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ABSTRACT In this report, we describe the draft genome sequence of a newly dis-
covered probiotic strain, Lactobacillus salivarius L28. L. salivarius L28 demonstrates
antagonistic effects against human foodborne pathogens, including Escherichia coli
O157:H7, Salmonella spp., and Listeria monocytogenes, in coculture experiments and
food matrices.

Probiotics are live, naturally occurring bacteria or fungi that, when administered in
adequate amounts, benefit the host by improving microbial balance (1, 2). The use

of probiotics has increased in recent years due to their well-known health-promoting
effects and their potential to replace subtherapeutic antibiotics in livestock (3–6).
Probiotics containing Lactobacillus spp. have been reported to reduce the prevalence
of foodborne pathogens in feces and hides and decrease the colonization of peripheral
lymph nodes by Salmonella spp. in livestock (6–8). Probiotics benefit the host by
producing antimicrobial compounds (i.e., bacteriocins and organic acids), competing
for epithelial receptors and nutrients in the gastrointestinal tract, producing enzymes
and vitamins, and improving the intestinal barrier and homeostasis (9). Lactobacillus
spp. have been commonly isolated from plants, silage, raw meat, fermented foods, oral
cavities, and gastrointestinal tracts of humans and animals.

Lactobacillus salivarius is a bacteriocin-producing bacterium that has been identified
as a promising probiotic due to its ability to modulate gut microbiota. They enhance
immune response and reduce host colonization by pathogenic bacteria, thus increasing
animal performance (10, 11). L. salivarius L28 was isolated from ground beef; prelimi-
nary experiments show that L28 reduces Escherichia coli O157:H7, Salmonella spp.,
and Listeria monocytogenes by 4.5, 6.5, and 8.5 log10 CFU/ml, respectively, compared
to controls cultivated without L28 (our unpublished data). Because L. salivarius L28
demonstrated the potential to control foodborne pathogens in vitro, we sequenced the
L28 genome to gain further insight into antagonistic mechanisms and identify genetic
markers unique to L28.

L. salivarius L28 was cultivated in MRS broth, and genomic DNA was isolated using
the Invitrogen Purelink DNA extraction kit (Thermo Fisher Scientific, Waltham, MA,
USA). Pure genomic DNA was used as input material for library preparation with
NexteraXT version 2.0 (Illumina, Inc., San Diego, CA, USA). DNA libraries were paired-end
sequenced using a 2 � 250-bp V2 kit on an Illumina MiSeq platform. Raw reads were
trimmed using Trimmomatic version 0.33 (12) and assembled using SPAdes version 3.5
(13). The L28 draft genome was annotated using the NCBI Prokaryotic Genome Anno-
tation Pipeline (14). Reads were assembled into 96 contiguous sequences (contigs). The
size of the L28 draft genome was estimated at 2,028,405 bp with an average G�C
content of 32.7%; the longest contig was 275,535 bp, the N50 value was 79,042 bp, and
the genome coverage was 118�. A total of 1,982 coding sequences, 64 tRNAs, and 31
rRNAs were predicted. Two prepeptides, or inducing factors for bacteriocin synthesis,
were identified in the general annotation, two incomplete prophages were identified
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by PHASTER (15), and one potential plasmid (99,553 bp) was identified. Additionally, 12
potential virulence factors with nucleotide identities greater than 72% were found
when compared to the virulence factors database (VFDB) (16), and one gene for
potential tetracycline resistance with 90% nucleotide identity was identified when
compared to the comprehensive antibiotic resistance database (CARD) (17).

Accession number(s). This whole-genome shotgun sequencing project has been

deposited in DDBJ/ENA/GenBank under the accession no. NDYW00000000. The version
described in this paper is the first version, NDYW01000000.
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