
polymers

Article

Preparation, Thermal, and Thermo-Mechanical Characterization
of Polymeric Blends Based on Di(meth)acrylate Monomers

Krystyna Wnuczek 1,* , Andrzej Puszka 1 , Łukasz Klapiszewski 2 and Beata Podkościelna 1
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Abstract: This study presents the preparation and the thermo-mechanical characteristics of polymeric
blends based on di(meth)acrylates monomers. Bisphenol A glycerolate diacrylate (BPA.GDA) or
ethylene glycol dimethacrylate (EGDMA) were used as crosslinking monomers. Methyl methacrylate
(MMA) was used as an active solvent in both copolymerization approaches. Commercial polycar-
bonate (PC) was used as a modifying soluble additive. The preparation of blends and method of
polymerization by using UV initiator (Irqacure® 651) was proposed. Two parallel sets of MMA-based
materials were obtained. The first included more harmless linear hydrocarbons (EGDMA + MMA),
whereas the second included the usually used aromatic copolymers (BPA.GDA + MMA). The influ-
ence of different amounts of PC on the physicochemical properties was discussed in detail. Chemical
structures of the copolymers were confirmed by attenuated total reflection–Fourier transform in-
frared (ATR/FT-IR) spectroscopy. Thermo-mechanical properties of the synthesized materials were
investigated by means of differential scanning calorimetry (DSC), thermogravimetric (TG/DTG)
analyses, and dynamic mechanical analysis (DMA). The hardness of the obtained materials was also
tested. In order to evaluate the surface of the materials, their images were obtained with the use of
atomic force microscopy (AFM).

Keywords: polycarbonate; polymeric blends; acrylates

1. Introduction

The science of polymers is currently undergoing rapid development, both in the
field of basic research regarding known polymers and new polymeric materials. The
development of new methods of synthesis focused on the production of materials with
improved properties as well as extending the current area of polymer application are
crucial priorities.

Polymer blends belong to a class of materials in which at least two polymers (or
polymer and monomer) are blended together to create a macroscopically homogeneous
material with different physical properties. The basic goal of the production of such
materials is to obtain a product with more favorable chemical and physical properties than
the polymers included in the blend [1]. The following features which make polymer blends
increasingly attractive can be distinguished: The possibility of obtaining a cheap material
with a strictly designed set of properties, the possibility of extending the application area
of polymers existing on the market, the possibility of improving processing and reducing
production waste [2–5]. Polymer blends have found application both in everyday life,
industry and advanced technologies. There has been a lot of progress in the field of blends
in recent years [6–9]. They have been developed to meet specific technical requirements,
such as: Better process ability, greater impact strength, greater resistance to deformation at
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elevated temperature, and better resistance to physicochemical factors. The properties of
the main components are therefore changed by controlled admixing [10–13].

Preparation of polymer blends is relatively simple. There are many ways to obtain
polymer blends, the most common of which is the mixing of solid polymers above the
yield point. Due to the specificity of the conducted process, plastic mixing can be carried
out using continuous and periodic methods. In some cases, extruders are used [14–16].
The final polymeric material could be modified by addition of small amounts of other
components to achieve the desired properties. All ingredients could be mixed at various
ratios to produces new blends with significantly different properties [17,18].

Blends based on poly(methylmethacrylate) (PMMA) and polycarbonate (PC) have
been found in the literature, however the number of reports which present the synthesis
of blends based on ethyleneglycol dimethacrylate with methyl methacrylate (EGDMA
+ MMA) and a PC filler are limited. Although PMMA exhibits a fragile mechanical be-
havior, mixing it with PC results in polymer blends with good mechanical performance.
Debier et al. synthesized blends by melting PC and PMMA in THF and proposed a reac-
tion mechanism between the polymers. This mechanism takes into account the influence
of the degradation of the components under the experimental conditions in which the
chemical reaction was observed [19]. In another study, imide units were copolymerized
with MMA in order to improve the compatibility between PC and acrylics through specific
interactions or internal repulsion [20]. Moussaif et al. obtained a PMMA-g-PC copoly-
mer that could act as a compatibilizer for the PC/PVDF blend [21]. Kunar et al. melt
blended bisphenol-A polycarbonate and poly(butylene terephthalate) with ethylene-n-
butylacrylate-glycidylmethacrylate terpolymer at various proportions in order to study the
effects of compatibilizers on mechanical, thermal, and flow properties of the blends [22].
The studies concerning the PMMA/PC blend were reported by Macedo et al. [23] The
effect of processing conditions on the physicochemical properties of poly(methyl methacry-
late)/polycarbonate blends was considered. The obtained polymer blends were char-
acterized by a synergistic combination of mechanical properties of polycarbonate and
polymethylmethacrylate.

Abtahi et al. reported obtaining π-conjugated polymer blends with revised thermoelec-
tric power factors. Blending π-conjugated polymers provides a possibility of manipulating
charge transport properties and improving the performance of organic thermoelectrics [24].
The conjugated polymer blends were also synthesized by Savagian et al. The article
presents how the composition of dioxythiophene-based electrochromic polymers (ECPs)
blends can be adapted to access a range of black hues with complete coverage of the
visible spectrum [25]. In turn, Jiang et al. presented self-assembled structures of blended
random and block copolymers to tune the encapsulation and release of lipophilic cargo
molecules [26].

Polycarbonates (PC) have been widely applied in automotive industries, construction,
electronics, and preparation of medical equipment due to their specific mechanical, thermal,
and optical properties [27,28]. Many industrial sectors have used polycarbonates in view
of their excellent physical properties such as transparency, high toughness, high percent
elongation, high impact fact strength and high thermal stability [29–36]. Many important
application areas of polycarbonates include the manufacturing of household products
(CD production, lighting, polycarbonate panels) [34–37]. Developing new types of poly-
meric materials and their characterizations allows to expand the range of applications of
polycarbonates in various fields of the economy.

In the present study, new materials in the form of polymeric blends with the addition
of commercial polycarbonate were prepared and characterized. The methyl methacrylate
(MMA) was used as an active solvent, because it is characterized by low toxicity, and is
appropriate for high viscosity monomers. We attempted to develop a synthesis method
of PC-polymeric blends with improved physicochemical properties in comparison with
poly(methyl methacrylate) (PMMA). The polymeric materials were obtained by using
the photopolymerization method which has many advantages: Low temperature of the
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process, high speed, low cost and low energy. In addition, a more harmless monomers
system based on linear hydrocarbons (EGDMA + MMA) in comparison with the commonly
used the aromatic monomer BPA.GDA was also applied. Thermal and thermo-mechanical
properties of both obtained systems were compared by means TG, DSC, and DMA analyses.
Additionally, spectroscopic characterization (ATR-FTIR), hardness, and swelling properties
of the new polymeric blends were evaluated.

2. Materials and Methods
2.1. Materials

Bisphenol A glycerolate (1 glycerol/phenol) diacrylate (BPA.GDA) (Sigma Aldrich,
Steinheim am Albuch, Germany) and ethylene glycol dimethacrylate (EGDMA, ≥97.5%)
(Sigma Aldrich, Steinheim am Albuch, Germany) were used as monomers in the polymer-
ization reaction. Moreover, 2,2-dimethoxy-2-phenylaceto-phenone (Irqacure® 651) was
applied (Sigma Aldrich, Steinheim am Albuch, Germany) as the photoinitiator of poly-
merization. In both systems, methyl methacrylate (MMA, ≥99.0%) (Merck, Darm-stadt,
Germany) was employed as an active solvent. The PC (polycarbonate) was pur-chased
from Lotte Chemical (Seoul, South Korea), density 1.15–1.25 g/cm3, molecular weight
>1.000 g/mol. Methane dichloride (99.8%) (Merck, Darmstadt, Germany) was used as a
solvent for commercial PC. Structures of listed reagents are presented in Figure 1. For
swelling test, we used the acetone (99.5%) and hydrochloric acid (36.5–38.0%) from Merck.
The purified water was provided by Millipore UMCS (Lublin, Poland).
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Figure 1. Chemical structures of the reagents: Methyl methacrylate (MMA) (A); ethylene glycol 
dimethacrylate (EGDMA) 5 (B); bisphenol A glycerol diacrylate (C); 2,2-dimethoxy-2-phenylaceto-
phenone (D), and commercial polycarbonate (PC) (E). 
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red (ATR/FT-IR) spectroscopy using a TENSOR 27 Bruker (Bruker GmbH, Mannheim, 
Germany) spectrometer equipped with a diamond crystal (Ettlingen, Germany). The spec-
tra were recorded in the range of 4000–600 cm−1 with 32 scans per spectrum at a resolution 
of 4 cm−1. 

Thermogravimetric analysis TG/DTG was conducted using a STA 449 Jupiter F1, Ne-
tzsch (Selb, Germany). The samples were heated from 25 to 600 °C at a rate of 10 °C/min 
in a dynamic atmosphere of helium (25 cm3/min). An empty Al2O3 crucible was used as a 
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Figure 1. Chemical structures of the reagents: Methyl methacrylate (MMA) (A); ethylene glycol
dimethacrylate (EGDMA) 5 (B); bisphenol A glycerol diacrylate (C); 2,2-dimethoxy-2-phenylaceto-
phenone (D), and commercial polycarbonate (PC) (E).

2.2. Methods

The attenuated total reflection (ATR) was recorded based on Fourier transform in-
frared (ATR/FT-IR) spectroscopy using a TENSOR 27 Bruker (Bruker GmbH, Mannheim,
Germany) spectrometer equipped with a diamond crystal (Ettlingen, Germany). The spec-
tra were recorded in the range of 4000–600 cm−1 with 32 scans per spectrum at a resolution
of 4 cm−1.

Thermogravimetric analysis TG/DTG was conducted using a STA 449 Jupiter F1,
Netzsch (Selb, Germany). The samples were heated from 25 to 600 ◦C at a rate of
10 ◦C/min in a dynamic atmosphere of helium (25 cm3/min). An empty Al2O3 cru-
cible was used as a reference. The thermal stability factors, such as loss mass temperatures
(T5%, T10%,T50%), as well as temperatures of maximum mass loss (Tmax) and residual mass
(RM) were estimated.
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Differential scanning calorimetry (DSC) curves were obtained with the use of a DSC
Netzsch 204 calorimeter Netzsch (Günzbung, Germany). The measurements were taken
in the aluminum pans with a pierced lid with the sample mass was approx. 10 mg under
nitrogen atmosphere (30 cm3/min). Dynamic scans were performed at a heating rate
of 10 ◦C/min in the temperature range 0–200 ◦C. An empty aluminum crucible was
used as reference.

DMA measurements were performed by means of dynamic mechanical analyzer
(DMA) Q 800 TA Instruments (New Castle, DE, USA) using the dual cantilever clamp.
Measurements for all samples were conducted in the temperature range of −50–180 ◦C
at a constant heating rate of 3 ◦C/min with a constant frequency of 1 Hz. Samples with
dimensions equal to 65 mm × 10 mm × 2 mm were tested. Viscoelastic properties of the
obtained materials were estimated based on the changes of storage modulus (E’), loss
modulus (E”) as well as the changes of tan delta at constant frequency depending on
temperature. The Tg was identified as the maximum of the tan delta. Based on the tan
delta curves, the full-width at half maximum (FWHM) was also determined.

The hardness of the materials was measured based on the Shore D method using a
7206/H04 analog hardness testing apparatus (Zwick, Ulm, Germany) at 20 ◦C. Readings
were taken after 15 s.

The images of samples were obtained using an atomic force microscopy (AFM)—
Analytical Laboratory, Faculty of Chemistry, UMCS, Lublin, Poland). All measurements in
the tapping operation modes were carried out using a NanoScope V AFM (Veeco, New
York City, NY, USA) equipped with the NanoScope 8.10 software (Bruker Corporation,
Germany). A rectangular Si cantilever/tip (Veeco, New York City, NY, USA) with a spring
constant of 20–80 N/m and resonance frequency of 300 kHz was used. The resolution of the
scans obtained was equal to 256 × 256 pixels. The topography and peak force error images
were obtained simultaneously. The data were analyzed using the Nanoscope Analysis ver.
1.40 software (Veeco, New York City, NY, USA).

2.3. Preparation of Blends

The BPA.GDA + MMA + PC and EGDMA + MMA + PC blends were prepared
using the photopolymerization technique. An appropriate amount of active solvent MMA
(methyl methacrylate) was added to the monomer (BPA.GDA or EGDMA) at the wt.% ratio
of 3:7. The monomers were stirred at room temperature until a homogenous solution was
obtained. Then, the PC solutions were carefully introduced. After addition, the polymer
(PC) was dissolved in CH2Cl2 (2 h, room temperature). The whole content was stirred to
obtain a homogeneous mixture and next put into the oven in order to evaporate the solvent
(for 20 min in 30 ◦C). Finally, the calculated amount of UV initiator (2% w/w) (Irqacure®

651) was added to the sample. The contents of the beaker was poured into glass molds
(10 mm × 8 mm × 2 mm) and polymerized under a UV lamp for 40 min. The samples
were heated at 80 ◦C for 30 min after taking them out from under UV lamps. The detailed
information regarding reagents and their amounts is presented in Table 1. The proposed
scheme of polymeric blends structure is presented in Figure 2.

Table 1. Amounts of components used for the synthesis.

Sample BPA.GDA/EGDMA +
MMA

BPA.GDA/EGDMA +
MMA + 1% PC

BPA.GDA/EGDMA +
MMA + 5% PC

BPA.GDA/EGDMA +
MMA + 10% PC

MMA (g) 3 3 3 3
BPA.GDA/EGDMA (g) 7 7 7 7

PC (wt.%) 0 1 5 10
CH2Cl2 (cm3) 0 1 2 4

Initiator (g) 0.200 0.202 0.210 0.220
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As can be seen, there are possible interactions among groups present in molecules. The
chemical hydrogen bonds are created between, e.g., carbonyl groups (C=O) and hydroxyl
groups (–OH) from BPA.GDA linear aliphatic fragments. Additionally, π-π interactions
between the aromatic rings of benzene present in both PC and BPA.GDA chains are also
possible. The interactions of BPA.GDA chains with PC should be much stronger than in
case of EGDMA-PC, in which the above mentioned groups are not present. As confirmed
our measurements, polymer blends based on EGDMA are more brittle and less resistant,
which may be due to weaker interactions between the polymer chains.

3. Results and Discussion

A mixture of monomers (MMA and EGDMA or BPA.GDA), and PC was exposed to UV
radiation in the presence of the photoinitiator and yielded 8 blends which possessed the same
thickness. The obtained materials were cut and subjected to the physicochemical tests.

3.1. Structural Characterization of PC Blends Using ATR/FT-IR

The ATR/FT-IR results are shown in Figures 3 and 4. In Figure 3, the ATR/FT-
IR spectra of BPA.GDA + MMA blends are visible. Generally, the spectra of all obtained
systems are characterized by a similar course. There is a clear signal at 3490 cm−1 associated
with the hydroxyl group. The broad absorption band in the spectrum indicates the presence
of –OH groups from the BPA.GDA monomer. In the modified blends, this signal becomes
weaker. With the addition of PC, signals from this part of the blend decrease. This is
due to the aromatic structure that originates from the PC. Another clear signal at approx.
2900 cm−1 comes from the aliphatic part of the C-H groups. It is visible for all materials. The
observed peaks in the range of 2985–2962 cm−1 correspond to C–H stretching vibrations in
the methylene groups. Their intensities are similar for all PC blends. The signal from the
carbonyl group is in the range of 1730–1725 cm−1 for all materials. The peak at 1508 cm−1

is associated with the stretching vibrations of –C=C in benzene rings and aromatic skeletal
vibrations. These signals are at a similar level of intensity, showing that the aromatic
systems of PC were incorporated into the blends. The peaks at approx. 1455–1453 cm−1
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originate from C–H deformation in the –CH2 and –CH3 groups. The multiple signals in the
range of 1250–1011 cm−1 were due to the C–O stretching in C–O–CH3, whereas the peak at
approx. 886–797 cm−1 was characteristic for 1,4-substituted aromatic rings. In summary,
the addition of PC does not drastically change the course of the ATR/FT-IR curves of the
copolymers, however, it does affect the intensity of the signals. The exact values of the
wavenumbers are given in Tables S1 and S2 in the Supplementary Materials.
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Figure 4. ATR/FT-IR spectra of EGDMA + MMA derived blends.

The ATR/FT-IR spectra of EGDMA + MMA blends are presented in Figure 4. The
copolymer EGDMA + MMA + 5% PC shows the highest absorbance intensity. The rest
of the spectra are practically identical. When comparing the BPA.GDA + MMA spectrum
with EGDMA + MMA, vibrations originating from C–H aliphatic –CH2 and –CH3 groups,
C=O signals and multiple signals in the range of 1310–1142 cm−1 are visible in both spectra.
Characteristic bands at approx. 1240 cm−1 of the functional group C–O are visible on the
curves. The typical vibrations for the ring are also visible.

The addition of polycarbonate to the blends resulted in changed intensity of the
band originating from the carbonyl group, C–C bond and the aromatic ring structure
in the BPA.GDA + MMA spectrum. In the case of the EGDMA + MMA blend, all four
spectra are very similar. The polycarbonate added to the material included two-positioned
rings in the para position in its structure. This is evidenced by vibrations in the range of
800–860 cm−1. However, it should be noted that in the case of blends based on bisphenol A,
this effect also originates from the BPA.GDA compound. All monomers and polycarbonates
contained an ester bond in their structure, therefore each spectrum shows a characteristic
signal in the range of 1720–1750 cm−1.
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3.2. Thermogravimetric Analysis

Thermal stability and degradation behavior of the obtained blends were investigated
by means of thermogravimetry. The TG/DTG results of thermal decomposition process in
the inert atmosphere of helium are presented in Table 2 and Figures 5 and 6. For a more
detailed analysis of the materials, the results of the thermogravimetric analysis for pure PC
and PMMA were also performed.

Table 2. Thermogravimetric data of the obtained blends.

Material T5%
a

(oC)
T10%

b

(oC)
T50%

c

(oC)
Tmax

d

(oC)
RM e

(%)

PC 471 484 516 - 516 - - 25.58

PMMA f 213 272 355 180 250 367 - 0.40
BPA.GDA + MMA 323 347 406 407 - - - 11.12

BPA.GDA + MMA + 1% PC 309 326 381 374 536 - - 1.39
BPA.GDA + MMA + 5% PC 321 339 393 391 577 - - 4.50

BPA.GDA + MMA + 10% PC 304 329 395 384 567 - - 8.23

EGDMA + MMA 157 233 330 121 245 320 420 2.07
EGDMA + MMA + 1% PC 241 258 307 137 - 301 442 1.44
EGDMA + MMA + 5% PC 237 264 329 137 258 320 396 2.58

EGDMA + MMA + 10% PC 234 257 331 135 245 320 397 3.10
a, b, c The temperature of 5%, 10%, and 50% mass loss from the TGA curve, respectively; d The temperatures of the maximum rate of mass
loss from the derivative TGA (DTG) curves; e Residual mass at 600 ◦C; f TG and DTG data from [38].
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As is well known, the thermal stability of PMMA is relatively low, its decomposition
starts below 200 ◦C. The use of BPA.GDA + MMA mixture increases the thermal stability
of the material. It is due to the presence of aromatic rings in BPA.GDA having higher
dissociation energy. In turn, addition of PC to the polymer (and thus increase of the amount
of aromatic rings in the material) also increases the thermal stability of the EGDMA-based
materials. In the case of BPA.GDA-based blends, this relationship was not observed.

As can be seen in Table 2, blends based on BGA.GDA exhibit better thermal stability
than those with EGDMA and their T5% is over 300 ◦C. This is due to the chemical structure
of these materials and is consistent with the theory. In both series of blends with the
addition of PC, the residual mass in the measuring cup increased with the increase of the
percentage of PC, with generally more amounts of deposit being formed in the series of
blends based on BPA.GDA.

As can be seen based on the shape of the DTG curves, the thermal decomposition
of the obtained blends occurs in several stages. In the case of BPA.GDA-based materi-
als, thermal decomposition takes place in two steps. The first stage (Tmax in the range
374–391 ◦C corresponding to 73–75% of mass loss) is probably responsible for the distri-
bution of fragments of the material composed of MMA and BPA.GDA, while the second
peak (Tmax in the range of 536–567 ◦C, corresponding to 16–26% of mass loss) is respon-
sible mainly for the decomposition of the PC contained in the obtained blends. With
the increasing addition of PC, the intensity of the peaks in the DTG curve at Tmax was
reduced, while an increasing amount of solid precipitates is observed after decomposition
(except materials without PC). It is difficult to provide a clear explanation for the results,
since the distribution of multi-component materials, including the polymer blend, strongly
influences the interfacial specific interactions.

For the EGDMA + MMA-based blends, the TG curves are characterized by a similar
course. Nevertheless, there are significant differences in the onset of decomposition of
polymeric blends. The addition of PC has a positive effect on the thermal resistance of
materials. In the case of EGDMA + MMA polymer, the loss of 5% mass is at 157 ◦C, after
the addition of even 1 wt.% of PC the temperature increases up to 241 ◦C. In all cases,
the TG curve shows no clear mass loss related to the decomposition of the PC addition
to the matrix. When analyzing the shape of TG and DTG curves, the decomposition of
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EGDMA-MMA blends proceeded in several stages. The first stage (Tmax in the range of
121–137 ◦C corresponding to 2–3% of mass loss) may be related to the evaporation of
residual solvents, moisture and unreacted monomers [38,39]. Subsequent maxima of the
rate of mass loss (i.e., Tmax = 245–258 ◦C with 7–12% of mass loss and Tmax = 301–320 ◦C
with 55–64% of mass loss) are probably responsible for the degradation of EGDMA, while
the maximum rate of mass loss at Tmax (temperature range of 396–442 ◦C and 19–27% of
mass loss) is related to the distribution of the fragments derived from MMA.

In summary, the improved thermal stability was observed for the BPA.GDA blends
and not the corresponding blends of EGDMA, which is strictly connected with the chemical
structure (presence of aromatic rings) of these compounds and their thermal stability. In
order to analyze the course of the decomposition of the obtained materials, determine the
evolved gaseous products and propose the degradation mechanism, it would be necessary
to perform a more precise and, at the same time, more complicated coupled analysis,
e.g., TG/FT-IR/MS. The proposed mechanisms of polymer network fragmentation for all
studied materials are presented in Figure 7. The suggested mechanism is based on our
earlier research, thermal decomposition of BPA.GDA-derived copolymers and literature
data [39–41]. In the case of polycarbonates, their decomposition is very similar to BPA.GDA
due to the presence the same structural fragments (Bisphenol A) and leads to aromatic
compounds such as phenol, toluene and benzene, as well as small aliphatic hydrocarbons,
alcohols, ketones, and then H2O and CO2. In case of EGDMA-MMA-based copolymers, the
main products of thermal decomposition (apart from carbon dioxide and water) included
small alcohols, ketones, and methacrylic acid.
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3.3. Differential Scanning Calorimetry Characterization

DSC measurements were carried out in the course of two heating cycles at temper-
atures ranging from 0 to 200 ◦C. The numerical data of the DSC analysis is presented in
Table 3, while the DSC curves of the obtained materials are shown in Figures 8 and 9.

Table 3. Differential scanning calorimetry (DSC) data of obtained materials.

Sample Tm
(◦C)

∆Hm
(J/g)

Trecryst
(◦C)

∆Hrecryst
(J/g)

Tg
1

(◦C)
Tg

2

(◦C)
Tp

(◦C)
∆Hp
(J/g)

PC - - - - 146 146 - -

BPA.GDA + MMA 72 11.7 - - - 92 140 3.1
BPA.GDA + MMA + 1% PC 62 20.9 101 8.7 127 120 - -
BPA.GDA + MMA + 5% PC 62 14.1 107 12.1 131 128 - -

BPA.GDA + MMA + 10% PC 71 15.0 - - - - 136 8.1

EGDMA + MMA 71 3.0 - - - - 166 28.3
EGDMA + MMA + 1% PC 77 2.4 - - - - 163 26.7
EGDMA + MMA + 5% PC 66 6.8 - - - - 166 23.2

EGDMA + MMA + 10% PC 63 7.4 - - - - 164 19.7

Where: 1,2—first or second heating scan, respectively; Tm, Trecryst, Tp—temperatures of melting, recrystallization and cross-linking,
respectively; ∆Hm, ∆Hrecryst, ∆Hp—heat capacities of melting, recrystallization and cross-linking, respectively.
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As can be seen in both graphs, the DSC curves from the first heating cycle reveal both
endo- and exothermic changes. Endothermic peaks (with Tm in the range of 62–72 ◦C)
are responsible for the melting of the crystalline form of PMMA, the abnormal formation
of which for blends with 30 wt.% PMMA content has already been noticed by Faria and
Moreira [42]. This conversion is irreversible, no crystallization of PMMA occurs during
cooling and no crystallite melting peaks are observed in the second course of heating.
The heat capacity of these transformations for the BPA.GDA blend series decreases with
the increasing amount of PC in the material, while for the EGDMA blends the trend is
reversed. As shown in the literature, the Tg of pure PMMA ranges from 104 to 122 ◦C
and depends on the molar mass of the obtained polymer [38,42,43], while the Tm of the
PMMA is approximately 72 ◦C [44]. The broad exothermic peaks (in fact it is a change in
slope of curve that comes from an endothermic peak with Trecryst at 101 and 107 ◦C) for
BPA.GDA + MMA + 1% PC and BPA.GDA + MMA + 5% PC blends are responsible for the
recrystallization of PMMA crystallites or with polymorphic changes in the crystal structure.
The exothermic peaks for other materials (BPA.GDA + MMA and BPA.GDA + MMA + 10%
PC) at Tp in the range of 136–166 ◦C are responsible for the cross-linking of materials. The
energy effects of cross-linking EGDMA-based blends are higher than those of BPA.GDA
and it decreases with increasing PC content in the material. This may be due to the fact that
the increasing number of PC chains causes the material to become more rigid, so access to
unreacted methacrylic groups is limited. The DSC curves from the second heating do not
reveal exo- and endothermic changes (which indicates that the materials are amorphous),
while the glass transitions can be clearly seen only for blends BPA.GDA MMA + 1% PC,
BPA.GDA + MMA + 5% PC. DSC analysis performed for PC showed that it was amorphous
material (on the DSC curves there is no exo- and endothermic peaks) characterized by
a Tg of 146 ◦C.
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3.4. DMA Test

In order to complete the DSC analysis and to better define the phase changes occurring
in the obtained materials during heating, the DMA analysis was performed, and its results
are presented in Table 4 and Figure 10. Unfortunately, it was not possible to obtain blends
based on EGDMA in such sizes to prepare samples for DMA analysis (these materials had
numerous cracks, they were very brittle, which can be seen in the photos of samples in
Swelling test chapter.

Table 4. Dynamic mechanical analysis (DMA) data of obtained materials.

Sample Tg (◦C)
tan δ max

E”
(MPa)

FWHM
(◦C)tan δ E”

PC
BPA.GDA + MMA

144
105.5

121
87.7

0.16
0.67

57.9
260

37.8
32.6

BPA.GDA+ MMA + 1% PC 97.3 71.1 0.39 100 34.6
BPA.GDA + MMA + 5% PC ~80; 99.4 59.9 0.44 177 47.6

BPA.GDA + MMA + 10%
PC ~90; 108.4 72.9 0.33 99 44.9
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As shown in Figure 10A, the loss modulus curve (E’) drops sharply with increasing
temperature in the glass transition, and then its increase is visible. It results from the process
of cross-linking of unreacted monomers (PMMA and BPA.GDA). The cross-linking process
was also noticed during the DSC analysis (exothermic peaks in the temperature range
136–166 ◦C). There is no visible flattening of the E’ curve, which determines the highly
elastic state of the tested material, that should be visible in the case of linear polymers.
The loss modulus curves (Figure 10B) indicate fairly good homogeneity of the materials
in the glass transition region, with peak maxima indicating that the materials differed
significantly in strengths and damping properties. The worst damping properties (and the
highest values of peak value of tan delta and loss modulus) were observed in case of the
comparative material without PC. Comparing the shape of the tan delta curves of the tested
blends, it can be seen that the obtained materials were not homogeneous. The FWHM
value of the tan delta peak is the parameter which allows to determine the homogeneity
of the tested sample [45–49]. The FWHM values were much higher compared to the
starting material. Moreover, these peaks were not symmetrical and two glass transition
temperatures could be observed (except for the starting material BPA.GDA + MMA). This
indicates that the miscibility of the components in the blends was unsatisfactory [50]. The
miscibility of PC and PMMA has been confirmed in many studies in which the authors
found that these polymers are fully compatible [51–53]. The Tg values determined based
on tan delta correspond to the glass transition of PMMA. Due to the fact that the sample
was damaged during the analysis in the temperature range of 140–150 ◦C as a result of
the polymerization process of unreacted monomers (Tp values from DSC analysis), it
was not possible to determine the Tg for the pure PC component of our blend (Figure S1,
Supplementary Materials).

3.5. Hardness

The principle of this measurement is based on measuring the depth of indenter
penetration into the material of the studied polymer samples on a scale from 0 to 100 ◦Sh.
The results of the study are shown in Figure 11. The EGDMA + MMA polymer (86 ◦Sh)
was characterized by the highest value of hardness, while the lowest value was observed
in case of BPA.GDA + MMA + 10% PC (60 ◦Sh). The materials based on EGDMA monomer
possess a more rigid structure, susceptible to cracking and for this reason the values of
hardness data are higher. The blends containing BPA.GDA had a lower Shore hardness
values in the range 60–73 ◦Sh. Generally, the addition of PC lowered the hardness and
the polymeric blends became more flexible. The exact values of the hardness are given in
Table S3 in the Supplementary Materials.

Goliszek et al. [54] described the effect of the addition of lignin on the composite based
on BPA.GDA + EHA. The highest Shore-D hardness values were obtained for biocomposites
with the addition of 2.5 and 5% lignin. After applying 20% lignin, a decrease of the hardness
value was observed. Compared to our blend, the addition of polycarbonate lowered the
hardness. The highest value of Shore hardness was observed for the EGDMA + MMA
blend (86 ◦Sh). Table S7 summarizes the properties of the polymer blends.
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Figure 11. The Shore hardness of: EGDMA + MMA (A), EGDMA + MMA + 1% PC (B), EGDMA +
MMA + 5% PC (C), EGDMA + MMA + 10% PC (D), BPA.GDA + MMA (E), BPA.GDA + MMA + 1%
PC (F), BPA.GDA + MMA + 5% PC (G) and BPA.GDA + MMA + 10% PC (H).

3.6. Swelling Tests

Swellability is a factor that defines accessibility of the internal chemical structure
in the cross-linked polymers for penetration by solvent molecules. This factor gives
information on how the resulting materials will behave under varying environmental
conditions (different solvents). The swellability tests in hydrochloric acid, water and
acetone were carried out. The results are summarized in Figure 12. (The exact values of
all swelling tests are given in Tables S4–S6 in the Supplementary Materials). Based on the
results presented above, it can be concluded that the greatest weight changes were obtained
for hydrochloric acid. Water has a significantly lower swelling capacity. In turn, the blends
turned out to be not resistant to acetone. In the case of BPA.GDA +MMA blends treated
with hydrochloric acid, there was a weight loss in the final phase of the test. Most likely,
the acid was destroying the exterior of these materials. Only the copolymer with 1% of PC
proved to be resistant. EGDMA + MMA-based copolymers showed greater resistance to
the acid. The amount of PC in the materials did not significantly change the acid resistance.
The increase in PC content in the material during tests with water caused a slight increase
in swelling. Certainly, the destruction of blends after prolonged contact with acetone was
influenced by the inhomogeneity of the surface which greatly accelerated the penetration
of solvent into the polymer blends. Swelling process is shown in Figure 13.
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3.7. Images of Obtained Blends—AFM Test

The image of the fragments of polymeric blend obtained using AFM is illustrated
in Figure 14. All samples exhibited a similar structure. The blends are a macroscopically
homogeneous mixture. Under changes of the temperature, various fragments of polymers
may behave differently and hence the differences during the DMA analysis were observed.
Based on the images, it can be established that all ingredients of the blends are uniformly
distributed (particularly at the macroscopic level) [55]. In case of the largest ratio of
polycarbonate (10 wt.%), some small changes in the surface structure can be seen, which
may be the reason for the phase separation. Based on these AFM images, it can be concluded
that the surface roughness of the composite increases with the inclusion of more PC in the
composite structure.
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4. Conclusions

New blends based on methyl methacrylate (MMA) and bisphenol A glycerolate (1
glycerol/phenol) diacrylate (BPA.GDA) or ethylene glycol dimethacrylate (EGDMA) with
the additives commercial polycarbonate were successfully obtained during UV photopoly-
merization. The structure of polymeric blends as well as parent copolymers were studied
by ATR/FT-IR spectroscopy. The DSC data confirmed that all of materials are amorphous,
whereas the endothermic peaks (Tm in the range of 62–72 ◦C) are responsible for the melt-
ing of the crystalline form of PMMA. Based on the thermogravimetric analysis, it can be
stated that the addition of PC to the blends increased its thermal resistance (especially
visible in the case of EGDMA + MMA based blends). DMA analysis showed that the
BPA.GDA-based blends indicated some heterogeneity but were characterized by better
damping properties in comparison to the starting material. The EGDMA + MMA based
blends demonstrated higher hardness (80–86 ◦Sh) compared to analogous materials based
on BPA.GDA + MMA (60–74 ◦Sh) but an increase in the brittleness of the EGDMA system
was observed. The addition of PC decreased the hardness of the materials. According to
swelling tests, the amount of PC affects the resistance to solvents. Our materials proved to
be sensitive to acetone in the swelling test. For BPA.GDA + MMA + 10% PC, the highest
values of the swelling factor were recorded. Images obtained using the AFM test indicated
that the obtained blends were characterized by a similar homogenous structure with small
differences in surface structure.
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Supplementary Materials: The following are available online https://www.mdpi.com/2073-4360/
13/6/878/s1. S1. Structural Characterization of PC Blends using ATR/FT-IR, Table S1. Wavenum-
bers (cm−1) of characteristic bands visible on ATR/FT-IR spectra, Table S2. Wavenumbers (cm−1)
of characteristic bands visible on ATR/FT-IR spectra, S2. Hardness test, the abbreviations used
in the Tables: BPA.GDA+MMA (A), BPA.GDA+MMA+1%PC (B), BPA.GDA+MMA+5%PC (C),
BPA.GDA+MMA+10%PC (D), EGDMA+MMA (E), EGDMA+MMA+1%PC (F), EGDMA+MMA+5%PC
(G), EGDMA+MMA+10%PC (H), Table S3. Hardness measurements (◦Sh), S3. Swelling test, The
swellability tests in hydrochloric acid, water and acetone were carried out. The results are summa-
rized in Tables S4–S6. The swelling ratio was calculated based on the formula (1), Table S4. Swelling
studies in HCl (1 M) solvent, Table S5. Swelling studies in H2O, Table S6. Swelling studies in
acetone, S5. DMA analysis of PC, Figure S1. DMA analysis of pure PC, S6. Summarizing, Table S7.
Summarizing table of some properties.
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40. Sobiesiak, M.; Podkościelna, B.; Sevastanova, O. Thermal degradation behavior of lignin-modified porous styrene-divinylbenzene

and styrene-bisphenol A glycerolate diacrylate copolymer microspheres. J. Anal. Appl. Pyrol. 2017, 123, 364–375. [CrossRef]
41. Salasinska, K.; Barczewski, M.; Borucka, M.; Górny, L.R.; Kozikowski, P.; Celiński, M.; Gajek, A. Thermal stability, fire and smoke
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