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Abstract

Background: Quantitative traits often underlie risk for complex diseases. For example, weight and body mass
index (BMI) underlie the human abdominal obesity-metabolic syndrome. Many attempts have been made to
identify quantitative trait loci (QTL) over the past decade, including association studies. However, a single QTL is
often capable of affecting multiple traits, a quality known as gene pleiotropy. Gene pleiotropy may therefore cause
a loss of power in association studies focused only on a single trait, whether based on single or multiple markers.

Results: We propose using principal-component-based multivariate regression (PCBMR) to test for gene pleiotropy
with comprehensive evaluation. This method generates one or more independent canonical variables based on
the principal components of original traits and conducts a multivariate regression to test for association with these
new variables. Systematic simulation studies have shown that PCBMR has great power. PCBMR-based pleiotropic
association studies of abdominal obesity-metabolic syndrome and its possible linkage to chromosomal band 3q27
identified 11 susceptibility genes with significant associations. Whereas some of these genes had been previously
reported to be associated with metabolic traits, others had never been identified as metabolism-associated genes.

Conclusions: PCBMR is a computationally efficient and powerful test for gene pleiotropy. Application of PCBMR to
abdominal obesity-metabolic syndrome indicated the existence of gene pleiotropy affecting this syndrome.

Background
Quantitative traits often underlie increased risk for com-
plex diseases. To understand the genetic basis of such
traits, each trait is often separately tested for association
with one or more markers. This approach has two dis-
advantages: 1) independent tests of each trait may lead
to issues related to multiple testing; and 2) if a locus
affects two or more traits, a single-trait study may lose
the power to detect a pleiotropic effect, where a single
gene influences multiple phenotypic traits.
In the past decade, simultaneous analysis of multiple

traits in the context of linkage mapping of quantitative
trait loci (QTL) has attracted much attention. Three
approaches to simultaneous analysis have been developed
and broadly applied, the first of which is generalization of

maximum likelihood (ML) [1,2]. Although this method
can be applied to multiple traits, a large number of corre-
lated traits requires the simultaneous estimation of too
many parameters, restraining its practical use [3]. The
second approach, first proposed by Haley & Knott, is
multivariate regression [4-7]. This approach is computa-
tionally faster than maximum likelihood and is available
in most statistical software packages. But as with the ML
method, the requirement for simultaneous estimates of a
large number of parameters may limit its application.
The third approach is based on transformation of original
traits to a reduced number of canonical variables [3,8].
This approach is often implemented in two steps. First,
principal components of original traits are identified to
generate canonical variables. Next, a classical single trait
method is used as the test of linkage between a candidate
locus and a canonical variable. The test is then repeated
for each combination of locus and variable and is cor-
rected for multiple testing.
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The resolution of QTL linkage mapping is generally
low (typically ≥ 10 cM) [9]. Thus, a QTL linked to
multiple traits may be a single QTL with pleiotropy or
different QTLs within the mapping region that affect
different traits. Association studies, in contrast, have
much higher resolution, and are more feasible for iden-
tifying gene pleiotropy. Lange [10] proposed a family-
based association method that constructs an overall
phenotype by finding a linear combination of traits to
maximize heritability. Klei [11] extended this method
to population samples. Both methods use principal
components, reducing multiple phenotypes to only a
single trait, which can cause loss of power. In addition,
maximization of heritability and association testing in
the same samples may inflate type I error. To address
this issue, Klei [11] proposed to split the sample into
training and testing data and apply cross-validation to
control error inflation, but this further increases
computational complexity. In contrast to reduction of
phenotypes, direct multivariate regression examines
pleiotropy by simultaneous analysis of multiple pheno-
types [12].
In this study, we propose to integrate two common

methods that test for association by analyzing multiple
traits simultaneously: principal components and multi-
variate regression. However, there are no comprehen-
sive evaluations of this principal-component-based
multivariate regression (PCBMR). In our study, we
comprehensively evaluated the power and type I error
of PCBMR using simulations that varied pleiotropic
effects, linkage disequilibrium (LD), proportion of con-
tributed correlation, and number of traits. We also
used PCBMR to examine the pleiotropic effects of mul-
tiple traits on human abdominal obesity-metabolic
syndrome.
Human abdominal obesity-metabolic syndrome [13],

a cluster of syndrome phenotypes, increases the risk
of developing both diabetes mellitus [14] and cardio-
vascular disease [15,16]. The prevalence of metabolic
syndrome varies with age and sex [17]. Kissebah [18]
performed a genome-wide linkage scan with a marker
density of 10 cM in 2,209 individuals from 507 Cauca-
sian families. They found one QTL, on chromosome
3q27, that was strongly linked to six phenotypes:
body mass index (BMI), waist circumference (WC),
hip circumference (HC), weight, insulin, and insulin/
glucose (I/G). The results indicated possible pleiotro-
pic effects. Francke replicated this result, finding the
same locus on 3q27 through a genome-wide linkage
scan of 99 families of northeastern Indian origin [19].
Here, we attempted to identify markers on 3q27 that
are associated with the six traits above by using
PCBMR to analyze data from the Bogalusa Heart
Study [20].

Results
Simulation 1, differences in extent of QTL
pleiotropic effect
The correlation coefficients between traits Y1 and Y2

varied from -0.35 to 0.37, with means for traits
increasing as effect b increases. PCBMR generated two
canonical variables for all simulated data. Power and
type I error for the PCBMR and single-trait association
studies are summarized in Table 1. When b = 0, the
QTL had no effect on Y1 and Y2 and the type I errors
were 4.5%-5.6% for PCBMR, 4.9%-6.1% for single-trait
association without Bonferroni adjustment (SATN),
and 2.8%-3.0% for single-trait association with Bonfer-
roni adjustment (SATB) for the different models
(GEN, ADD, DOM, and REC). Power depends on the
assumption of genetic model, with power in decreasing
order for ADD, DOM, GEN, and REC. For each
model, the following results were obtained: 1) power
generally increased in PCBMR, SATN, and SATB as
effect b got larger, and PCBMR generally had more
power than SATB and SATN; 2) the binomial exact
test showed that PCBMR was significantly more
powerful than SATB for all b > 0 (results not shown),
and more powerful than SATN for b > 0.2 (marked

Table 1 Type 1 error and power of data sets of
simulation 1

Effect (b) PCBMR Single-Trait Association

GEN ADD DOM REC GEN ADD DOM REC

0 5.1 4.5 5.3 5.6 5.7(2.8) 5.8(3.0) 6.1(2.9) 4.9(3.0)

0.1 5.8 5.4 6.2 4.7 5.6(3.1) 5.8(3.3) 5.9(3.0) 5.3(2.8)

0.2 10.8* 12 11.2 6.8 8.9(4.8) 10.9
(6.1)

10.9
(5.7)

6.4(3.4)

0.3 14.1* 18.8* 18.3* 9.1* 12.2
(8.6)

14.4
(9.2)

14.6
(9.6)

7.3(4.4)

0.4 21.4* 26.8* 25.2* 11.3 15.9
(10.0)

20.5
(14.5)

19.9
(13.1)

10.4
(6.3)

0.5 31.9* 41.9* 36.7* 15.7* 24.3
(14.8)

29.1
(20.3)

27.3
(18.1)

13.6
(8.7)

0.6 45.4* 54.9* 50.1* 21.3* 31.6
(23.2)

39.9
(30.0)

36.1
(26.7)

17.2
(10.8)

0.7 60.3* 71.4* 65.0* 26.5* 41.9
(31.3)

50.5
(40.1)

47.2
(36.9)

21.6
(14.1)

0.8 71.9* 81.9* 77.3* 30.9* 53.3
(43.6)

63.6
(51.9)

58.2
(46.9)

24.2
(18.0)

0.9 81.7* 90.8* 84.3* 41.7* 62.5
(50.4)

72.7
(62.2)

66.1
(55.6)

30.4
(21.5)

1 91.4* 95.2* 92.8* 48.9* 72.8
(62.8)

82.0
(73.4)

76.7
(67.3)

36.7
(27.0)

(The values outside the parentheses are the power (b > 0) or type I error (b = 0)
of the single-trait association test without multiple-test adjustment (SATN) and
the values inside the parentheses are the power (b > 0) or type I error (b = 0) of
the single-trait association test with Bonferroni adjustment (SATB). * indicates
that the power of PCBMR is significantly better than that of SATN; GEN: general
model without assumption of genetic inheritance; ADD: additive effect model;
DOM: dominant model and REC: recessive model)
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with star); and 3) for b ≤ 0.2, there was no significant
power difference between PCBMR and SATN.

Simulation 2, differences in extent of LD between a
marker and pleiotropic QTL
Correlation coefficients between Y1 and Y2 varied from
-0.25 to 0.32, and two canonical variables were gener-
ated by PCBMR for pleiotropic association studies.
Power and type I error for PCBMR, SATN, and SATB
are presented in Table 2. Correlation coefficients (r)
between tested markers and QTLs ranged from 0 to 1.0.
A correlation of r = 0 indicated that the tested marker
and the QTL were independent and that there was no
association between them. Under the differing assump-
tions in different genetic models (GEN, ADD, DOM,
and REC), type I error was 4.2%-5.8% for PCBMR, 5.3%-
5.8% for SATN, and 2.5%-3.1% for SATB. Power
depended on the assumptions of the genetic models,
and ADD, DOM, GEN, and REC had powers in decreas-
ing order for all methods. For each model, the following
results were obtained: 1) the powers of PCBMR, SATN,
and SATB increased as r became larger; 2) according to
the binomial exact test, PCBMR had significantly greater
power than SATB (results not shown) for all r > 0, and
significantly greater power than SATN when r > 0.2 in
all but the REC model (marked with star); and 3) for r ≤
0.2, there was no significant power difference between
PCBMR and SATN.

Simulation 3, trait correlation between effects of two QTL
and an environmental variable
The correlation coefficients between simulated traits Y1

and Y2 were ≥0.98. Based on this, PCBMR generated a
single canonical variable for the pleiotropic association
test. The tested QTL exerted a simulated effect b from
0 to 4, and based on equation 3, the percentage of trait
correlation contributed by the QTL, Pr(b), ranged from
0 to 20%. The type I error and power related to Pr(b)
for different methods are summarized in Table 3.
A result of b = 0 (or Pr(b) = 0) indicates that the tested
QTL had no pleiotropic effect on the simulated traits.
The type I error was 3.9%-5.6% for PCBMR, 4.2%-5.7%
for SATN, and 2.4%-3.3% for SATB under the four
genetic models, GEN, ADD, DOM, and REC. Power
depended on the assumptions of the genetic models,
with power in decreasing order for ADD, DOM, GEN,
and REC. All methods increased in power as Pr(b)
increased. When b = 0.5 (or Pr(b) = 0.4%), power was
small for all three analytical methods; 6.4%-8.8% for
PCBMR, 6.1%-8.4% for SATN, and 3.3%-4.7% for
SATB. When b equaled 3.5 and 4 (Pr(b) = 15.7% and
19.5%), all methods had power close to 1 under various
genetic models, except recessive ones. For b > 0, the
binomial exact test showed that PCBMR was not signifi-
cantly different in power from SATN, but was signifi-
cantly more powerful than SATB.

Simulation 4, pleiotropic effects on more than two traits
Under this simulation strategy, the number of traits
affected by the QTL ranged from 2 to 10. The correlation

Table 2 Type 1 error and power of data sets of
simulation 2

LD (r) PCBMR Single-Trait Association

GEN ADD DOM REC GEN ADD DOM REC

0 5 4.2 4.6 5.5 5.8(2.5) 5.3(3.1) 5.7(3.1) 5.7(3.1)

0.1 4.1 4.8 5.3 4.7 5.5(2.8) 6.0(3.4) 6.6(3.9) 5.2(2.7)

0.2 9.2 11 10.1 8.2 9.9(5.4) 12.3
(6.5)

10.2
(6.3)

8.0(4.3)

0.3 14.8 19.6* 16.2* 11.7 14.0
(8.1)

17.5
(10.5)

14.6
(8.4)

10.4
(6.2)

0.4 18.7* 24.3* 20.5* 11.7 15.9
(10.2)

19.6
(11.9)

16.5
(10.7)

10.4
(6.2)

0.5 26.6* 32.9* 29.7* 11.7 20.1
(13.8)

23.8
(17.4)

23.4
(15.9)

10.4
(6.2)

0.6 50.2* 62.8* 56.2* 26.6* 36.6
(27.9)

47.0
(36.3)

41.4
(31.2)

21.2
(13.8)

0.7 49.2* 61.6* 56.1* 23.4* 36.7
(27.2)

46.8
(34.6)

40.6
(29.4)

20.7
(12.5)

0.8 72.6* 81.5* 76.7* 37.6* 52.0
(42.3)

63.1
(52.2)

57.2
(46.0)

27.9
(18.9)

0.9 80.8* 89.7* 86.2* 37.6* 62.0
(50.4)

71.9
(62.2)

67.9
(57.0)

27.9
(18.9)

1 91.4* 95.2* 92.8* 48.9* 72.8
(62.8)

82.0
(73.4)

76.7
(67.3)

36.7
(27.0)

(See Table 1)

Table 3 Type 1 error and power of data sets of
simulation 3

Effect (b) PCBMR Single-Trait Association

GEN ADD DOM REC GEN ADD DOM REC

0 4.7 5 5.6 3.9 5.0(3.2) 5.3(2.7) 5.7(3.3) 4.2(2.4)

0.5 7.6 8.8 7.5 6.4 7.4(4.1) 8.4(4.7) 7.1(4.6) 6.1(3.3)

1 18.1 22.4 22 11.2 17.8
(11.2)

22.4
(16.2)

21.2
(14.1)

11.2
(7.2)

1.5 35.3 45.2 40.1 20.3 35.8
(24.8)

45.8
(34.3)

40.2
(28.4)

20.2
(13.8)

2 60.4 70.1 66 29.2 60.2
(50.3)

70.2
(59.8)

66.5
(54.9)

28.9
(22.0)

2.5 79.2 87.4 82.5 40.8 79.1
(70.1)

86.8
(79.0)

82.2
(75.1)

40.2
(30.2)

3 91.2 95.9 93.4 50.6 91.1
(85.5)

95.8
(91.7)

93.3
(88.6)

50.7
(40.4)

3.5 97.2 99.3 97.6 62 97.6
(94.9)

99.4
(98.0)

97.8
(96.0)

62.5
(50.6)

4 99.6 99.7 99.5 75.4 99.4
(98.9)

99.7
(99.5)

99.5
(99.0)

75.9
(63.9)

(See Table 1; Based on equation 3, the percentages of trait correlation
contributed by tested QTL are 0%, 0.4%, 1.5%, 3.3%, 5.7%, 8.7%, 12.0%, 15.7%
and 19.5% corresponding to b = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4)
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coefficients between any pair of simulated traits were all
≥0.97 and the expected percentage of correlation contrib-
uted by the tested QTL was 8.7%. For all numbers of
traits, PCBMR generated one canonical variable for the
association test. Results are presented in Table 4. Power
depended on genetic model assumptions, with power
decreasing in order among ADD, DOM, GEN, and REC.
For different numbers of traits and different genetic
model assumptions, the power of PCBMR was consis-
tently close to that of SATN, with no significant differ-
ence detected by the binomial exact test. Power was
approximately equal for different numbers of traits as
well. The power of SATB decreased dramatically as the
number of traits increased. Compared with SATB,
PCBMR had significantly improved power, especially with
larger numbers of traits.

Pleiotropic Association Studies of Traits of Abdominal
Obesity-Metabolic Syndrome
A total of 1,196 subjects with 5,529 SNPs in the candi-
date region of chromosome 3 (at 182-227cM or 173.4-
198.8 Mb) made up the study population. Quality
control measures included the removal of SNPs with
minor allele frequencies of ≤0.01 and Hardy-Weinberg
equilibrium p-values of ≤1e-5, leaving 4,769 SNPs in the

study. The characteristics of the study participants are
summarized in Table 5 for both males and females, as
follows: age (AGE, in years), weight circumference
(WEIGHT, in kg), waist circumference (WAIST, in cm),
body mass index (BMI, in kg/m2), hip circumference
(HIP, in cm), plasma insulin level (INSULIN, in μU/mL)
and plasma insulin/glucose ratio (I/G). The pairwise
correlation coefficients (r) among adjusted traits are pre-
sented in Table 6. The correlations clustered into two
groups, with the first group comprised of WEIGHT,
BMI, WAIST, and HIP (r ≥ 0.89) and the second group
comprised of INSULIN and I/G (r = 0.97).
The results of the PCBMR pleiotropic association stu-

dies based on the GEN model are presented in Figures 1
and 2. Markers with significant p-values (≤1e-5) are sum-
marized in Tables 7 and 8. For these markers, analyses
based on recessive, dominant and additive models were
conducted, and the best genetic model and its p-value
were documented.
For the first trait group of WEIGHT, BMI, WAIST,

and HIP, PCBMR generated a single canonical variable
that explained 94.1% of the variance. With Bonferroni
adjustment, PCBMR using the GEN model found four
SNPs with significant pleiotropic association (p <1e-5)
(Figure 1). Among these, SNP rs11721044 at 174.6 Mb
and rs11926347 at 185.2 Mb were located in genes
NLGN1 (OMIM 600568) and ABCC5 (OMIM 60521),
respectively (Table 7).
For the second trait group of INSULIN and I/G,

PCBMR also generated a single canonical variable, and
this variable explained 98.6% of the variance. Using the
GEN model, thirty-four SNPs passed Bonferroni signifi-
cance level (Figure 2), of which 17 were found within 11
genes. SNP rs11926347, in an intron of ABCC5 (OMIM
60521), and SNP rs6795506, near the 5’ end of AHSG
(OMIM 138680), had extremely small p-values (Table
8). Among the other nine genes, ADIPOQ (OMIM
605441, 612556) has been widely reported to be asso-
ciated with obesity and diabetes [21-24]; FNDC3B
(OMIM 611909) is involved in positive regulation of
adipogenesis [25]; and DGKG (OMIM 601854) and
AHSG (OMIM 138680) have been reported to be asso-
ciated with obesity-related metabolic traits [26,27]. The
remaining genes have no reported relation to obesity-
related metabolic traits based on our literature review.
SNP rs11926347 in ABCC5 showed significant pleio-

tropic association in both groups and the p-value was

Table 4 Type 1 error and power of data sets of
simulation 4

Traits PCBMR Single-Trait Association

GEN ADD DOM REC GEN ADD DOM REC

2 79.1 87.4 82.5 40.8 79.1
(70.1)

86.8
(79.0)

82.2
(75.1)

40.2
(30.2)

3 80.6 87.2 83.1 40.2 80.1
(67.0)

86.8
(75.7)

82.5
(70.1)

40.0
(25.7)

4 79.4 87.6 83.3 41.2 79.6
(62.2)

88.3
(72.9)

83.3
(65.6)

42.4
(24.6)

5 78.6 87.8 83.2 40.9 78.9
(59.1)

87.3
(69.6)

83.3
(63.8)

41.2
(18.0)

6 78.4 86.3 83 40.1 78.6
(57.2)

86.9
(68.4)

82.8
(60.7)

40.8
(17.9)

7 79.2 86.2 82.4 40.1 78.5
(54.6)

86.4
(65.7)

82.7
(58.5)

40.7
(14.6)

8 80.3 85.5 82.4 40.7 80.0
(51.6)

86.2
(63.3)

82.1
(56.0)

40.8
(13.7)

9 77.9 85.6 83.1 42.5 78.1
(52.3)

86.3
(61.5)

82.3
(53.9)

42.9
(15.3)

10 78.7 87.3 82.6 42.4 78.8
(47.4)

87.7
(60.4)

83.0
(51.4)

42.4
(14.7)

(See Table 1)

Table 5 Characteristics of study participants

N AGE (yrs) WEIGHT (kg) WAIST (cm) BMI (kg/m2) HIP (cm) INSULIN (μU/mL) I/G

Male 517 36.2 (4.4) 91.8 (20.6) 98.4 (15.9) 29.1 (6.2) 107.6 (11.6) 12.8 (9.6) 0.14 (0.09)

Female 679 35.7 (4.6) 78.8 (22.2) 89.3 (17.7) 29.5 (8.0) 110.2 (15.7) 13.2 (14.7) 0.15 (0.16)

Mean (standard deviation)
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extremely small in the second group of traits (-log(P) =
109.86). To validate these PCBMR results, this SNP was
extracted for further study. The SNP’s phenotype distri-
bution, divided by genotype, is presented in Table 9. Its

alleles are ‘A’ and ‘G’ and the frequency of the minor
allele ’A’ is 0.02. The Hardy-Weinberg Equilibrium
(HWE) exact test[28] yielded a p-value of 0.37. Homozy-
gotes for the minor allele (’A/A’) exhibited only one
extreme mean value for all six traits. Heterozygotes
(‘G/A’) had smaller values than ‘A/A’ homozygotes but
much larger values than homozygotes for the major
allele (‘G/G’). SATN analyses with adjustment for age
and sex gave p-values of ≤1.15*10-5 for all traits (results
not shown). With allele A as a reference, we conducted
an examination of pleiotropic effects for rs11926347
based on additive, dominant, and recessive models. The
corresponding -log10(P) was 6.46, 5.92, and 2.12 for the
first group’s traits and 11.65, 4.74, and 110.37 for the
second group’s traits for additive, dominant, and

Table 6 Pair-wise correlation coefficients, r, between
adjusted traits

WEIGHT BMI WAIST HIP INSULIN I/G

WEIGHT 1.00

BMI 0.95 1.00

WAIST 0.93 0.91 1.00

HIP 0.93 0.92 0.89 1.00

INSULIN 0.46 0.46 0.47 0.41 1.00

I/G 0.43 0.43 0.44 0.38 0.97 1.00

Figure 1 Pleiotropic association study of WEIGHT, HIP, BMI and WAIST based on general model by PCMBA on the candidate region, 182-
227cM of Chromosome 3. There are 4769 total SNPs. The x axis is the SNP position and y axis is negative logarithm of p-value, i.e. –log (P).
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recessive models, respectively. These results indicate
that the additive model best suits the first trait group’s
association and the recessive model best suits the sec-
ond trait group’s association. After dropping the single
homozygote, analyses based on different genetic models
generated the same results. The significant association
was absent in the second group’s traits (-log10(p) =
1.14), but still present in the first group’s traits (-log10
(p) = 5.2). These results indicated that allele ‘A’ may be
involved in pleiotropic association with metabolic syn-
drome and merits attention and inclusion in genetic stu-
dies of obesity in the future.

Discussion
Most current association studies have been based on
single trait-single marker or single trait-multiple marker
tests. These kinds of studies lose power in identifying
genes with pleiotropic effects. In some cases, genes with
pleiotropy may be found by separately testing each trait.
However, two major issues make this strategy not always
appropriate. First, pleiotropic effects for each trait may
be too weak to be identified. Second, multiple testing
problems may either lower the power or inflate the type
I error. It is therefore important to develop methods
that can test for association by analyzing multiple traits
simultaneously.
In this paper, we present the use of PCBMR as a

method which detects pleiotropic effects by combining
principal component methods and multivariate regres-
sion. PCBMR generates a set of independent canonical
variables based on principal components. Each canonical
variable is associated with multiple traits and the sum of
all variables explains at least 80% of the variation. Ana-
lysis of canonical variables is simultaneously implemen-
ted by multivariate regression. The statistic of PCBMR
is simply the sum of individual test statistics. PCBMR is

Figure 2 Pleiotropic association study of INSULIN and I/G by PCMBA based on general model on the candidate region, 182-227cM of
Chromosome 3. There are total 4769 SNPs. The x axis is the SNP position and y axis is negative logarithm of p-value, i.e. –log (P).

Table 7 Significant pleiotropic association with WEIGHT,
HIP, BMI and WAIST

SNP -Log(P) POSITION Function

rs11721044 5.19(5.881) 174.64 NLGN1 (intron)

rs11926347 6.00(6.461) 185.21 ABCC5 (intron)

rs9843456 5.88(6.703) 192.85

rs1916636 6.33(7.153) 192.85

Position is in megabase. The smallest p-value and its corresponding genetic
model, additive (1), dominant (2) or (3) recessive, are enclosed inside
parenthesis.
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computationally efficient and can be easily implemented
by most statistical packages. This makes PCBMR fast
and feasible not only for candidate-gene association stu-
dies but also for genome-wide association studies
(GWAS).
Comprehensive studies of simulated data have shown

that PCBMR has well-controlled type I error, about 5%,
when a tested marker has no pleiotropy (simulation 1
and 3) or exhibits linkage equilibrium to the pleiotropic
QTL, in the case of pleiotropic tested markers (simula-
tion 2). The power of PCBMR depends on the extent of
the pleiotropic effect and on the LD of the QTL. Larger
pleiotropic effects and higher LD result in larger power
(simulation 1 and 2). When the trait correlation caused
by pleiotropy was not strong (simulation 1), the number
of canonical variables was the same as the number of
traits and the power was reasonably high, even com-
pared with SATN. When there were strong correlations
among traits (simulation 4), the reduced number of vari-
ables resulted in fewer degrees of freedom for the
PCBMR test, and the power of PCBMR was as high as
SATN. However, SATN always has much higher type I
error than PCBMR due to multiple testing. PCBMR was
robust to conflicting effects from environmental factors
or other, untested QTLs (simulation 3). In all cases,
multi-trait association analyses using PCBMR were
much more powerful than multiple single-trait associa-
tion analyses using SATB. For all tests, multiple traits
simultaneously studied by PCBMR were compared with
the single trait with the best power as determined by
SATN and SATB. The present study showed that
PCBMR is at least as powerful as SATN and more
powerful than SATB under pleiotropy.
PCBMR has great extensibility. For equations (1) and

(2), PCBMR can be extended to any distribution in the
exponential family and the parameter θ can take any
link function (e.g. logistic or log) that relates a mean, Zi,

to covariates [29]. The covariate can be a single variable
for one marker or multiple variables for different mar-
kers. In addition, non-genetic factors with or without
interaction terms can also serve as the covariate. The
final statistic, approximating the c2 distribution, is again
the simple sum of statistics from separate regressions of
a canonical variable on single or multiple covariates.
Comparisons of power estimates among PCBMR,

SATB, and SATN in this study were based on analyses
of the simulated additive model. To verify these find-
ings, we tried studies on both simulated dominant and
recessive models, and the same conclusions were
obtained - that pleiotropic association studies by
PCBMR are more powerful than single-trait association
studies by either SATN or SATB (results not shown
here). In addition, influences of model mismatch
were also observed. For example, we observed that a

Table 8 Significant pleiotropic association with INSULIN
and I/G

SNP POSITION -LOG(P) Function

rs669552 173.54 5.20(5.793) FNDC3B (intron)

rs6786075 175.12 5.76(6.563) NLGN1 (intron)

rs9854235 175.25 6.21(6.733) NLGN1 (intron)

rs6445137 175.26 10.03(10.753) NLGN1 (intron)

rs6798572 175.32 6.01 NLGN1 (intron)

rs12493995 175.89 17.34(18.293)

rs9878945 176.22 5.80(6.213) NAALADL2 (intron)

rs9809218 176.56 7.17 NAALADL2 (intron)

rs11920602 178.39 11.59 (12.403) TBL1XR1 (Intron)

rs17633881 178.83 5.05(5.723)

rs6797848 180.17 5.63(6.363)

rs7611854 180.17 5.63(6.363)

rs11927983 180.82 5.09(5.891) NDUFB5 (Intron)

rs4854964 181.40 5.15(5.873)

rs1525276 181.43 5.13(5.753)

rs7643438 181.47 6.36 (7.183)

rs9869409 181.48 15.44(16.283)

rs7647526 181.63 5.45

rs7650795 181.67 8.55(9.113)

rs6803379 181.68 43.76(44.143)

rs11926347 185.21 109.86(110.373) ABCC5 (intron)

rs6798973 185.67 5.73(6.553)

rs6786711 187.56 5.52(6.323) DGKG (intron)

rs6795506 187.81 109.05(110.373) AHSG (near gene 5’)

rs2082940 188.06 5.50(6.303) ADIPOQ (utr 3’)

rs7628649 188.07 5.25(6.063)

rs16863863 190.20 5.36(6.113)

rs7614680 190.57 6.06(6.813)

rs1515495 191.00 6.81 TP63 (intron)

rs4571225 191.81 6.44(7.053) IL1RAP (intron)

rs9821331 191.81 7.43(8.323) IL1RAP (intron)

rs9865681 191.83 12.63(13.593) IL1RAP (intron)

rs902192 194.60 5.66(6.413)

rs768858 198.56 8.15(8.873)

Refer to Table 7

Table 9 Summary of rs11926347 in ABCC5

A/A G/A G/G

Frequency 1 45 1150

AGE (yrs) 26.5 36.06(5.32) 35.97(4.43)

Male% (kg) 0 0.49 0.43

BMI (kg/m2) 48.08 34.50(10.26) 29.11(7.03)

WEIGHT (kg) 144.8 99.33(30.03) 83.79(21.83)

WAIST(cm) 129.1 103.3(22.5) 92.8(17.2)

HIP (cm) 146.27 117.23(19.63) 108.74(13.79)

INSULIN (μU/mL) 247 16.11(12.04) 12.69(10.68)

IG 2.68 0.17(0.12) 0.15(0.11)

(HWE: p-value = 0.37)
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pleiotropic study based on an additive model sacrificed
its power when the true model was dominant or reces-
sive. In addition, we observed that all studies based on
the general model have acceptable power. In contrast to
the additive model, which assumes linear trends of gen-
otypic effect, and the dominant and recessive models,
which assume equal effects of two genotypes for an
SNP, the general model aims to separately estimate the
effect of each genotype without any restriction. There-
fore, PCBMR based on the general model has the advan-
tage of testing for a pleiotropic effect when a complex
trait has no obvious Mendelian inheritance.
As a real example, PCBMR was applied to test asso-

ciation in a study of traits-weight, waist circumference,
BMI, hip circumference, plasma insulin, and insulin-
glucose ratios-of abdominal obesity-metabolic syndrome
in the Bogalusa Heart Study cohort. The traits were
clustered into two groups based on two previously iden-
tified linkage peaks [18] and these two groups exhibited
strong correlation. After multiple-test adjustment,
PCBMR successfully identified several SNPs associated
with the traits, especially in the trait group of INSULIN
and I/G. Some of the genes had been well-characterized
in prior studies, e.g. FNDC3B, which is involved in adi-
pogenesis [25]. However, the functions of most of the
genes were not yet explicitly clear at the time of the
analysis. For example, some genes (e.g. ABCC5) are
known to be related to energy metabolism, but are they
truly involved in obesity-metabolic syndrome? If they
are, what are their functions? The results from the use
of PCBMR in this study offer guidance for future
researchers in understanding genetic mechanisms and
pathways in the pathogenesis of this human disease.
Although this study illustrates many advantages of

PCBMR, there are also some challenges to be faced in
terms of practical application. In contrast to pleiotro-
pic linkage studies that map a QTL to a large locus
[30], PCBMR-based studies can provide a higher reso-
lution QTL position. However, the association may not
justify the true pleiotropy of the identified marker or
gene. For example, when PCBMR identifies a signifi-
cant association by studying multiple traits, we may
not observe significant association with a particular
trait. This may result from either a weak pleiotropic
effect or no effect at all. Such differentiation is gener-
ally difficult to achieve by statistical analysis. Further
experimental studies or repeated studies with larger
sample size are therefore necessary to confirm that
the association is due to pleiotropy. In addition, the
power of PCBMR depends on the assumptions of
the genetic model, and misuse of a model will decrease
power. The number of canonical variables also
depends on the threshold. A value of 0.8 is used in
simulation studies to explain at least 80% of the

variation. Although this threshold is widely accepted
for principal component analysis and has been proven
to be suitable in our simulation studies, the ideal
threshold may depend on practical data, with the exact
value generally not known in advance. Furthermore,
pleiotropic association is based on canonical variables,
and to get an exact estimate of the effect on an
original trait, a reverse transformation needs to be
conducted.
Another challenge is to decide which traits should be

studied simultaneously by PCBMR. Some strategies may
help to address this challenge. Candidate traits could be
those related to each other in the same pathway leading
to a disease or symptom. For example, greater weight
and BMI are correlated with obesity. Candidate traits
could also include traits with linkage to the same region,
such as two groups of traits with linkage peaks in two
separate loci, as found in our studies of abdominal obe-
sity-metabolic syndrome. Nevertheless, it is possible that
two traits without much correlation may be strongly
affected by a common gene. For example, in our simula-
tion 1, though the effect is strong at b = 1, the correla-
tion coefficient (r) ranges from -0.35 to 0.37 with a
mean of only about 0.10. In this case, selection of traits
mainly depends on currently established knowledge.
PCA is an important tool for data mining that trans-

forms a larger number of correlated variables into a
smaller number of independent variables, i.e., principal
components. Factor analysis (FA), another important
analytical tool, identifies common factors that capture
variance-covariance of multiple variables with random
error. PCA, in contrast, identifies principle components,
with the restriction that random error must be zero[31].
Therefore, FA could be better suited to the analysis of
observed traits with measured errors and to tests of
genetic pleiotropy in some cases. The PCA-based multi-
variate regression proposed in this study can be easily
extended to FA-based regression for testing of genetic
pleiotropy in these cases. This can be implemented by
replacing principal components with common factors.
However, without estimation of random error, PCA is
more computationally efficient for analyses involving
large amounts of genetic data, and has great advantages
in terms of practical application[32]. For most cases,
PCA and FA procedures typically yield highly similar
results[32]. This was also the case in the present study;
we conducted an additional FA-based multivariate
regression analysis of pleiotropic association with meta-
bolic traits, and the results were the same as those
obtained by PCBMR (please see additional file 1). This
is consistent with previous findings that PCA and FA
behave similarly in tests of genetic pleiotropy[33].
In spite of its potential challenges, PCBMR is a power-

ful and computationally efficient method of studying the
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huge amounts of genetic data generated by advanced
technology, e.g. GWAS. For a large number of markers,
we suggest a strategy of traditional single-trait studies
on a candidate marker that PCBMR declares significant.
This strategy can not only help to explain PCBMR
results, but also has great advantages over traditional
single-trait studies in alleviating multiple testing pro-
blems. Suppose there are N markers and m traits, and
the experimental type I error is controlled at a. The sig-
nificance level for tests of a marker in traditional single-
trait studies is a/(N*M). This level is extremely small
when both N and M are large. In contrast, for a candi-
date marker, the significance level for this strategy is
a/(N+M). Generally, for most association studies and
GWAS, M is much smaller than N, and the significance
level will approximate a/N.

Conclusion
In summary, we propose the use of PCBMR, a computa-
tionally efficient method for the testing of gene pleio-
tropy. Although PCBMR is a combination of two
established methods- principal components and multi-
variate regression-we are the first to comprehensively
evaluate this technique in its combined form. The simu-
lation studies described here indicate that this method is
powerful for different kinds of pleiotropy. In spite of
some challenges for its use in practical studies, PCBMR
can greatly increase the power of association studies
under pleiotropy and can broaden understanding of a
gene’s functions as well as its pathway and mechanisms.
PCBMR is not only a useful method for candidate-gene
based studies; as the generation of high-throughput
expression data becomes increasingly efficient, PCBMR
can be used to study pleiotropy in analyses of massive
amounts of data, such as GWAS.

Methods
Principal Component Based Multivariate
Regression (PCBMR)
Given a set of traits, PCBMR uses the method of prin-
cipal component analysis (PCA) [34,35] to construct
one or more independent canonical variables based on
a specific threshold (θ). Suppose Y = (Y1, Y2,..., Ym)
represents variables of m traits. PCA searches for k
principal components (k ≤ m), which is a new
k-dimensional coordinate system. Within each principal
component a canonical variable is generated as a linear
combination of the original m traits with maximized
variance. The search can be simplified by using the
decomposition of the covariance of Y. However, differ-
ent units of trait measures may result in different
decompositions. To overcome this issue, PCBMR stan-
dardizes original traits with mean 0 and sample

variance 1. The standardized variable (Ys) for trait Y is
generalized by:

Y V YS = −−( ) ( ),/1 2 1 

where μ is the mean of Y and V is a diagonal matrix
with diagonal items equal to the variances of the corre-
sponding traits. For YS, Cov(YS) = (V1/2)–1Cov(Y)(V1/2)–1

= r, so its covariance and correlation matrices are the
same and r = ΓΛΓT, where Γ is the matrix of eigenvec-
tors and Λ is the diagonal matrix of eigenvalues.
PCA finds the weighting vector δ = (δ1, ..., δp)T that

maximizes the variance of canonical variable z = δTYS

[36]. This can be expressed by:

Var z Var YT s T( ) max ( ) max .
{ :|| || } { :|| || }

= =
= =   

  
1 1

δ is proved to be an eigenvector of r [36]. If we use
z = [z1, z2, ..., zm]

T representing m canonical variables,
then z = ΓTY and Var(z) = Λ. The correlation between
zi and Yj

S is (ΓijΛjj)
1/2, and the sum of squares of corre-

lations between all m canonical variances and any origi-

nal trait is equal to 1, i.e. ( , )z Yi j
S

i

m

=
∑ =

1
1 [36].

Therefore, a canonical variable zi can explain a fraction
of the variance for each Yj

S, and any maker associated
with zi will indicate association with the original traits.
Canonical variables with very low eigenvalues explain
only a minuscule fraction of the variance of the original
traits and can be deleted from the analysis [37]. PCBMR
chooses the first k principal components to construct
canonical variables that explain over 80% of variation.
Suppose z1, z2, ...,zk have normal distributions with mean

μi and variance si
2 (i = 1,2,...,k). Since all canonical vari-

ables are mutually independent, their joint distribution
that takes the general form of the exponential family is:

f z z z

z b

a

k k k

i i i

( , ,..., | , , ..., ; , , ..., )

exp[
( )

(

1 2 1 1 1 1     
 = −




i
i i

i

k
c z

)
( , )]+

=∏ 1

(1)

Where θi = μi, ji = si
2, a(ji) = ji, b(θi) = θi

2/2 and c
(zi, ji) = -[zi

2/ji+log(2πji)]/2 [29].
In multivariate regression, PCBMR takes the canonic

link. The mean regression model is μi = Xbi+Wτi, where
X and W are explanatory variables of tested markers
and other controlled variables, respectively, and bi and τi
are their corresponding parameter vectors, which denot-
ing effects on the μ, of the i-th canonical variable. The
null hypothesis of no association (H0) is:

  1 2 0= = … = =k
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We define the full model as the one without restric-
tion of H0 and the nested model as the one with restric-
tion of H0. PCBMR uses the likelihood ratio test (LRT)
for the goodness of fit between full and nested models.
Suppose zij is the observed canonical variable zi on jth
subject (j = 1,2,...,N). The sample likelihood L(θ) based
on equation (1) is:

L L z

z b

a
c z

k ij

ij i i

i
ij i

( ) ( , ,..., |{ })

{ exp[
( )

( )
( , )

   

 




=

=
−

+

1 2

]]}
j

N

i

k

== ∏∏ 11

(2)

The LRT statistic T is -2[logL(  ) - logL(
∧ )], where

 is the maximum likelihood estimate (MLE) of θ for
the nested model and the 

∧ MLE of θ for the full
model. When the mean regression model, θi = μi = Xbi
+Wτi, is input into equation (2), the T statistic is simpli-
fied to:

T
z z

T
ij ij
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The mean estimates, 
∧

i
and,  i are calculated by

simple linear regression of zi on [X W] and W respec-

tively. ( )zij ij

N −
∧

=∑  2
1

and ( )zij ij

N −=∑  2
1

are

deviances of the full and nested models, respectively,

and  
∧ ∧

=i i

2
is the estimate of dispersion, all of which

can be calculated by almost all statistical packages. Ti is
the c2 distributed LRT statistic for testing marker asso-
ciation with canonical trait zi by simple linear regres-
sion. The sum of Ti also has a c2 distribution with
degrees of freedom equal to the difference of parameter
numbers between the full and the nested model. A large
T causing rejection of H0 indicates at least one bi ≠ 0
and the presence of association attributable to the pleio-
tropic effects of multiple markers.

Simulation Studies
The power of PCBMR may depend on many factors;
some of these are: 1) the extent of the QTL pleiotropic
effect; 2) the extent of LD between the tested marker
and the pleiotropic QTL; 3) the portion of the trait cor-
relation contributed by the tested QTL relative to the
portion contributed by other QTL and environmental
factors; and 4) the number of traits in the study. For
each simulation, 1,000 datasets were generated. Type I
error and power were calculated as percentages of the
datasets, with p-value ≤ 0.05. Without loss of generality,

in the following design, the QTL is simulated with addi-
tive effects on different traits. Y1, Y2, ...Yk are original
QTL traits, U1, U2, ..., Uk are the population means of K
traits, X is the genotype of pleiotropic QTL denoted by
0, 1 and 2, b1, b2,..., bk are additive effects, and E1, E2, ...,
Ek are random errors.
Simulation 1, different extents of pleiotropic effects in QTL
The minor allele frequency of QTL is 0.2 (p = 0.2), and
simple linear regression models, Y1 = U1+X*b1+ E1 and
Y2 = U2+X*b2+ E2, are used to simulate traits Y1 and Y2.
To simplify the simulation, we set U1 = 0 and U2 = 50,
E1 and E2 to a normal distribution of mean 0 and stan-
dard deviation 2 (E1~E2~N(0, 2

2)), and b1 = b2 = b with
11 different effects from 0 to 1.0 with steps of 0.1.
Simulation 2, different extents of LD between a marker and
a pleiotropic QTL
In this situation, the QTL (p1 = 0.2) is not known
directly. Instead, a marker of minor allele frequency 0.2
(q1 = 0.2) with LD to the QTL is genotyped for the test.
Linear regression models, U1, U2, E1, and E2 are set as
above. The additive effects of b1 and b2 are fixed at 1.
LD was measured using a correlation coefficient (r) set
between 0 and 1 with steps of 0.1. For a pair of alleles
of a tested marker, denoted A1 and A2, and those of the
QTL, denoted B1 and B2, the following equation was
used to calculate the joint allele frequencies of the tested
marker and QTL. Based on r, D is calculated as

r p p q q* ( ) ( )1 1 1 11 1− − , and the joint allele frequencies

of the tested marker and QTL are calculated as f(A1B1)
= p1q1+D, f(A1B2) = p1(1-q1)-D, f(A2B1) = (1-p1)q1-D and
f(A2B2) = (1-p1)(1-q1)+D [38]. Assuming Hardy-Wein-
berg Equilibrium (HWE) for both QTL and marker, we
can infer frequencies of the tested marker genotypes for
simulation, given the frequency of QTL genotypes,
f(AiAj|Bi’Bj’) (i, i’, j, j’ = 1,2).
Simulation 3, trait correlation based on the effects of two
QTL and an environmental variable
Two linear regression models, Y1 = U1+X*b1+Q*c1
+W*d1+E1 and Y2 = U2+X*b2+Q*c2+W*d2+ E2, were
used to simulate traits Y1 and Y2, where U1 = 0, U2 =
50, and E1~E2~N(0, 0.5

2). The effects of b1 = b2 = b are
from 0 to 4 with steps of 0.5. Q is the second QTL with
pleiotropic effects c1 = c2 = 4. Both X and Q have minor
allele frequencies of 0.2. W is an environmental covari-
ate with a standard normal distribution N(0, 1) and
effects d1 = d2 = 4. The correlation, r(Y1, Y2), between
Y1 and Y2is:

( , )
( , )

var( ) var( )

var( ) var( )

Y Y
Cov Y Y

Y Y

b b X c c Q d

1 2
1 2

1 2

1 2 1 2 1

=

= + + dd W

Y Y
2

1 2

var( )
var( ) var( )
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The proportion of the correlation contributed by QTL
X, Pr(b), is

P b
b b X

b b X c c Q d d W

b

( )
var( )

var( ) var( ) var( )

.

.

=
+ +

=

1 2

1 2 1 2 1 2

20 32

0 322 21 122b + .
,

(3)

so Pr(b) increases as b increases.
Simulation 4, pleiotropic effects on more than two traits
Based on the linear regression model, Yi = Ui+X*b+Q*c
+W*d+E (i = 1,2, ...10), 2 to 10 traits were separately
simulated in each dataset. Without loss of generality, X,
Q, and W were defined as above with b = 2.5, c = 4, and
d = 4 set correspondingly. E is distributed as normal, N
(0, 0.52), and Ui = (i-1)*50 for i = 1, 2,..., 10.
Power and type I error were estimated for PCBMR under

the four simulation conditions. For comparison, we con-
ducted single-trait association studies using classical linear
regression with (STAB) and without (SATN) Bonferroni
adjustment. For single-trait association studies, only the
trait with the largest power or type I error was presented in
the paper. Based on different assumptions of the genetic
models, there are four possible ways of processing the X
variable for genotypes, which take values 0, 1 and 2: 1) X is
treated as a factor with three levels for the general model
(GEN) without assumption of any genetic inheritance; 2) X
is a linear variable in the additive model (ADD); 3) X is 0
for genotypes 0 and 1, and is 1 for genotype 2 in the domi-
nant model (DOM); and 4) X is 0 for genotype 1 and is 1
for genotypes 1 and 2 in the recessive model (REC). All
four assumptions were considered separately for association
tests by PCBMR and single trait regression.

Power comparison by binomial exact test
Without loss of generality, we created indicator variables
M1 and M2 for methods 1 and 2, respectively, where
method 1 is PCBMR and method 2 is either SATB or
SATN. The value of the variables was 1 for a significant
p-value and 0 otherwise. Matched pairs of M1 and M2

were tested by the binomial exact test [39], based on the
fact that ΣiM1i|(ΣiM1i+ΣiM2i) = Nm has binomial distri-
bution (Nm, p), i = 1, 2, ....1000 for the simulated data
above. For ΣiM1i > Nm/2, the null and alternative
hypotheses are p ≤ 0.5 and p > 0.5 respectively. Rejec-
tion of the null hypothesis indicates that method 1 is
significantly more powerful than method 2. For ΣiM1i <
Nm/2, the null and alternative hypotheses are p ≥ 0.5
and p < 0.5, respectively. Rejection of the null hypoth-
esis indicates that method 1 is significantly less powerful
than method 2. To strictly evaluate the power of

PCBMR, we compared it to method 2 for the trait with
the largest power.

Pleiotropic Association Studies of Abdominal Obesity-
Metabolic Syndrome
We applied PCBMR to search for markers associated with
multiple traits related to abdominal obesity-metabolic syn-
drome in the Bogalusa Heart Study, a community-based
investigation of the evolution of cardiovascular disease risk
beginning in childhood [20]. Based on previous studies
[18], we focused our studies on six traits (body mass index
(BMI), waist circumference (WAIST), hip circumference
(HIP), weight (WEIGHT), insulin (INSULIN) and insulin/
glucose (I/G)) and on chromosome 3 from 182-227 cM
(173.4-198.8 Mb), which contains potential pleiotropic
QTL [18,19]. The most recent measures were used for all
subjects. SNP genotyping was performed using data from
Illumina Human610 BeadChips. Only SNPs passing our
quality control measures were included in the study. BMI,
WAIST, HIP and WEIGHT traits have a linkage peak at
189-190 cM, and insulin and I/G at 202-203 cM [18].
Hence, associations with the multiple traits of BMI,
WAIST, HIP, and WEIGHT and of INSULIN and I/G
were separately studied by PCBMR. These traits may
depend on sex and age. Instead of analyzing original traits
directly, traits were regressed by sex and age according to
the following formula: Yi = U+AGE*b1+AGE

2*b2+SEX+Ei,
where residuals (Ei) were used as adjusted traits for asso-
ciation studies by PCBMR. The inheritance model for
markers underlying abdominal obesity-metabolic syn-
drome is generally not known before pleiotropic associa-
tion tests. We thus applied a general model that estimates
the effect of each possible genotype for an SNP association
in the sample. After susceptibility markers were identified,
different models (additive, dominant and recessive) with
the minor allele as reference were also examined in the
comparisons. The p-value was adjusted for multiple tests
by the Bonferroni method. The number of SNPs in the
pleiotropic study was 4,769, so the significance level for
testing an SNP association was 1e-5.

Additional material

Additional file 1: Factor analysis-based study of pleiotropic
association. Table of significant pleiotropic association and figure of p-
values of SNPs in linkage region.
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