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Abstract

Acetylsalicylic acid is a globally used non-steroidal anti-inflammatory drug (NSAID) with

diverse pharmacological properties, although its mechanism of immune regulation during

inflammation (especially at in vivo relevant doses) remains largely speculative. Given the

increase in clinical perspective of Acetylsalicylic acid in various diseases and cancer preven-

tion, this study aimed to investigate the immunomodulatory role of physiological Acetylsali-

cylic acid concentrations (0.005, 0.02 and 0.2 mg/ml) in a human whole blood of infection-

induced inflammation. We describe a simple, highly reliable whole blood assay using an

array of toll-like receptor (TLR) ligands 1–9 in order to systematically explore the immuno-

modulatory activity of Acetylsalicylic acid plasma concentrations in physiologically relevant

conditions. Release of inflammatory cytokines and production of prostaglandin E2 (PGE2)

were determined directly in plasma supernatant. Experiments demonstrate for the first time

that plasma concentrations of Acetylsalicylic acid significantly increased TLR ligand-trig-

gered IL-1β, IL-10, and IL-6 production in a dose-dependent manner. In contrast, indometh-

acin did not exhibit this capacity, whereas cyclooxygenase (COX)-2 selective NSAID,

celecoxib, induced a similar pattern like Acetylsalicylic acid, suggesting a possible relevance

of COX-2. Accordingly, we found that exogenous addition of COX downstream product,

PGE2, attenuates the TLR ligand-mediated cytokine secretion by augmenting production of

anti-inflammatory cytokines and inhibiting release of pro-inflammatory cytokines. Low PGE2

levels were at least involved in the enhanced IL-1β production by Acetylsalicylic acid.

Introduction

Acetylsalicylic Acid (ASA) is the most common of all non-steroidal anti-inflammatory drugs

(NSAIDs) worldwide. Interestingly, it has been reported that ASA, in addition to its anti-

inflammatory effects, can also have marked immunomodulatory effects, e.g. on the function of

critical antigen-presenting cells, which are poorly understood [1, 2]. Due to its analgesic, anti-

pyretic, anti-thrombotic and anti-inflammatory properties, ASA is used as therapy for diverse

conditions including treatment of moderate pain [3, 4], reduction of symptoms in rheumatic

diseases [5, 6] and prevention of cardiovascular events [7, 8]. Moreover, several clinical studies

have recently provided evidence that daily intake of low-dose aspirin may significantly prevent
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cancer incidence, especially in gastrointestinal tract [9–11]. Originally, the main mechanism

for the pharmacological effects of ASA is the suppression of endogenous prostaglandin synthe-

sis via inhibition of cyclooxygenase (COX) activity [12, 13]. There are two isoforms of COX

identified: cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) [14]. While the consti-

tutively expressed COX-1 regulates homeostatic prostaglandins (PGs) to mediate “housekeep-

ing” functions in the body, COX-2 is rapidly induced by inflammatory stimuli to release PGs

at tissue site of inflammation [15, 16]. Therefore, it seems that ASA, through its well-known

COX inhibitory mechanism, exhibits its immunopharmacological properties via modulation

of COX-dependent production of PGs. However, there is a growing body of evidence that

ASA has some COX-independent mechanisms, including inhibition of nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) pathway [17], induction of Nitric oxide

(NO) release [18] and lipoxin synthesis [19]. Besides the frequent use of low-dose ASA in

antithrombotic therapy, low-dose ASA has been demonstrated by recent studies to reduce can-

cer incidence [20–22] and play a role in immune system and certain immunopathological con-

ditions [19, 23, 24]. However, there is still no common agreement about the mechanism of the

immunomodulatory potential of ASA. There are already some results that ASA has an immu-

nostimulating effect after LPS stimulation but most studies administered high ASA doses that

are not reached in vivo [25, 26]. Therefore, this study aimed to reinvestigate the immunomod-

ulatory effects of ASA in the context of its easily and consistently achieved plasma concentra-

tions after regular administration in humans and extended the investigations to multiple toll-

like receptor (TLR) ligands. A randomized placebo-controlled crossover study detected after

intravenous and oral administration of 500 mg ASA peak plasma concentrations of 0.05 mg/

ml and 0.005 mg/ml, respectively [27]. Furthermore, a comprehensive data collection of thera-

peutic blood concentrations for nearly 1000 drugs reported ASA plasma concentrations in the

range of 0.02 and 0.2 mg/ml [28]. We developed a rapid and sensitive method to assess

immune-related effects of ASA, Indomethacin, and Celecoxib in human whole blood (WB)

after stimulation with TLR ligands 1–9. TLRs are pattern recognition receptors on diverse cell

types that play a vital role in the activation of immune response involving antigen-presenting

cells (APCs) such as dendritic cells (DCs) and macrophages [29]. Stimulation of TLRs by their

cognate ligands trigger the migration and production of inflammatory cytokines, upregulation

of major histocompatibility complex (MHC) molecules, and co-stimulatory signals in antigen-

presenting cells and can therefore be exploited as an in vitro stimulus that closely mimic the

physiological immune reaction [30, 31]. Using this WB assay, we examined a variety of immu-

nomodulatory aspects of therapeutic relevant ASA doses, including cytokines and PG release,

in a highly standardized manner that requires minimal blood volumes and mimics the natural

in vivo environment.

Materials and methods

Blood samples

Freshly drawn peripheral blood from healthy male donors aged 18–60 after obtaining their

written informed consent was anticoagulated using Tri-sodium citrate monovettes (S.Monov-

ette, Sarstedt). The study was approved by the local ethics committee of University Hospital

Erlangen (346_18B, 343_18B, 357_19B). Blood samples were kept at room temperature for no

longer than 2h before processing.

Stimulation of whole blood

Whole blood (WB) was diluted 1:2 with RPMI 1640 (Sigma-Aldrich) supplemented with 1%

Penicillin/ Streptomycin (Sigma-Aldrich) and 2 mM L-glutamine (Gibco) and were
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distributed in 96-well round bottom plates (total volume 200μl/well). Samples were stimulated

for 18h in 5% CO2 at 37˚C with 20 μl TLR ligands from InvivoGen including Pam3CsK4

(TLR1/2), HKLM (TLR2), Poly (I:C)-HMW (TLR3), Poly (I:C)-LMW (TLR3), LPS E.coli K12
(TLR4), Flagellin-ST (TLR5), FSL-1 (TLR6/2), Imiquimod (TLR7), ssRNA40/LyoVec (TLR8),

and ODN2006 (TLR9). The appropriate concentrations used in this study are depicted in Fig

1. In order to investigate immunomodulatory effects, blood samples were incubated for 6h in

5% CO2 at 37˚C with acetylsalicylic acid (0.2 mg/ml/ 1.0 mM, 0.02 mg/ml/ 0.1 mM or 0.005

mg/ml/ 0.03 mM), Indomethacin (0.01 mg/ml/ 0.03 mM or 0.05 mg/ml/ 0.1 mM), Celecoxib

(0.01 mg/ml/ 0.03 mM or 0.05 mg/ml/ 0.1 mM), Dexamethason (1 nM or 100 nM), PGE2 (7.5

ng/ml or 5 ng/ml) (all from Sigma Aldrich) or vehicle alone before TLR stimulation. Acetylsal-

icylic acid, Indomethacin and Celecoxib were dissolved in DMSO; Dexamethason and PGE2

in ethanol. After stimulation, approximately 100 μl supernatant were carefully collected from

each well (without disturbing the pellet) and subsequently frozen at −20˚C until use. The opti-

mal duration of stimulation for an optimal effect on cytokine secretion was determined

through prior kinetic studies.

Measurement of cytokine production

Cytokines including TNF-α, IL-1β, IL-6, IL-10 and IFN-γ were quantified using a flow cytom-

etry bead-based immunoassay (LEGENDplexTM human essential immune response panel,

BioLegend) according to the manufacturer’s protocol and analyzed using LEGENDplex ver-

sion 7.0 software (Vigene Tech). Cytokine concentrations were transformed to Log2 for TLR

stimulation or expressed in percent relative to TLR agonist alone, which was defined as 100%.

Measurement of PGE2 production

PGE2 concentration was measured with a Homogenous Time Resolved Fluorescence (HTRF)

kit obtained from Cisbio according to the manufacturer’s protocol. TR-FRET signal was

detected by a FLUOstar Omega plate reader (BMG Labtech) with laser excitation at 337 nm

and dual emission at 665 nm and 620 nm. HTRF ratios were estimated as fluorescence signal

at 665 nm divided by fluorescence signal at 620 nm (acceptor/donor) and then multiplied by

104. Data were converted from HTRF ratio values to PGE2 concentration using a standard

curve and then expressed in percent relative to TLR agonist alone, defined as 100%.

Flow cytometry

Cellular viability and cellular composition of WB after stimulation with TLR ligands, acetylsal-

icylic acid, Indomethacin, Celecoxib, PGE2 or vehicle was determined by flow cytometry (S1

Fig). WB was stained with a staining kit (Zombie Aqua Fixable Viability Kit, Biolegend) in

accordance with the manufacturer’s protocol. Before staining of extracellular antigens, cells

were treated with Fc receptor blocking reagent (Miltenyi Biotec). Extracellular staining was

performed with monoclonal antibody for 20 minutes at 4˚C in FACS buffer (PBS [Sigma-

Aldrich], 2% FCS [anprotect]). Afterwards, samples were lysed with ammonium chloride solu-

tion (155 mM NH4Cl, 10 mM KHCO3, 1 mM EDTA, pH 7.4) for 10 minutes at room tempera-

ture. The lysed samples were centrifuged and washed at 300g for 5 minutes before acquisition

on a CytoFLEX S (Beckman Coulter) and subsequently analyzed using FlowJo v10. Doublets,

cell debris, and dead cells were excluded via forward and sideward scatter as well as Zombie

AquaTM. Cell subpopulations were phenotyped with the following murine α-human monoclo-

nal antibodies: CD14-BV605 (63D3), CD56-BV650 (5.1H11), CD16-PacBlue (3G8),

CD3-AF700 (OKT3), CD19-APC/Fire (SJ25C1). All antibodies were purchased from

BioLegend.
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Cell populations were defined as follows: live (single cells, Zombie AquaTM), monocytes

(CD14+CD16+), granulocytes (CD14-CD16+), NK cells (CD14-CD16+CD56+), T cells

(CD14-CD56-CD16-CD3+), B cells (CD14-CD56-CD16-CD3-CD19+).

Fig 1. Concentration-dependent cytokine production after TLR ligand 1–9 stimulation of WB. Citrate-

anticoagulated blood was stimulated with TLR-ligands for 18h. Concentration levels of cytokines [pg/ml] are presented

as mean ± SD of 2 experiments, each performed in duplicate.

https://doi.org/10.1371/journal.pone.0254606.g001
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Statistical analysis

Data were reported as mean ± SD unless otherwise stated. Statistical analysis was performed

with GraphPad Prism version 8.3.0 (GraphPad Software, San Diego, California USA). Statisti-

cal significance between groups was evaluated by two-way analysis of variance (ANOVA) fol-

lowed by Dunnett’s post hoc test for multiple comparisons. P-value less than 0.05 was

considered statistically significant.

Results

Development and validation of an in vitro whole-blood model for the

evaluation of immunomodulatory agents

With the aim of investigating the immunomodulatory properties of ASA in a clinically relevant

setting, we adapted a WB cytokine assay that preserves the physiological cellular interactions

and environment [32]. In this simple model for infection-induced inflammation, the cytokines

secretion in citrate-anticoagulated WB cell cultures from healthy subjects were measured in

response to different agonists of human TLRs 1–9. To determine the optimal concentration of

TLR ligands for detecting cytokine production in WB, we first stimulated with serial dilutions

of each TLR agonist and assessed the essential immune cytokines (TNF-α, IL-6, IL-10, IL-1β
and IFN-γ) in the supernatant via bead-based immunoassay. After 18h incubation, a dose-

dependent cytokine production was detected for all TLR ligands, such that cells in the WB cul-

ture responded differently to TLR stimulation with respect to their amount and type of cyto-

kine secretion (Fig 1). Depending on the class of pathogen, a wide variety of cells secrete

cytokines in order to coordinate the innate and adaptive immune response during host defense

[31, 33]. For further experiments, we focused on the most powerful stimulants in the mini-

mum concentration with adequate efficacy (500 ng/ml Pam3CsK4 (TLR1/2); 108 cells/ml

HKLM (TLR2); 10 ng/ml LPS (TLR4); 1 μg/ml Flagellin (TLR5); and 2.5 μg/ml ssRNA40

(TLR8)) that triggered not only pro-inflammatory cytokines (IFN-γ, IL-1β and TNF-α) but

also anti-inflammatory cytokines (IL-10), including those with pleiotropic activities (IL-6).

Furthermore, we validated the biological specificity of WB assay using the classical anti-

inflammatory glucocorticoid Dexamethason, which mediates its anti-inflammatory properties

via inhibition of intracellular signals initiated by TLRs [34–37]. WB was pre-incubated with 1

nM and 100 nM Dexamethason for 6h followed by stimulation with the various TLR ligands

for 18h. From the result, 100 nM Dexamethason exhibited an almost complete inhibition of

TNF-α, IL-1β, IL-6 and IFN-γ release irrespective of the TLR stimulation (Fig 2). While a simi-

lar inhibitory effect was observed for IL-10 in response to LPS and Flagellin in a weakened

form (mea n = 40% and 65%, respectively), Dexamethason had no influence on IL-10 concen-

tration after stimulation with Pam3CsK4, HKLM, and ssRNA40.

Physiologic ASA concentrations augment TLR ligand triggered

immunostimulatory cytokine production

In order to evaluate the immunomodulatory impact of low ASA concentrations, we pre-incu-

bated WB with increasing therapeutic concentrations of ASA followed by stimulation with

Pam3CsK4, HKLM, LPS, Flagellin or ssRNA40. As shown in Fig 3, ASA exhibited different

effects on cytokine production depending on the TLR ligand. In the presence of ASA,

Pam3CsK4 induced a concentration-dependent increase in IL-1β (Fig 3A). Similarly, a signifi-

cant elevation of IL-1β was detected in the supernatant of WB cultures simulated with LPS and

Flagellin (Fig 3C and 3D). At the highest concentration of 0.2 mg/ml of ASA, LPS enhanced

IL-10 production (mean = 175%). For ssRNA40, we observed a moderate increase in IL-6 and
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IFN-γ production in cells pre-incubated with ASA (Fig 3E). Notably, the stimulatory effect on

IFN-γ production declined with higher ASA concentrations. In contrast, upon stimulation

with HKLM, ASA demonstrated a dose-dependent inhibition of IFN-γ up to 50% (Fig 3B). In

the absence of TLR ligands, addition of ASA resulted in non-significant cytokines production.

Effect of indomethacin and celecoxib on TLR ligand stimulated cytokine

production

Since low concentrations of ASA (0.01–0.1 mM) are demonstrated to primarily inhibit prosta-

glandin biosynthesis by targeting both COX-1 and COX-2 [38, 39] and at higher concentra-

tions (> 5 mM) may exhibit an immunoregulatory effect mediated by inhibition of NF-κB

[17], we next examined the impact of two other NSAIDs exhibiting different mechanisms of

action. Indomethacin is known to inhibit COX-1 and COX-2 activity without any effect on

NF-κB activation [40] and Celecoxib is described as a selective COX-2 inhibitor [41]. In our

WB assay, Indomethacin showed a very slight increase in few cytokines concentration com-

pared to ASA (Fig 4). Significant higher cytokines concentration were only observed for TNF-

α and IFN-γ upon stimulation by LPS and ssRNA40, respectively (Fig 4C and 4E). In contrast,

similar to ASA, addition of the highest concentration of Celecoxib triggered a substantial ele-

vation of several cytokines in response to TLR-ligands (Fig 4). Celecoxib (0.05 mg/ml) strongly

upregulated the production of IL-1β by almost 100% compared to TLR stimulation alone (Fig

4A and 4C–4E). Pre-treatment with Celecoxib also elicited an increased amount of IL-6 in

supernatant of WB cultures stimulated with Pam3CsK4 and LPS (mean = 220% and 160%,

Fig 2. Concentration-dependent cytokine release inhibition through Dexamethason (DEX) in TLR-ligand stimulated WB. Citrate- anticoagulated

blood was incubated with Dexamethason or vehicle 6h before stimulation with Pam3CsK4, HKLM, LPS, Flagellin or ssRNA40. The cytokine production by

cells stimulated without Dexamethason (vehicle) was set as 100%. Data represent mean±SD of four experiments performed in duplicate. Differences were

significant at p< 0.05 (�), p< 0.01 (��) or p< 0.001 (���) as indicated, compared to WB incubated without Dexamethason. The concentrations of TNF-α
and IFN-γ upon Pam3CsK4 stimulation were below detection limit. n.d.—not detectable.

https://doi.org/10.1371/journal.pone.0254606.g002
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respectively). A considerable increase in IL-10 production by the highest dose of Celecoxib

was obtained in response to LPS (mean = 208%) and Flagellin (mean = 181%). In addition, a

concentration-dependent inductive effect of Celecoxib was also observed for ssRNA-stimu-

lated IFN-γ production (Fig 4E).

ASA inhibits TLR-triggered PGE2 production in human WB in a dose-

dependent manner

PGE2, the predominant eicosanoid in inflammatory response, is largely dependent on the

activity of COX-2 [42]. We examined the influence of ASA on PGE2 production in response to

TLR ligands. In an initial experiment, we validated that all TLR ligands catalyzed the formation

of PGE2 compared to unstimulated WB, such that HKLM was the most potent activator (Fig

5A). Pre-incubation of blood samples with different concentrations of ASA showed a dose-

dependent inhibition of TLR ligand-induced PGE2 production (Fig 5B). PGE2 production was

reduced by approximately 50% in all TLR ligand-stimulated cells at the highest concentration

of ASA (0.2 mg/ml). A modest decrease (20%–40%) was detected at lower ASA doses in the

supernatant of WB cultures incubated with Pam3CsK4, LPS, and Flagellin. In contrast, 0.0

2mg/ml and 0.005 mg/ml of ASA were insufficient to significantly suppress PGE2 production

in response to HKLM and ssRNA40.

Similarly, Indomethacin and Celecoxib at both concentrations were able to significantly

suppress TLR ligand-induced PGE2 production (Fig 5C). However, Indomethacin and Cele-

coxib showed a stronger inhibitory effect compared with ASA (45–95%).

Fig 3. Immunostimulatory effect of different concentrations of acetylsalicylic acid (ASA) on TLR ligand-induced cytokine production in WB. Citrate-

anticoagulated blood was incubated with ASA or vehicle for 6h before stimulation with (A) Pam3CsK4 (B) HKLM (C) LPS (D) Flagellin and (E) ssRNA40.

The cytokine production by cells stimulated without ASA (vehicle) was set as 100%. Data represent mean ± SD of six experiments performed in triplicate.

Differences were significant at p< 0.05 (�), p< 0.01 (��) or p< 0.001 (���) as indicated, compared to WB incubated without ASA. n.d.—not detectable.

https://doi.org/10.1371/journal.pone.0254606.g003
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Immunostimulatory properties of ASA are partially reversed by PGE2

To investigate whether the inhibitory effects of ASA on TLR agonist-mediated PGE2 produc-

tion is responsible for the immunostimulatory cytokine production, exogenous PGE2 was

added in excess to WB before stimulation. The exogenous PGE2 suppressed the release of IL-

1β and IFN-γ in response to TLR ligands by 30%–70% compared to those of non-treated con-

trols with the exception of ssRNA40 where no downregulation of IL-1β was observed (Fig 6).

Strikingly, the inhibitory effect prevailed even in the presence of 0.2 mg/ml ASA and abolished

the potentiating impact of ASA on IL-1β production upon stimulation with Pam3CsK4, LPS,

and Flagellin (Fig 6A, 6C and 6D). Similarly, the reduced levels of IFN-γ did not change with

the addition of ASA. However, addition of exogenous PGE2 resulted in a marked increase in

IL-6 for all TLR ligands (mean = 190–865%), in IL-10 after stimulation with LPS

(mean = 230%) and HKLM (mean = 148%), and in TNF-α after stimulation with LPS

(mean = 220%), Flagellin (mean = 155%) and ssRNA40 (mean = 258%). Interestingly, co-incu-

bation with 0.2mg/ml ASA had no effect on the elevated cytokine levels caused by PGE2. In

contrast, IL-10 release was even suppressed by PGE2 when WB was stimulated with Pam3CsK4

(mean = 35%; Fig 6A) and showed no effect on Flagellin- and ssRNA40-induced IL-10 levels

(Fig 6D and 6E).

Discussion

In the present study, we developed a straightforward technique using human WB stimulated

with different TLR ligands to investigate the immunomodulatory effects of in vivo relevant

Fig 4. Minor cytokine modulating effects of Indomethacin (IND) in comparison with Celecoxib (CCXB) in TLR ligand-stimulated WB. Citrate-

anticoagulated blood was incubated with 0.01 and 0.05 mg/ml Indomethacin, Celecoxib or vehicle 6h before stimulation with (A) Pam3CsK4 (B) HKLM (C)

LPS (D) Flagellin and (E) ssRNA40. The cytokine production by cells stimulated without Indomethacin or Celecoxib (vehicle) was set as 100%. Data

represent mean ± SD of six experiments performed in duplicate. Differences were significant at a p< 0.05 (�), p< 0.01 (��) or p< 0.001 (���) as indicated,

compared to WB incubated without ASA. n.d.—not detectable.

https://doi.org/10.1371/journal.pone.0254606.g004
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Fig 5. ASA, IND and CCXB inhibit TLR ligand-stimulated PGE2 production in WB. Citrate-anticoagulated blood

was incubated with (A) Pam3CsK4, HKLM, LPS, Flagellin or ssRNA40 and PGE2 production was measured. Results

are expressed as mean ± SD of four experiments performed in triplicate. Differences were significant at p< 0.05 (�),

p< 0.01 (��) or p< 0.001 (���) as indicated, compared to unstimulated WB. (B) Various concentrations of ASA or

vehicle following stimulation with TLR agonists. PGE2 production is expressed in percent compared to TLR agonist

alone (vehicle), which is defined as 100%. Data represent mean ± SD of four experiments performed in triplicate. (C)

Various concentrations of IND, CCXB or vehicle following stimulation with TLR agonists. PGE2 production is

expressed in percent compared to TLR agonist alone (vehicle), which is defined as 100%. Data represent mean ± SD of

four experiments performed in duplicate. Differences were significant at p< 0.05 (�), p< 0.01 (��) or p< 0.001 (���)

as indicated, compared to WB incubated without ASA, IND or CCXB.

https://doi.org/10.1371/journal.pone.0254606.g005

PLOS ONE Aspirin trigger immunostimulatory cytokine production

PLOS ONE | https://doi.org/10.1371/journal.pone.0254606 August 24, 2021 9 / 20

https://doi.org/10.1371/journal.pone.0254606.g005
https://doi.org/10.1371/journal.pone.0254606


plasma concentrations of ASA. The supernatant of WB cultures offers the possibility of simul-

taneous and quantitative detection of multiple parameters (including cytokines and PGs) that

are important players in intracellular signal transduction and intercellular communications of

immune cells, without changing their relative proportions in cells [43]. Upon stimulation with

various TLR ligands, we detected typical patterns of secreted cytokines attributed to different

TLR-associated signaling pathways and various types of responding cells [44–46]. The known

immunosuppressive agent, Dexamethason, confirmed the functionality of the WB assay by

potently inhibiting the TLR ligand-induced cytokine production. In previous studies, anti-

inflammatory cytokine (IL-10) production was less inhibited by Dexamethason compared to

pro-inflammatory cytokines production (TNF-α and IL-1β) [47, 48].

In comparison with previous studies, we focused on the ability of in vivo relevant ASA con-

centrations that are achieved after administration of therapeutic ASA doses to modulate cyto-

kine production in human WB after TLR ligand stimulation. ASA concentrations were

selected based on reported plasma levels in literature [27, 28]. Our study revealed that physio-

logical ASA concentrations in WB significantly increase TLR-stimulated cytokine production

in a dose-dependent manner. Especially, addition of 0.02 and 0.2 mg/ml ASA enhanced the

production of IL-1β, IL-10, IL-6 and IFN-γ in WB culture after TLR stimulation with

Pam3CsK4, LPS, Flagellin, and ssRNA40. In contrast, an inhibitory effect of ASA was only

detected for HKLM-mediated IFN-γ levels. Immunostimulatory properties of ASA were

reported previously, where oral administration of ASA in healthy volunteers resulted in

increased IL-1β and TNF-α synthesis by PBMCs [49] and elevated TNF-α activity in LPS-stim-

ulated human monocytes [50]. An increased production of TNF-α, IFN-γ, IL-10, and IL-6 was

Fig 6. Exogenous addition of PGE2 antagonizes most of the immunostimulatory effects of ASA. PGE2 (5 ng/ml) was added to citrate-anticoagulated blood in

the presence or absence of 0.2 mg/ml ASA before stimulation with TLR-ligands including (A) Pam3CsK4 (B) HKLM (C) LPS (D) Flagellin and (E) ssRNA40.

Stimulated cells incubated without ASA and PGE2 (vehicle) set as 100%. Data represent mean ± SD of three experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0254606.g006
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also observed following LPS stimulation of WB and addition of higher ASA concentrations

(1–5 mM) [25, 26]. In this study, we were able to detect an immunostimulatory effect on cyto-

kine release even at therapeutic relevant ASA plasma concentrations and could show an

immunostimulatory effect not only after LPS stimulation but also with various other TRL

ligands, suggesting that the immunomodulatory capacity of ASA may be much broader than

previously thought. Only male donors were included in the current experimental study to

reduce confounding factors, as sex-related differences in cytokine production are evident fol-

lowing TLR7/8 stimulation of healthy human subjects [51–53]. However, as ASA is a globally

used NSAID in men and women, it would be an interesting clinical question to examine the

immunomodulatory effects of ASA in female donors as well.

To further investigate the influence of COX inhibition on the immunostimulatory effects of

ASA, we used Indomethacin, which inhibits COX activity without any effect on NF-κB activa-

tion [40] and Celecoxib, which is described as a selective COX-2 inhibitor [41]. In contrast to

ASA, Indomethacin exhibited a weak effect on TLR-triggered cytokine production. A moder-

ate stimulatory effect of Indomethacin was observed at the highest concentration for LPS-

mediated TNF-α, IL-1β and IL-10 production as well as ssRNA40-stimulated IFN-γ produc-

tion. Interestingly, the selective COX-2 inhibitor, Celecoxib, promoted a marked increase in

several cytokines (IL-1β, IL-6, IL-10 and IFN-γ) which is comparable to the effect of ASA.

These findings are in line with previously reported role of COX-2 inhibition for stimulatory

effects of NSAIDs on the production of cytokines [25, 54].

Following TLR stimulation, various cell types express high levels of COX-2, which accounts

for the production of large amounts of PGE2 [42]. We therefore focused on the downstream

product of COX, PGE2, to further examine the involvement of COX-2 in the immunostimula-

tory effects of low-dose ASA. PGE2 is an attractive key mediator in many early inflammatory

events as it is able to exhibit both promotion of anti-inflammatory effects such as IL-10 pro-

duction and direct suppression of multiple pro-inflammatory cytokines including IFN-γ,

TNF-α, and IL-1β to limit nonspecific inflammation, depending on the context [55–58]. The

biological actions of PGE2 are mediated by four distinct G protein-coupled receptors (EP1,

EP2, EP3, and EP4) on the plasma membrane of target cells [59]. We confirmed that PGE2 is

generated in response to all TLR ligands and determined that COX activity is influenced by

ASA as measured by the dose-dependent suppression of TLR-ligand induced PGE2 produc-

tion. Indomethacin and Celecoxib also reduce the production of PGE2 to baseline levels in

WB [60, 61]. Consistent with the ability of PGE2 to downregulate pro-inflammatory cytokines,

addition of exogenous PGE2 to WB before TLR-stimulation suppressed the production of

IFN-γ and IL-1β. In turn, we found that TLR ligand-induced IL6 concentrations were further

increased after addition of exogenous PGE2. PGE2 also showed enhanced production of

HKLM- and LPS-released IL-10 and increased levels of TNF-α following stimulation with

LPS, Flagellin and ssRNA40. In contrast, a suppressive effect of PGE2 was observed for

Pam3CsK4-induced IL-10 levels. The pleiotropic roles of PGE2 in immune regulation have

been described for several immune cell types, particularly those involved in innate immunity

such as macrophages, neutrophils, natural killer cells, and dendritic cells (DCs) [62–65]. For

example, PGE2 strongly inhibits the production of Th1 cytokines, such as IFN-γ and IL-2, and

favors type-2 responses in general [66]. The biasing of the immune system toward Th2 and

away from Th1 responses by PGE2 is further supported by the PGE2-mediated inhibition of

antigen-primed DCs to produce IL-12. These DCs produce high levels of IL-10 and directly

induce the differentiation of naïve T cells into Th2 cells [67–69]. In addition, NK cells secrete

IFN-γ to activate macrophages during the innate immune response, which is suppressed by

PGE2 [70]. The precise mechanism of these inhibitory effects remains unclear but there is evi-

dence that intracellular cAMP, a downstream effector molecule of PGE2 signaling through the
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EP2/EP4 receptors, and increased production of polarizing cytokines are involved in suppress-

ing Th1 cell-mediated immune inflammation [71–75]. Blocking IL-1β processing and secre-

tion involves inhibiting the NLR family pyrin domain containing 3 (NLRP3) inflammasome in

human primary monocyte-derived macrophages, which is mediated through the EP4 receptor

and increases intracellular cAMP [76, 77]. This is also supported by the finding that we

detected no increase in IL-1β in response to PGE2 following stimulation with ssRNA40,

because RNA analogs such as ssRNA40, activate IL-1β through the NLRP3 pathway [78, 79].

However, we found no inhibitory effect of PGE2 on pro-inflammatory TNF-α production in

our WB assay. Various parameters could play a role in this discrepancy that highlights the arti-

ficial nature of in vitro experiments. It was previously reported that PGE2 exhibits dose-depen-

dent effects on TNF-α release from rat macrophages: low concentrations had a stimulatory

effect and high concentrations had an inhibitory effect [80]. In addition, the temporal context

could be decisive for the mode of action of PGE2, as macrophage TNF biosynthesis is inhibited

by exogenously supplied PGE2 but is insensitive to endogenously produced PGE2, most likely

due to a time delay in LPS- induced PGE2 biosynthesis [81]. The induction of IL-6 by PGE2

can be explained based on activation of NF- κB [82, 83]. An increased IL-6 response to PGE2

in murine inflammatory macrophages has been suggested to be distinctively regulated than IL-

10 and has been shown to be dependent on p38/MAP kinase activity [83]. Several studies dem-

onstrated that agents that increase cAMP levels enhance IL-10 transcription [84, 85]. This also

includes PGE2, which upregulates the production of IL-10 in various cell types including mac-

rophages [86], T cells [87], and DCs [88, 89]. In addition, investigations of the inflammatory

effects of PGE2 on DC functions have shown that COX-2-mediated PGE2 accounts for the

boost in IL-10 release and suppresses production of pro-inflammatory cytokines, such as IL-

12p70 [88, 89]. The anti-inflammatory phenotype associated with enhanced production of IL-

10 is mediated by increased intracellular cAMP via the EP2 and EP4 receptor subtypes by

modulating the EP/PKA/SIK/CRTC/CREB pathway [86, 90–93]. EP2 and EP4 are Gs-coupled

receptors that signal primarily through the adenylate cyclase-dependent cAMP/PKA/CREB

pathway [65]. Importantly, our results highlight that the TLR ligands investigated induced var-

ious amounts of PGE2 and similarly, adding exogenous PGE2 resulted in different effects on

cytokine production depending on the TLR ligand applied. TLRs recruit a specific set of adap-

tor molecules, such as MyD88 and TRIF, to initiate downstream signal transduction pathways.

MyD88 is used by all TLRs except TLR3 and activates the transcription factor NF-κB and

mitogen-activated protein kinases (MAPK) to induce inflammatory cytokines [29, 94]. How-

ever, some TLRs utilize additional adapter proteins including TRIF, TIRAP, and TRAM to

trigger different signaling pathways from different intracellular compartments [95, 96]. Inves-

tigations of TLR-mediated PGE2 production in human DCs have demonstrated that only the

TLR4 and TLR7/8 ligands released PGE2, although all TLRs are expressed and functional [97].

Differential post-transcriptional regulation was also the reason for a stronger induction of

IL10 secretion via TLR4 in TLR2 and TLR4-stimulated BM derived macrophages [98, 99].

The hypothesis of a direct correlation between cytokine release and PGE2 production by

ASA remains to be confirmed by a larger sample size study [100]. By adding exogenous PGE2

to compensate for the inhibitory effect of ASA on TLR-ligand induced PGE2 production, it

was demonstrated that the potentiating effect of ASA on IL-1β formation was completely pre-

vented. This may either be due to the supplemented amount of PGE2 or to an inhibitory effect

of PGE2 on IL-1β. Previous studies have presumed that the immunostimulatory properties are

caused by the loss of PGE2. A similar inhibitory effect of PGE2 was reported for the amplifica-

tion of TNF-α by ASA after LPS stimulation [26] and for the increased production of IL-6 and

TNF-α by the NSAID Indomethacin [25]. Especially for TNF-α, it has been suggested that

inhibited PGE2 production is responsible for the observed stimulatory effect [50, 62, 66]. In
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contrast, the upregulation of IL-10 and IL-6 by ASA in this study was probably not caused by

inhibiting PGE2. Lipoxins are endogenous anti-inflammatory metabolites of the arachidonic

acid pathway and ASA affects the formation of lipoxin epimers resulting in the generation of

15 epi-lipoxin A4, also known as aspirin-triggered lipoxin (ATL) [101–103]. Lipoxin A4

(LXA4) has been demonstrated to upregulate IL-10 through the Notch signaling pathway in

murine BV2 microglia cells [104] and stimulate IL-6 generation in human monocytes [105].

Furthermore, stable 15-epi–LXA4 analogs display potent in vivo anti-inflammatory action and

induce nitric oxide production for an anti-inflammatory effect [106, 107]. Thus, in addition to

inhibiting PGs, ASA also triggers the formation of lipid mediators, which can be used as targets

to elucidate the immunomodulatory properties of ASA.

In addition, we emphasized the distinct effects of PGE2 on cytokine secretion to modulate

various steps during the inflammatory response, which originated not only from four EP

receptors, but also from various levels of expression among different tissues, differences in sen-

sitivity, the ability to activate multiple signaling pathways, and the inflammatory stimulus

used. The present study indicates that PGE2 modulates immune response via regulation of

cytokine signaling, as well as cytokine production, which in turn is partly responsible for the

immunostimulatory effect of ASA. In summary, we established a simple and efficient assay

using human WB to monitor the immunomodulatory effects of clinically relevant ASA doses

in response to various TLR ligands. We demonstrated that therapeutically achieved plasma

concentrations of ASA exert a boosting effect on cytokine production following stimulation

with TLR ligands such as Pam3CsK4, LPS, Flagellin, and ssRNA40. Furthermore, our results

indicate a potential role of PGE2 and COX-2 in mediating the immunostimulatory effects of

ASA. While the immunomodulatory effect of peak plasma concentrations of ASA is clearly

demonstrated, the numerous players including the dichotomous role of PGE2 in inflamma-

tion, turnover of COX enzymes in various cell types, and different signaling pathways upon

TLR stimulation, requires further investigation in order to unravel the complex mechanisms

behind the immunostimulatory properties of physiologically relevant ASA concentrations.

While inhibiting COX with NSAIDs is conventionally regarded as an “anti-inflammatory”

strategy, an alternative possibility is that NSAIDs prevent overproduction of immunosuppres-

sive PGE2, which may represent an “immunostimulatory” strategy.
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