune suppressive activity in other immune cells such as macrophages. Additionally, the
potential effects of collagen on the efficacy of cancer immunotherapy will be discussed.

Keywords: cancer immunology, collagen, extracellular matrix, tumor microenvironment, immunotherapy, T cells,
macrophages, matrix immunology
INTRODUCTION

With a constantly growing knowledge about the extracellular matrix (ECM), it has become clear
that the ECM is by no means an inert scaffold, but rather a dynamic structure that can regulate the
function of cells in contact with it (1). This ability of the ECM to influence cellular responses has
been a major focus area in the matrix biology research field within the last decades. In connection to
cancer, the ECM has been studied extensively in order to elucidate exactly how it influences tumor
progression and metastasis. The majority of these studies have focused on the ability of the ECM to
modulate the behavior of cancer cells or to stimulate the malignant transformation of epithelial cells.
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In the field of cancer immunology, much less attention has been
given to the ECM and its potential role in modulating immune
cell activity. However, recent reports have shown that the ECM
can indeed influence the behavior of immune cells, thereby
launching a potentially new research field: matrix immunology.
EXTRACELLULAR MATRIX
REMODELING IN CANCER

Collagen Organization
The ECM is a complex network of various macromolecules
surrounding the cells within the body. It is composed of two
classes of macromolecules, the fibrous proteins and the
proteoglycans consisting of core proteins with one or more
glycosaminoglycans (GAGs) covalently attached (2, 3). The
main types of fibrous proteins are elastin, fibronectin, laminins
and collagens (3, 4). The ECM can be classified into two
categories based on function; the basement membrane and the
interstitial matrix. The basement membrane forms an anchoring
sheet-like layer between the parenchyma and the connective
tissue. It is mainly composed of collagen type IV, laminins,
nidogen 1 and 2, and various proteoglycans such as perlecan (5).
The interstitial matrix is the matrix surrounding the cells. It is
composed of proteoglycans and various fibrous ECM proteins
secreted mainly by fibroblasts within the stroma (3, 6). In cancer,
fibroblasts are the main producers of the tumor-specific ECM,
but other cells can also contribute. These cells include endothelial
cells (7), cancer cells (8, 9), and immune cells such as
macrophages (3, 5, 10). Besides secreting ECM components,
fibroblasts can also exert tension on the matrix, organize
collagens into sheets and fibers, and influence the alignment of
the collagen (3).

Collagens are the main constituents of the ECM comprising
around 30% of the whole protein mass in the body (3, 11). 28
types of collagens have been identified (12), which based on their
structure and function can be divided into subtypes including
fibril-forming, fibril-associated collagens with interrupted triple
helices (FACITs), network-forming, transmembrane,
endostatin-producing, anchoring fibrils and beaded-filament-
forming collagen (13, 14). The fibrillar collagen type I is the
most abundant type of collagen and the primary constituent of
the interstitial matrix (3, 15).

Collagen is composed of three left-handed polypeptide chains
called a-chains held together by inter-chain hydrogen bonds.
These intertwine to form a right-handed triple helical structure.
The a-chains are composed of an amino- and a carboxy
terminus flanking Gly-X-Y repeats. Of these, X is often a
proline and Y a hydroxyproline. Each type of collagen contains
a unique combination of a-chains (16, 17). The main type of
collagen, collagen type I, consists of two a1-chains and one a2-
chain (16, 18). Collagens are initially transcribed and translated
into pre-pro-polypeptides. These undergo multiple post-
translational modifications in the endoplasmic reticulum (ER)
and in the Golgi apparatus. Following this, the resulting
procollagen is packed into secretory vessels and transported to
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the extracellular space (18, 19). In the extracellular space the
procollagen is modified by proteases to remove the N- and C-
propeptide domains, generating mature collagen units that
polymerize to form insoluble collagen fibers (18). Lastly, cross-
linking can be introduced by lysyl-oxidase (LOX) in order to
generate larger collagen fibers (18, 20, 21), and increase the
stiffness of the ECM (22).

Collagen Degradation
The tight triple helical structure of collagen renders it very
resistant to proteolytic cleavage. In fact, only a few proteases
have been shown to be able to cleave native collagen type I under
physiological conditions. These include members of the matrix
metalloproteinase (MMP) family and the cysteine protease
family. The MMPs capable of cleaving collagen are referred to
as collagenases and include MMP-1, -2, -8, -13 and -14 (23). In
collagen type I, the cleavage happens primarily at Gly775-Ile776

and Gly775-Leu776 in the a-1 and a-2 chain, respectively. This
cleavage generates well-defined fragments ¼ and ¾ of the length
of the full molecule (24). The exact molecular mechanism of
MMP-mediated collagen cleavage has been excellently reviewed
in (25). As opposed to the intact collagen, these fragments are
unstable under physiological conditions and prone to
degradation by additional proteases including MMP-2 and -9,
the so-called gelatinases, as well as the serine protease fibroblast
activation protein (FAP) (26–28). The proteolytically generated
collagen fragments can also be internalized by receptor-mediated
uptake and routed to the lysosomes for complete degradation by
cysteine proteases (29–31). This process has been shown to be
mediated primarily by two endocytic collagen receptors, the
mannose receptor (MR)/CD206 and the urokinase
plasminogen activator receptor-associated protein (uPARAP)/
Endo180/CD280, which are expressed mainly by macrophages
and fibroblasts, respectively (32, 33).

Collagen Remodeling During
Cancer Development
During tumorigenesis the ECM is extensively remodeled. The
existing ECM is degraded and substituted with a tumor-specific
ECM, which is often more linearized, of increased stiffness, and
has a high collagen content. Degradation of the ECM involves
the concerted action of multiple proteolytic systems and several
different cell types of the tumor microenvironment (34). The
degradation of collagen type I alone involves cleavage of collagen
fibers by the collagenolytic MMPs MMP-1, MMP-8, MMP13,
and MMP14 (MT1-MMP) which can be expressed by cancer
cells or stromal cells (34). Complete collagen turnover involves
subsequent lysosomal degradation upon cellular uptake of
collagen fragments mediated by the MR or uPARAP (33, 35).
In tumors, collagen internalization is primarily mediated by
TAMs and CAFs, with M2-like TAMs being the dominant
collagen-internalizing cell type (36, 37). CAFs are the central
cell type responsible for production of collagen in the tumor
microenvironment, although studies have shown that
macrophages and cancer cells can also contribute to the
production of collagen (36, 38). CAFs have recently been
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recognized as a group of several CAF subsets and especially one
of these CAF subsets seems to be the main producer of collagen
in the tumor microenvironment (39, 40). The newly synthesized
ECM is characterized by being of high stiffness and density, and
very rich in collagen. A high collagen-density and degree of
collagen fiber alignment have been linked to a poor prognosis of
several cancers. This includes breast cancer, pancreatic cancer,
gastric cancer, and oral squamous cell carcinomas (41–45). The
reason for this correlation is still not clear. The effects of collagen
density and tumor stiffness on cancer cells have been investigated
for more than a decade, and recently, studies have also
investigated the effect of collagen on immune cells such as
tumor-infiltrating lymphocytes (TILs) and tumor-associated
macrophages (TAMs).
EFFECTS OF COLLAGEN DENSITY ON
CANCER CELLS

Increased stiffness compared to healthy tissue is a characteristic
of most solid tumors that render them detectable by palpation.
The high stiffness of tumor tissue has been shown to correlate
with increased deposition of collagen as well as increased
crosslinking of collagen fibers (46–49).

The high ECM stiffness is not only a passive bystander of
cancer, but can also affect and drive many stages of tumor
progression; from malignant transformation and increased
metabolic adaptability to enhanced intravasation, facilitating
metastasis (50). In healthy tissue, matrix stiffness also controls
many important cellular functions, such as development and
homeostasis (51). In vitro, substrate stiffness has been shown to
affect naïve mesenchymal stem cells, which when cultured on
soft matrices, mimicking brain tissue, commit to a neuron-like
lineage while when cultured on rigid matrices, mimicking
collagenous bone, commit to an osteogenic lineage (52).

In connection to cancer, the link between matrix stiffness and
malignant transformation of epithelial cells has been
investigated. Using mammary epithelial cells (MECs), Paszek
et al. showed in a seminal study that increased collagen density
led to perturbed morphology and disrupted basal polarity in vitro
(53). They demonstrated that increased matrix stiffness drives a
mechanoregulatory feedback loop in which focal adhesions (FA)
are promoted through integrin aggregation. This in turn
activates signaling pathways, increases cytoskeletal tension and
further FA formation, promoting malignant transformation (53).
This signaling loop was also demonstrated in a study by
Provenzano et al. (54). In addition, they found that increased
collagen density in vitro promoted an invasive phenotype of
MECs and caused altered gene expression including
upregulation of genes associated with proliferation (54).
Increased matrix stiffness through collagen crosslinking was in
another study showed to promote FA and induce invasion
through enhanced signaling of PI3K (48). PI3K signaling has
also been shown to be important for epithelial-mesenchymal
transition (EMT) (55). When normal murine mammary gland
epithelial cells were treated with transforming growth factor b
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(TGF-b), culture on soft matrices induced apoptosis while
culture on stiff matrices led to EMT through the PI3K/Akt
pathway (55). Increased matrix stiffness has also been
suggested to modulate the metabolism of cancer cells.
Specifically, culture of the metastatic breast cancer cell line 4T1
on a high-density collagen matrix resulted in an increased
capacity to use glutamine as fuel source for mitochondrial
respiration. This was not observed to the same degree for the
non-metastatic breast cancer cell line 4T07 (56).

Metastatic disease requires the ability of a malignant cell to
escape the primary tumor site by binding to vasculature and
intravasate to reach a secondary location. Matrix stiffness has
been shown to be of importance for this process. In response to
increased stiffness, endothelial cells were shown to upregulate the
protein cellular communication network factor 1 (CCN1), which
activated b-catenin causing upregulation of N-cadherin on the
surface of the endothelium. This was in turn shown to facilitate
cancer cell-endothelium binding (57, 58). A high matrix stiffness
can also induce epithelial-to-mesenchymal transition (EMT) in
cancer cells, leading to increased metastasis (59). This process is
dependent on stiffness-induced nuclear translocation of the
transcription factor TWIST1 (59). LOX-induced collagen
cross-linking is an important mediator of increased matrix
stiffness in tumors and a driver of metastatic tumor growth
(60, 61). Consequently, inhibition of LOX has been shown to
reduce metastasis (61, 62).

Indirectly, a stiff matrix is also capable of supporting tumor
progression by favoring growth of endothelial cells and thereby
stimulating angiogenesis (63). Additionally, matrix stiffening
promotes the activity of the transcriptional co-activators Yes-
associated protein (YAP) and transcriptional coactivator with
PDZ-binding motif (TAZ), which in turn are required for CAF-
induced matrix stiffening, creating a positive feedback loop
further driving the cancer-promoting effects described
above (64).
COLLAGEN CAN AFFECT THE IMMUNE
ENVIRONMENT IN TUMORS

In addition to the effects on cancer cells, collagen has also been
shown to affect tumor infiltrating immune cells. Of these, TILs
and TAMs are of special interest due to their cytotoxic and anti-
inflammatory activities, respectively.

Collagen-Mediated Modulation of
T Cell Activity
T cells are lymphoid cells that can be divided into several subsets
depending on their T cell receptor (TCR) and expression of co-
receptors, in particular CD4 and CD8. In the tumor
microenvironment, especially the CD8+ T cells are of interest
due to their cytotoxic activity. CD4+ T cells mainly acts to
orchestrate the activity of other immune cells, but they can
also have direct cytotoxic activity (65).

However, the ability of T cells to kill cancer cells is often
suppressed in the tumor due to the existence of a highly immune
December 2021 | Volume 12 | Article 791453
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suppress ive tumor microenvironment . This tumor
microenvironment is characterized by containing cells with an
immunosuppressive phenotype including myeloid-derived
suppressor cells (MDSCs), M2-polarized macrophages, and
regulatory T cells (Tregs), and by the upregulation of several
immune inhibitory molecules such as programmed death ligand 1
(PD-L1) and -2 (PD-L2), TGF-b, indoleamine 2,3-dioxygenase
(IDO), and arginase 1 (ARG1) (66–69). Several studies have
investigated the T cell inhibitory effects of these cellular
components of the tumor microenvironment, but recently the
effect of the ECM on T cell activity has also gained attention.
ECM components, such as collagen, have been reported to directly
or indirectly influence the migration, phenotype, and function of
T cells.

Collagen Can Control the Migration of T Cells
Collagen in the tumor microenvironment can affect the ability of
T cells to kill cancer cells by regulating the migration of T cells
into the tumor. The organization of collagen in tumors is highly
heterogenous but generally found to be more closely packed in
the tumor periphery and more loosely packed within the center
of the tumor. In addition, the collagen fibers are often aligned
perpendicularly to the tumor boundary (42, 45). The density of
collagen and the degree of collagen alignment are strong negative
prognostic factors.

T cells can efficiently migrate in different environments
including collagen matrices using an amoeboid migration
mode (70). In 3D culture assays, T cells do however migrate
slower through collagen gels of high density compared to low
density (71, 72). This reduced migration speed was suggested to
be a consequence of decreased pore size of the matrix (72). The
increased stiffness associated with a higher collagen density
could, however, also contribute to the reduced migration speed
since matrix stiffness has also been shown to affect T cell
migration (73, 74). In a study using optically tunable
hydrogels, it was elegantly demonstrated that increased matrix
stiffness in this assay system led to reduced T cell migration
independently of the pore size (75). In contrast to cancer cells,
which depend on protease activity for migration in a high-
density collagen matrix, T cell migration in collagen is
independent of proteolytic remodeling of the collagen fibers
(72, 76). In vitro studies have also demonstrated that T cells
preferentially migrate along the collagen fibers, indicating that
the collagen orientation could control the migration of T
cells (77).

The decreased T cell migration speed in a high-density collagen
matrix as well as the ability of collagen fibers to guide T cell
migration suggest that collagen in the tumor microenvironment
could limit T cell infiltration. In agreement with these in vitro
studies, migration along the collagen fibers has also been elegantly
demonstrated using ex vivo culture of tissue slices from lung tumors
and ovarian tumors (78–80). These studies confirm that the
alignment of collagen fibers can limit T cell migration into the
tumor core. Similar indications of collagen-mediated restriction of T
cell infiltration were observed in a murine prostate cancer model as
well as in human pancreatic cancer samples (77, 81).
Frontiers in Immunology | www.frontiersin.org 4
Collagen Density Can Regulate T Cell Activity
T cell activation involves the formation of an immunological
synapse between a T cell and an antigen-presenting cell (82).
Older studies have shown that a collagen-dense environment can
affect this interaction and reduce T cell activation (83, 84).
Recently, we have identified that collagen density can also
profoundly affect the activity of T cells after the initial
activation phase (85). Specifically, cultivation of pre-activated
T cells in a 3D high-density collagen matrix, mimicking tumor
ECM, led to decreased proliferation compared to T cells cultured
in a low-density collagen matrix. In addition, the T cells cultured
in high collagen density upregulated Treg markers and
downregulated cytotoxic T cell activity markers (Figures 1A, B).
In alignment with these changes in the cells’ gene expression
profile, we found that TILs cultured in 3D matrices of high
collagen density compared to low collagen density were
subsequently less capable of killing autologous melanoma cells,
showing that collagen can directly affect the function of TILs
(Figure 1C). Whole-transcriptome analyses indicated that the
underlying mechanism of collagen-mediated modulation of T
cell activity might involve autocrine TGF-b signaling (85). We
did not investigate if the increased stiffness associated with a
higher collagen density could be involved in the effects on T cell
activity. The study of mechanosensing in T cells is still in its
infancy, but an interesting study by O’Connor et al. showed that
T cell activation was mitigated when cells were cultured on
substrates of increasing stiffness (87). The effect included
reduced proliferation and expression of cytokines associated
with T cell activity. However, other studies of the effects of
substrate stiffness on T cell biology, have not demonstrated a
similar modulation of T cell activity (88, 89). The exact reason for
these discrepancies is still unclear but could be a consequence of
differences in substrates, T cell origin, and T cell stimulation
between the different studies.

Collagen has also been shown to affect T cells in vivo. During
tissue regeneration, implantation of collagen scaffolds into
wounded muscles of mice promotes the formation of an
immunosuppressive microenvironment (90). Specifically,
collagen led to an increase in the CD4:CD8 ratio among the
infiltrating T cells and the CD4+ T cells were skewed toward a
Th2 phenotype. Additionally, the T cells in the collagen-implanted
wounds expressed higher levels of anti-inflammatory cytokines (90).

Collagen-Receptors Expressed by T Cells
A possible way collagen can exert its effect on T cells is through
the interaction with receptors on the surface of the cells. Several
collagen binding receptors can be expressed by T cells. These
include leukocyte-associated Ig-like receptor-1 (LAIR-1),
discoidin domain receptor 1 (DDR1), and several integrins.

LAIR-1 is an immune-inhibitory transmembrane receptor
with an Ig-like extracellular domain (91). It is a member of the Ig
superfamily, and has been found to be expressed on the majority
of PBMCs and thymocytes (92, 93). LAIR-1 is expressed by
CD4+ and CD8+ T cells, with expression being highest in the
naïve T cells (91, 94). Collagens are high affinity ligands for
LAIR-1 (95) and both transmembrane collagens and secreted
December 2021 | Volume 12 | Article 791453
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collagens, such as collagen type I, can bind to LAIR-1 on the
surface of immune cells (96). For natural killer (NK) cells this
interaction was shown to inhibit their cytotoxic activity (96).
Using T cells isolated from LAIR-1 knockout mice, it has been
demonstrated that collagen can inhibit TCR signaling in a LAIR-
1 dependent manner (97). Additionally, studies have shown that
cross-linking of LAIR-1 using anti-LAIR-1 antibodies directly
Frontiers in Immunology | www.frontiersin.org 5
inhibits T cell activity (91, 94). Further studies are needed to
elucidate the role of LAIR-1 in the immunosuppressive tumor
microenvironment, but based on current knowledge, LAIR-1
could be a promising cancer therapeutic target.

Another collagen binding receptor expressed on T cells is
DDR1. The DDRs are a subfamily of receptor tyrosine kinases,
consisting of DDR1 and DDR2, known to interact with a range of
E

CBA
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G H

FIGURE 1 | A high collagen density inhibits T cell activity and stimulates the immunosuppressive activity of macrophages. High-density collagen affects T cell
activity. (A) T cells were transiently stimulated with PMA and ionomycin and subsequently embedded and cultured in a collagen matrix of high (4 mg/ml) or low
density (1 mg/ml). (B) T cells were cultured in high-density- or low-density collagen matrices for 2 days and their gene expression profiles analyzed. Heatmaps of
normalized (Z-score) RNAseq read counts of genes encoding markers of T cell activity (top panel) and Tregs (bottom panel). Significantly regulated genes indicated
with asterisks. 6 out of 7 markers of T cell activity were significantly downregulated by high-density collagen culture. A trend towards an upregulation of Treg markers
was observed. (C) Tumor infiltrating T cells were cultured for 3 days on plastic (2D) or in 3D high- or low-density collagen matrices. T cells were extracted and
incubated for 4 hours with autologous melanoma cells in different ratios of T cells: melanoma cells. Lysis of melanoma cells by T cells was analyzed using a 51Cr-
release assay, with addition of 10% Triton X-100 used for determining maximum lysis (100%). The cytotoxic activity of T cells was impaired by 3D culture, in
particular high-density collagen culture. (D) RAW 264.7 macrophages were embedded and cultured in a collagen matrix of high- or low density. Splenocytes isolated
from BALB/c mice were seeded in transwell inserts on top. After 3 days, T cell proliferation was analyzed using a BrdU-based flow cytometry assay. (E) Proliferation
of T cells was decreased when co-cultured with macrophages compared to T cells cultured alone. The proliferation was further decreased when co-cultured with
macrophages grown in high-density collagen compared to low-density collagen. (F) T cells were seeded in transwell inserts above conditioned medium from
macrophages cultured for 3 days in high- or low-density collagen matrices. T cells were allowed to migrate towards the conditioned medium for 26-28 hours, and
migrated cells were analyzed with flow cytometry. (G, H) T cells migrated significantly less towards conditioned medium from macrophages from high-density
collagen matrices. The reduced migration was observed for CD3+ T cells (G) and for CD8+ T cells (H). *P < 0.05; **P < 0.01; ***P < 0.001. (A–C) were adapted from
(85). (D–H) were adapted from (86) with permission from The American Association of Immunologists, Inc.
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collagens (98). DDR1 consists of six isoforms and is primarily
expressed by epithelial and carcinoma cells (99, 100). DDR2 is
mainly expressed by cells of mesenchymal origin like fibroblasts
and smooth muscle cells (101). A few studies have, however,
shown that DDR1 expression is induced by TCR activation of T
cells and plays a role in the migration of T cells through collagen
matrices (101, 102). It is therefore speculated that DDR1 could be
an interesting therapeutic target for improving T cell migration
to the tumor (101).

Lastly, several integrins found on T cells are known to bind
collagen. These include a1b1 integrin and a2b1 integrin (5, 103).
These integrins are expressed on activated T cells and upon TCR
stimulation they promote adhesion to the ECM (104). b1
integrins can also have co-stimulatory effects on antigen-
stimulated T cells, rendering them more proliferative when
cultured on surfaces coated with collagen type I compared to
other ECM components such as fibronectin (105). This co-
stimulatory effect was shown to be particularly potent in the
case of collagen type I mediated activation of a2b1 integrin (106).
Also, a1b1 and a2b1 integrins expressed by activated T cells have
been found to be important for the generation of an
inflammatory response in a mouse model of delayed type
hypersensitivity (107). Th17 cells express a2b1 integrin, and
the binding of collagen to this integrin leads to increased
interleukin (IL)-17 synthesis (108). In the same study, it was
shown that blockade of a2b1 integrin decreases the severity of
collagen-induced arthritis in mice (108).

Collagen-Mediated Modulation of
Macrophage Activity
Macrophages are myeloid cells belonging to the innate immune
system. They are known to be very plastic cells, and dependent
on their environment they can acquire an M1- or M2-polarized
phenotype. The M1-polarized macrophages have a pro-
inflammatory phenotype characterized by the expression of
pro-inflammatory cytokines such as IL-1b, inducible nitric
oxide synthase (iNOS) and tumor necrosis factor a (TNFa)
and by the ab i l i ty to present ant igens on major
histocompatibility complex (MHC) molecules. M2-polarized
macrophages are anti-inflammatory cells expressing markers
such as IL-10, TGF-b, and ARG1. However, newer studies
have pointed out that this classification of macrophages is too
simplified. Instead of macrophages being either M1- or M2-
polarized, they are mostly somewhere in between, often
expressing both types of markers simultaneously (109, 110).

TAMs are mainly M2-like anti-inflammatory macrophages
with the ability to reduce a potent anti-tumor immune response.
Consequently the number of TAMs is associated with a poor
prognosis for several types of cancer (44, 111–114). TAMs can
originate from tissue resident macrophages or from circulating
monocytes that infiltrate the tumor (115). How TAMs acquire
this pro-tumorigenic phenotype is still largely unknown, but
several studies have shown that their migration and immune-
suppressive activity can be greatly affected by the composition
and mechanical properties of the surrounding ECM, and in
particular by collagen (86, 116–118).
Frontiers in Immunology | www.frontiersin.org 6
Collagen-Mediated Regulation of the Immune
Suppressive Activity of Macrophages
In the tumor microenvironment, TAMs are often detected in
close contact with collagen (119), and it is therefore an appealing
hypothesis that the interaction with collagen could modulate the
activity of the cells. This could happen during the differentiation
of monocytes to macrophages or during the polarization towards
an M2-like phenotype.

Cultivation of primary monocytes on a collagen type I coated
surfaces has been shown to stimulate the differentiation to
macrophages (120, 121), and during PMA-induced differentiation
of the monocytic cell line U937, collagen type I causes reduced
production of pro-inflammatory cytokines (122).

We have recently shown that 3D-cultured macrophages are
directly affected by high collagen densities mimicking the ones
found in tumors (86). Macrophages cultured in collagen matrices
of high density compared to low density acquired a distinct
expression profile, which included the differential expression of
immune-regulatory genes and genes encoding chemokines. Co-
culture assays revealed that macrophages cultured in high-
density collagen inhibited the proliferation of T cells more
than macrophages cultured in low-density collagen (Figures
1D, E). Additionally, the gene-expression changes were
associated with a decreased ability to attract CD8+ T cells
(Figures 1F–H). Altogether these findings illustrate that the
surrounding collagen density can instruct macrophages to
become more anti-inflammatory (86).

In alignment with these findings, culture of monocytes on
decellularized matrices from colorectal tumor tissue or from
normal colorectal tissue strikingly showed that tumor matrices
drive monocytes towards M2-polarization (123). This could be a
consequence of the higher collagen density of tumor matrices
compared to the matrices from normal tissue (123). Similarly,
decellularized matrices from obese and lean breast tissue were
used to examine the effects of these matrices on macrophage
function (124). Obesity was associated with increased amounts of
interstitial collagen, and when bone-marrow derived
macrophages (BMDMs) were cultured on the matrices derived
from obese tissue, they acquired both morphological and genetic
characteristics similar to those of M2-like TAMs (124).

In addition to these studies of primary monocytes/
macrophages, the human monocytic cell line THP-1 has also
been shown to acquire an M2-like phenotype when cultured in a
gelatin-based hydrogel compared to regular tissue-culture
conditions (125). In another study using PMA-stimulated
THP-1 cells cultured in collagen gels of low or high density, it
was, however, unclear if an increase in the surrounding collagen
density stimulated M2-polarization of these THP-1 derived
macrophages (126).

The exact reason why macrophages cultured in high-density
collagen seem to acquire an M2-like phenotype still needs to be
elucidated. One of the underlying mechanisms could involve the
increased stiffness associated with an increased collagen density.

Studies have shown that cultivation of primary macrophages
on stiff ECM surfaces can affect their migration speed,
morphology, proliferation, and phagocytic activity (127, 128)
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and make them acquire a more M2-like phenotype (128, 129).
Additionally, it has been shown that cultivation of THP-1
derived macrophages on stiff surfaces increases the expression
of M2-markers compared to culture on softer surfaces (130).
However, other studies have shown that macrophages can also
upregulate the expression of M1-markers when cultured on stiff
surfaces (131–133). The opposing results could be due to the
different range of stiffness, type of coating, cell types, and
stimulation used. For example, one study found that
cultivation of unstimulated BMDMs on hydrogels of increased
stiffness led to upregulation of M2-markers, whereas the same
cel l type st imulated with lipopolysaccharide (LPS)
downregulated M2-markers and upregulated M1-markers on
stiffer surfaces (133). Another example of how macrophages of
different origin and activation state respond differently to ECM
changes was shown by Stahl and colleagues (134). They found
that pulmonary macrophages isolated from patients with
idiopathic pulmonary fibrosis acquired a more M2-like
phenotype when cultured on various types of collagen
compared to pulmonary macrophages isolated from healthy
donors (134). The mechanosensing ability of macrophages has
been suggested to involve the ion channel transient receptor
potential cation channel subfamily V member 4 (TRPV4) (128,
132) and the transcriptional coactivator YAP (135).

Several studies have indicated that collagen can stimulate M2-
polarization of macrophages in vivo. For instance, implantation
of collagen gels into injured muscles of mice resulted in an
increased amount of M2-like macrophages compared to saline
injected control mice (90). This effect was, however, shown to be
dependent on collagen-induced Th2-polarization of CD4+ T cells
(90). During skin wound healing in mice, it was also
demonstrated that collagen injected into wounds led to M2-
polarization of macrophages. This effect appeared to be mediated
by the acid-sensing pathway-associated lysosomal adaptor
protein, Lamtor1, indicating that phagocytosis of collagen and
subsequent lysosomal signaling could be critical for the observed
M2-polarization (136). In rats, implantation of crosslinked
collagen disks likewise resulted in increased accumulation of
M2-like CD206+ macrophages (137).

Collagen-Receptors Expressed by Macrophages
Several collagen-binding receptors are expressed by
macrophages and could be involved in the cellular response to
the surrounding collagen.

DDR1 can be expressed by macrophages and affect their
cellular functions. DDR1 mRNA has been detected in human
monocytic cells and the expression of DDR1 increases upon
activation with IL-1b, granulocyte-macrophage colony-
stimulating factor (GM-CSF), LPS, or phytohemagglutinin
(PHA) (138). The role of DDR1 for macrophage function has
been addressed in studies using DDR1-overexpressing THP-1
cells (138, 139). Here it was reported that the DDR1 isoforms
DDR1a and DDR1b increased the adherence to collagen coated
plates in a b1-integrin independent manner (138). Additionally,
DDR1a promoted the ability of THP-1 cells to migrate through
3D collagen matrices (138). Cultivation of DDR1b-
Frontiers in Immunology | www.frontiersin.org 7
overexpressing THP-1 monocytes on collagen-coated surfaces
increased the expression of inflammatory markers such as IL-1b,
IL-8, MIP-1a, and MCP-1 compared to mock-transfected control
cells (139). In the murine macrophage cell line J774A.1, collagen
induced iNOS expression and consequently nitric oxide
production in a DDR1-dependent manner (140). Murine
Kupffer cells have also been shown to express DDR1, and pre-
treatment of these cells with collagen led to an increased ability to
attract cancer cells in a DDR1-dependent manner (141).

Several types of integrins are expressed on macrophages, with
the b2-integrin family being the most common (142). However,
macrophages can also express the collagen-binding a2b1-
integrin (142). This has been demonstrated for primary
macrophages isolated from the peritoneum of mice, and for
these cells a2b1-integrin is essential for adhesion to collagen
(143). In a recent study, it was furthermore shown that a2b1-
integrin mediated the migration and mechanosensing of
macrophages cultured on 3D collagen matrices upon
deformation by contracting fibroblasts (144). a2b1-integrin is
also expressed by the monocytic cell line, THP-1, where it is
involved in M2-polarization induced by 3D culture in a gelatin-
based hydrogel (125).

LAIR-1 is expressed by the majority of myeloid cells,
including monocytes and macrophages, and it has been
reported to have inhibitory effects on their cellular functions
(93). In monocytes, LAIR-1 ligation with an agonistic antibody
inhibited TLR-mediated activation (145). Additionally,
cultivation of M1-stimulated murine or human macrophages
on surfaces coated with LAIR-1 ligand peptide has been shown to
result in decreased secretion of the pro-inflammatory cytokine
TNFa as well as T cell attracting chemokines (146). Recently, it
was demonstrated that LAIR-1 also promotes the differentiation
from classical to non-classical monocytes in the bone-marrow
(147). Surprisingly, this study also showed that global or
myeloid-specific deletion of LAIR-1 in mice increased
experimental lung metastasis of B16-F10 melanoma (147).
Further studies are needed to elucidate the role of LAIR-1 in
other cancer models and its role in modulating anti-
tumor immunity.

Osteoclast-associated receptor (OSCAR) is another collagen-
binding receptor, which is expressed in osteoclasts in mice, and
in monocytes, macrophages, dendritic cells, and osteoclasts in
humans (148–150). It is a member of the leukocyte receptor
complex that associates with FcRg, and through FcRg-signaling
OSCAR is critical for osteoclastogenesis (150, 151). In contrast to
LAIR-1, OSCAR-signaling has mainly been associated with
immune activation (35). In dendritic cells derived from human
blood monocytes, OSCAR was shown to trigger cellular
activation events (152), and in monocytes it potentiates the
pro-inflammatory response of Toll-like receptor (TLR) ligands
(153). This effect was confirmed in another study, where collagen
stimulated the release of pro-inflammatory cytokines from
monocytes in an OSCAR-dependent manner (154).

Macrophages also express the MR, which is an endocytic
receptor with multiple ligands including collagen (155, 156). The
receptor binds collagen and proteolytically generated collagen-
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fragments and promotes cellular internalization of the collagen
for lysosomal degradation (32, 157, 158). In vivo, this process of
MR-mediated collagen internalization has been demonstrated by
macrophages in the skin (37, 159) and in tumors (36, 160), and
genetic deletion of MR leads to an accumulation of collagen in
murine tumors (36). It is not yet known if the MR-collagen
interaction can lead to changes in macrophage activity
and function.
THE ROLE OF COLLAGEN FOR IMMUNE
ACTIVITY IN TUMORS IN VIVO

Several studies have attempted to elucidate the role of collagen
for cancer progression and metastasis in vivo. However, only
relatively few of these studies specifically investigated the effects
of collagen on immune cell infiltration and activity.

The transgenic Col1a1tm1jae (ColR) mice have a mutation in
the collagenase cleavage site of the a1 chain of collagen type I,
and as a consequence of the reduced collagen turnover they
accumulate collagen in various tissues. These mice were
interbred with MMTV-PymT mice, which spontaneously
develop mammary cancer, and used by Keely and colleagues to
investigate the effect of increased collagen density on mammary
cancer progression and metastasis. The large collagen
accumulations observed in the tumors of these mice were
accompanied by increased tumor growth and metastasis (161).
In another study by the same group, it was demonstrated that the
increased breast tumor growth in the collagen accumulating
transgenic mice was associated with increased infiltration of
macrophages, neutrophils and a-smooth muscle actin
(aSMA)-positive fibroblasts (162). The collagen-dense tumors
were additionally characterized by an increased expression of
cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2).
Blocking of COX-2 with Celecoxib decreased collagen
deposition and infiltration of macrophages and neutrophils,
suggesting that COX-2 modulates tumor progression in
collagen dense tumors (162). In a follow-up study, the cell
composition of the tumor microenvironment was examined by
flow cytometry (163). No significant changes in cell composition
were observed although a trend towards increased neutrophil
recruitment was seen. Additionally, the cytokine profiling
indicated a change in neutrophil activation. A potential role of
neutrophils was confirmed by blocking the recruitment of these
cells, which limited the increased tumor growth in the collagen-
accumulating mice (163). Another study using orthotopically
injected breast cancer cells, showed no difference in primary
tumor growth between Col1a1tm1jae and wildtype (wt) mice, but
significantly more metastasis to liver and lung in the collagen
accumulating mice (164). The tumor-promoting effects of
collagen observed in Col1a1tm1jae mice was also supported by a
study from Northey et al. that showed increased proliferation of
MECs indicative of a higher risk of breast cancer development
(165). These seminal studies were proceeded by another well-
performed study, which used Col1a1tm1jae mice combined with a
chemically induced or transplanted model of hepatocellular
Frontiers in Immunology | www.frontiersin.org 8
cancer (166). In this study the Col1a1tm1jae mice were,
however, found to develop significantly fewer and smaller
tumors compared to wt mice (166). The observed tumor
growth reduction in Col1a1tm1jae mice was suggested to be a
consequence of the lack of proteolytically generated collagen
fragments that stimulate integrin-signaling (166).

Recently, three studies have investigated the role of collagen
for tumor progression, using conditional collagen type I
knockout (KO) mice. Chen et al. inactivated the Col1a1 gene
in aSMA+

fibroblasts and combined this with a genetically
induced model of pancreatic ductal carcinoma (PDAC) (167).
In this model system, they observed a 50% reduction in stromal
collagen type I and, interestingly, an accelerated tumor growth
and decreased overall survival compared to control mice. The
tumors in conditional Col1a1 KO mice had increased infiltration
of CD206+;F4/80+;Arg1+ myeloid cells and lower levels of B- and
T cells (167). These changes in the immune microenvironment
were suggested to be part of the reason for the observed effects on
tumor growth. Two other recent studies used a similar approach
to study the effects on Col1a1 inactivation in CAFs or in the
entire liver of mice with intrahepatic cholangiocarcinoma or liver
metastases (168, 169). The conditional collagen type I KO mice
did not show altered primary tumor growth, but did show
increased growth of liver metastases (168, 169). In the liver
metastases, no differences in immune infiltration and
inflammatory markers were found, apart from a decrease in
Cd4 and Foxp3mRNA levels (169). Instead the authors proposed
that the anti-tumorigenic effect was due to collagens ability to
physically restrict tumor expansion (169).

The results are in line with a previous study where SPARC-/-

mice, which display reduced deposition of fibrillar collagen, were
used to study the effects of collagen on pancreatic cancer growth
and liver metastasis. Tumors in SPARC-/- mice had decreased
levels of collagen type I and III and higher levels of TAM-
infiltration, which were associated with reduced survival and
increased metastasis (170). Another study used mice with
impaired pro-collagen processing to show that collagens
produced selectively by the cancer cells had anti-tumorigenic
effects (171).

In these in vivo studies of the effects of collagen on
tumorigenesis and metastasis, it was not investigated how
collagen deposition in the tumor affects the efficacy of cancer
immunotherapy. In one study it was, however, shown that
depletion of aSMA+

fibroblasts reduced the amount of
collagen, and that this was accompanied by increased efficacy
of anti-CTLA-4 therapy (172).

Lastly, studies have directly or indirectly investigated the
effects of LOX-mediated collagen cross-linking on tumor
growth in mice. Treating early stage PDAC with a LOX-
inhibitor together with the chemotherapeutic drug
gemcitabine, increased the overall survival of the mice by
reducing metastasis. Interestingly, the combination therapy led
to an increased number of macrophages and neutrophils in the
primary tumors (173). However, another study reported that
LOX knock-down using shRNA reduced the number of CD11b+

cells in breast cancer lung metastases (174).
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In late stage murine PDAC, a LOX-inhibitor did not have any
effect on survival of the mice but, interestingly, tumors were
found to have an increased number of T cells and decreased
number of neutrophils (173). It could thus be of interest to
further combine this treatment with immunotherapy.

Based on in vitro and in vivo studies, collagen is likely
influencing anti-tumor immune responses by directly
modulating T cell activity as well as through the regulation of
macrophage activity (Figure 2).
THE EFFECTS OF TUMOR COLLAGEN ON
IMMUNOTHERAPY

Immunotherapy is a promising new type of cancer therapies
using the ability of the body´s own T cells to kill cancer cells.
However, a large number of patients do not respond to these
treatments. As outlined in this review, collagen could be a novel
target for improving the efficacy of immunotherapies such as
checkpoint inhibitors (74, 175–180), TIL-based therapy (181),
and cancer vaccines (182). The hypothesis that collagen in the
tumor microenvironment can affect the outcome of cancer
immunotherapy is supported by studies that have identified
the serum level of the N-terminal pro-peptide of collagen type
III (PRO-C3) as a marker of poor prognosis following anti-
CTLA-4 and anti-PD-1 checkpoint inhibitor therapy in
metastatic melanoma patients (183, 184). This serum marker is
believed to reflect the presence of a highly collagen-dense tumor
microenvironment (185).

In lung cancer, a high collagen level has also been shown to
correlate with reduced efficacy of anti-PD-1/PD-L1 therapies
(175). In mouse models of lung cancer, anti-PD-L1 resistance
Frontiers in Immunology | www.frontiersin.org 9
was shown to be associated with enhanced deposition of
collagen, as well as fewer and more exhausted tumor-
infiltrating CD8+ T cells. The effect of collagen on CD8+ T
cells was mediated by LAIR-1, and combining anti-PD-1 with
blockade of LAIR-1 significantly increased the therapeutic
efficacy (175). Blockade of LAIR-1 has also been shown to
increase the number of tumor-infiltrating CD4+ and CD8+ T
cells and enhance the efficacy of anti-PD-L1 treatment in
humanized murine xenograft models of several cancers,
including colon- and pancreatic cancer (176, 177). In another
study, it was shown that reduction of tumor stiffness in mice
using a LOX-inhibitor increased the number of tumor-
infiltrating T cells and improved the response to anti-PD-1
therapy (74). Reduction of collagen deposition in tumors, has
also been obtained through inhibition of focal adhesion kinase
(FAK) in murine models of pancreatic cancer (181). In addition
to reducing collagen-density in tumors, inhibition of FAK
decreased the number of infiltrating anti-inflammatory
immune cells such as TAMs and Tregs, and increased the
number of CD8+ T cells (181). These changes were associated
with significantly improved efficacy of both TIL-based therapy
and checkpoint inhibitor therapy (181). Recently, the use of a
bacterial-based agent for delivery of collagenase to murine
pancreatic tumors was demonstrated (186). This approach led
to reduced collagen levels in the tumors and, importantly, also to
enhanced efficacy of checkpoint inhibitor treatment (186). The
ability of collagen to influence immunotherapy could involve
DDR2-signaling since treatment of several murine cancer models
with a combination of anti-PD-1 antibody and a DDR2-inhibitor
led to an increase in CD8+ T cells and a reduced tumor burden
(187). Inhibition of TGF-b has also been shown to reduce
collagen levels in tumors (188–190) and to improve checkpoint
inhibitor therapy (180, 190). The exact mechanism of action of
FIGURE 2 | Immune modulatory effects of high-density collagen in cancer. Schematic representation of how increased collagen density, associated with tumor
progression, affects immune cells in the TME. High-density collagen drives M1 to M2 polarization of macrophages, which in turn suppresses CD8+ T cell attraction as
well as T cell activity. High-density collagen also affects T cells directly by increasing TGF-b signaling and by reducing tumor infiltration, proliferation and cytotoxic
activity. Created with BioRender.com.
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this blockade is, however, difficult to delineate because of the
multiple roles of TGF-b including direct effects on immune-
suppressive cells in the tumor microenvironment (191).

The negative influence of collagen on cancer immunotherapy,
was not observed in a study by Elisseff and colleagues where they
co-injected B16-F10 melanoma cells and urinary bladder matrix
(UBM) scaffolds into mice (192). These scaffolds, which are
characterized by high levels of collagens, decreased tumor growth
and improved the response to anti-PD-L1 or anti-PD-1
treatment (192). The tumor microenvironment of these UBM-
associated tumors was characterized by increased number of
CD4+ T cells and NK cells, and fewer Tregs compared to control
tumors (192). It should, however, be noted that these UBM-
scaffolds do not only consist of collagen but also contain other
ECM-components, which could have multiple biological roles.

Collagen can interact with a number of ECM proteins, and
consequently the level of collagen in tumors could correlate with
the levels of other ECM proteins as well. This situation has been
observed for hyaluronan, for which an increasing intratumoral
content was accompanied by an increasing collagen level (193).
Consequently, it cannot be excluded that immune modulation
associated with high collagen levels could also be a consequence
of altered levels of other ECM components.
CONCLUSION

The ability of the ECM to influence immune cell behavior
constitutes a novel research field, which could be termed
matrix immunology. Here we have reviewed the current
knowledge about the ability of collagen to directly or indirectly
affect T cell activity. The majority of the reviewed studies focus
on collagen type I, which is the most abundant of the collagens. It
should, however, be noted that other less abundant collagen
types could have different effects on the activity of immune cells.
In addition to collagen, the ECM also contains many other
Frontiers in Immunology | www.frontiersin.org 10
components that all potentially could influence the cells in
contact with it. Some of these components, such as versican,
extracellular matrix protein-1 (ECM1) and hyaluronan, have
already been suggested to have direct immune modulatory
function (194–196). The current knowledge about the ability of
different ECM components including hyaluronan to modulate
immune activity has been excellently reviewed by (197).
However, for most ECM components it is still unknown if they
can influence immune cell activity. The immune modulatory
functions of the ECM could influence the development and
progression of cancer as well as the outcome of cancer
therapies. Consequently, future studies within this field could
reveal targets for new cancer therapies. Finally, it should be noted
that the importance of the ECM in regulating immune activity
extends beyond the cancer research field, since the dysregulation
of immune activity is a key feature of multiple other
pathological conditions.
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73. Tabdanov ED, Rodrıǵuez-Merced NJ, Cartagena-Rivera AX, Puram VV,
Callaway MK, Ensminger EA, et al. Engineering T Cells to Enhance 3D
Migration Through Structurally and Mechanically Complex Tumor
Microenvironments. Nat Commun (2021) 12:1–17. doi: 10.1038/s41467-
021-22985-5

74. Nicolas-Boluda A, Vaquero J, Vimeux L, Guilbert T, Barrin S, Kantari-
Mimoun C, et al. Tumor Stiffening Reversion Through Collagen
Crosslinking Inhibition Improves T Cell Migration and Anti-Pd-1
Treatment. Elife (2021) 10:1–29. doi: 10.7554/eLife.58688

75. Hörner M, Raute K, Hummel B, Madl J, Creusen G, Thomas OS, et al.
Phytochrome-Based Extracellular Matrix With Reversibly Tunable
Mechanical Properties. Adv Mater (2019) 31:1–11. doi: 10.1002/adma.
201806727

76. Wolf K, Müller R, Borgmann S, Bröcker EB, Friedl P. Amoeboid Shape
Change and Contact Guidance: T-Lymphocyte Crawling Through Fibrillar
Collagen Is Independent of Matrix Remodeling by MMPs and Other
Proteases. Blood (2003) 102:3262–9. doi: 10.1182/blood-2002-12-3791

77. Pruitt HC, Lewis D, Ciccaglione M, Connor S, Smith Q, Hickey JW, et al.
Collagen Fiber Structure Guides 3D Motility of Cytotoxic T Lymphocytes.
Matrix Biol (2020) 85–86:147–59. doi: 10.1016/j.matbio.2019.02.003

78. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean M-C, Validire P,
Trautmann A, et al. Matrix Architecture Defines the Preferential
Localization and Migration of T Cells Into the Stroma of Human Lung
Tumors. J Clin Invest (2012) 122:899–910. doi: 10.1172/JCI45817

79. Bougherara H, Mansuet-Lupo A, Alifano M, Ngô C, Damotte D, Le Frère-
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