

High Dose Vitamin D3 Supplementation Is Not Associated With Lower Mortality in Critically III Patients: A Meta-Analysis of Randomized Control Trials

Zhiwei Gao^{1,2}, Jianfeng Xie¹, Cong Li¹, Ling Liu¹ and Yi Yang^{1*}

¹ Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine Southeast University, Zhongda Hospital, Nanjing, China, ² Department of Emergency Intensive Care Unit, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China

Background: Vitamin D deficiency is a common condition in critically ill patients. A high dose of vitamin D3 can rapidly restore vitamin D levels. The aim of this meta-analysis was to synthesize the results from up-to-date randomized control trials (RCT) and validate the effect of vitamin D3 in critically ill patients.

OPEN ACCESS

Edited by:

Nada Rotovnik Kozjek, Institute of Oncology Ljubljana, Slovenia

Reviewed by:

Guo-wei Tu, Fudan University, China Moncef Feki, Tunis El Manar University, Tunisia

> ***Correspondence:** Yi Yang yiyiyang2004@163.com

Specialty section:

This article was submitted to Clinical Nutrition, a section of the journal Frontiers in Nutrition

Received: 21 August 2021 Accepted: 28 March 2022 Published: 04 May 2022

Citation:

Gao Z, Xie J, Li C, Liu L and Yang Y (2022) High Dose Vitamin D3 Supplementation Is Not Associated With Lower Mortality in Critically III Patients: A Meta-Analysis of Randomized Control Trials. Front. Nutr. 9:762316. doi: 10.3389/fnut.2022.762316 **Study Methods:** Several databases, including PubMed, Web of Science, EMBASE, and the Cochrane Central database, were searched up to December 4th, 2020. All RCTs that investigated the use of a high dose of vitamin D3 in critically ill patients and reported mortality data were included in the meta-analysis. The primary outcome was the mortality truncated to day 28 and day 90.

Results: A total of 10 RCTs enrolling 2058 patients were finally included. The use of a high dose of vitamin D3 in critically ill patients could not decrease the mortality truncated to day 28 (RR 0.93, 95% Cl 0.78–1.11, P = 0.43) or day 90 (RR 0.91, 95% Cl 0.79–1.05, P = 0.21). A high dose of vitamin D3 could significantly reduce the ventilator days (MD –9.38, 95%Cl –13.44 to –5.31, P < 0.001), but there were no statistic difference in length of ICU stay (MD –2.76, 95% Cl –6.27 to 0.74, P = 0.12) and hospital stay (MD –2.42, 95% Cl –6.21 to 1.36, P = 0.21). No significant difference was observed in adverse events between the vitamin D3 group and the placebo group.

Conclusion: The use of high dose vitamin D3 was not associated with decreased mortality in critically ill patients, but could significantly reduce the ventilator days.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42020179195.

Keywords: vitamin D3, cholecalciferol, intensive care unit (ICU), parenteral nutrition, prognosis

INTRODUCTION

Vitamin D deficiency is a common condition in critically ill admissions, with a prevalence between 79 and 89% (1, 2). Evidence from conventional studies shows that vitamin D deficiency in critically ill patients is associated with a higher incidence of sepsis development (2), Sequential Organ Failure Assessment (SOFA) score, and a longer duration of ICU stay and mechanical ventilation (3). A recent cross-sectional study at the clinical ICU of University Hospital also verified that low serum

1

25-hydroxyvitamin D (25[OH]D) concentrations were significantly associated with the Charlson Comorbidity Index, which is a prognostic indicator, and clinical complications (4).

Vitamin D3 is the most extensively used type of vitamin D in clinical situations. A series of trials confirmed that an ultrahigh loading dose of vitamin D3 (single bolus dose from 400,000 to 540,000 IU) could rapidly restore vitamin D levels, and very limited side effects were reported (5-8). High-dose vitamin D3 for rapidly restoring vitamin D levels has been shown to be beneficial to critically ill patients. A randomized doubleblind placebo clinical trial confirmed that a single bolus dose of 300,000 IU vitamin D3 for patients with ventilator-associated pneumonia helped to reduce the serum PCT concentrations on day 7 (9). Another multicenter RCT indicated that a single high dose of cholecalciferol significantly decreased the postoperative pulmonary vascular permeability index and could prevent lung injury in patients undergoing esophagectomy (10). Additionally, vitamin D may have beneficial effects on the immune response to acute inflammation and hospital infection, cardiogenic function and other critically ill conditions (11, 12).

The effect of high-dose vitamin D3 application on critically ill patient mortality is inconsistent. The VITdAL-ICU RCT showed administration of high dose vitamin D3 (single enteral dose of vitamin D3 540,000 IU and monthly maintenance dose of 90,000 IU for 5 months) did not reduce hospital or 6-month mortality (8). But a post-hoc analysis from the VITDAL-ICU study excluding patients who died early revealed that high dose of vitamin D was associated with reduction in 28 day mortality (13). And then previous meta-analysis found that vitamin D3 supplementation might be associated with a reduction in mortality in critically ill patients (32% vs. 40%, 0.7 [95% CI, 0.50–0.98], P = 0.04) (14). However, the VIOLET trial showed that early high dose of vitamin D3 (a single enteral dose of 540,000 IU) supplementation had no advantage over placebo with respect to 90 day mortality (23.5% vs. 20.6%, P = 0.26) (5), providing further conflicting information on the effects of highdose vitamin D3 in critically ill patients. Therefore, a quantitative analysis of the pooled results of up-to-date trials is required to validate the effects of high dose vitamin D3 on the prognosis of critically ill patients.

MATERIALS AND METHODS

This analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (15) (**Supplemental File 1**) and was registered in the International Prospective Register of Systematic Reviews (CRD42020179195).

Search Strategy

We searched the following databases until December 4th, 2020, for appropriate articles: PubMed, Web of Science, EMBASE, Cochrane Central database. The following MeSH terms were used: "vitamin D3" "Cholecalciferol" "Critical Care" and "Intensive Care Unit". The full search strategy is available in **Supplemental File 2**.

Eligibility Criteria

We enrolled trials with the following PICOS criteria: (1) Population: adult patients (aged more than 18 years) who were admitted to the ICU; (2) Intervention: administration of high-dose vitamin D3 (a single dose from 300,000 IU to 540,000 IU), either enteral delivery or intramuscular injection; (3) Comparison intervention: placebo-control; (4) Outcome: mortality; (5) Study design: RCT. There was no language restriction. The exclusion criteria were duplicates or overlapping populations and lack of data on mortality.

Study Selection and Data Extraction

Two researchers independently screened titles and abstracts in duplicate to determine whether a particular trial met the inclusion criteria. The full texts of potentially eligible trails were subject to an independent review process. To resolve discrepancies, we discussed with a third reviewer and contacted the study authors if necessary.

The primary outcome of the meta-analysis was mortality, including mortality truncated to day 28 and day 90. If the trail did not reported the 28 day or 90 day mortality, we used the ICU or hospital mortality or 30 day mortality instead. The secondary outcomes were ventilator days, length of ICU and hospital stay, and adverse events related to the interventions (hypercalcemia, hyperphosphatemia, fall and fall-related fracture, and the level of total and ionized calcemia, phosphorus and creatinine). If the continuous variables were reported as 95% confidence interval, they would be converted and described as the mean with standard deviation.

The Grading of Recommendations Assessment, Development and Evaluation approach was used to evaluate the quality of the evidence for outcomes (16).

Risk of Bias Assessment

Cochrane Collaboration's protocols were used to evaluate the internal validity and risk of bias by two reviewers separately (17). We checked the procedures performed in the included RCTs, and evaluated the risk of bias as "yes", "no" or "unclear".

Statistical Analysis

The data were extracted analyzed by Cochrane Collaboration software Revman 5.1 (The Nordic Cochrane Centre, Rigshospitalet, Copenhagen, Denmark). We used Mantel-Haneszel (M-H) chi-square and I^2 tests to quantify the statistical heterogeneity and inconsistency of the included RCTs (18). P < 0.1 was defined as statistically significant heterogeneity for the M-H chi-square test. We used Cochrane I^2 statistics to assess the heterogeneity, while $I^2 \ge 50\%$ was defined as high heterogeneity and the random-effects model would be used. Each study was sequentially removed, and we reanalyzed the remaining dataset for statistical significance. Univariate meta-regression was used to explore the potential sources of heterogeneity. And we used Post-hoc subgroup analysis to analyze the effects of vitamin D3 in critically ill patients. We tested for publication bias of the outcomes by Egger's test.

Trial Sequential Analysis

TSA (TSA software version 0.9 Beta; Copenhagen Trial Unit, Copenhagen, Denmark) was used to adjust the threshold for statistical significance in the cumulative meta-analysis due to type I errors, which were caused by an increased risk of random error and repeated significance testing (19, 20). We calculated information size as the diversity-adjusted information size (DIS), which was suggested by the relative risk reduction (RRR) of the intervention in the included trials (20). We estimated 28% mortality in the placebo group and a reduction of mortality to 21% in the intervention group, adopted from the VITdAL-ICU study (8), with 80% power and a two-sided alpha of 0.05.

RESULTS

The comprehensive search yielded a total of 435 articles, and 10 RCTs enrolling 2058 patients were finally included in the meta-analysis (5–9, 21–25) (**Figure 1**). Four of the 10 RCTs were conducted in the USA (5–7, 25), 2 in Austria (8, 23), 3 in Iran (9, 22, 24), and 1 in China (21). Three RCTs were designed as multicenter RCTs (5, 6, 9), and the others were single center RCTs (7, 8, 21–26). All the enrolled trial intervention groups received a high dose of vitamin D3, given orally or *via* nasogastric tube in 6 trials (5–8, 23, 25) and *via* intramuscular injection in the remaining 4 trails (9, 21, 22, 24) (**Table 1**).

Primary Outcomes

The mortality data extracted from the included trials were pooled and analyzed, and the results revealed that compared with that of the placebo group, there was no significant decrease in mortality in the vitamin D3 group, with an RR of 0.93 (95% CI 0.78–1.11, P = 0.43), when the observation endpoint was truncated to day 28. Additionally, we did not observe a significant difference in mortality between the two groups, with an RR of 0.91 (95% CI 0.79–1.05, P = 0.21), when truncated to day 90 (**Figure 2**).

Secondary Outcomes

We compared the ventilator days between the vitamin D3 and placebo groups and found that the use of vitamin D3 reduced the ventilator days (MD -9.38, 95%CI -13.44 to -5.31, P < 0.001), and also we compared the length of ICU and hospital stay and found that the length of ICU stay (MD -2.76, 95% CI -6.27 to 0.74, P = 0.12) and hospital stay (MD -2.42, 95% CI -6.21 to 1.36, P = 0.21) were similar between groups (**Figure 3**).

No significant difference could be observed in the adverse events, including hypercalcemia (RR 1.30, 95% CI 0.59–2.83, P = 0.51), hyperphosphatemia (RR 4.65, 95% CI 0.54–39.78, P = 0.16), fall (RR 0.93, 95% CI 0.67–1.30, P = 0.67) and fall-related fracture (RR 1.50, 95% CI 0.43–5.30, P = 0.53). And there was no difference in the ionized calcium, phosphorus and creatinine level, except the total calcium level was significantly increase in vitamin D3 group (MD 0.12, 95% CI 0.05–0.20, P < 0.001) (**Figure 4**).

Risk of Bias and Sensitivity Analysis

All included RCTs were evaluated for risk of bias items, including selection bias (random sequence generation and allocation

concealment), performance bias (blinding of participants and personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete outcome data), reporting bias (selective reporting) and other bias (**Supplemental File 3**). The detailed risk bias assessment of the included trials is provided in **Supplemental File 4**.

Egger's test for publication bias showed that there was no significant difference in the primary outcomes (mortality truncated to day 28, P = 0.100 [t = -1.86, 95% CI: $-2.57\sim0.28$]); mortality truncated to day 90, P = 0.095 [t = -1.90, 95%CI: $-2.05\sim0.20$]) (**Supplemental File 5**). Considering at least 10 trails are recommended when assessing publication bias by TABLE 1 | Baseline characteristics of included trails.

Trial	Country	No. of centers	Sample size, n	Eligible patients	Vitamin D prescription	Baseline 25(OH)D level (ng/ml)		
						Vitamin D group	Placebo group	
Hasanloei et al. (24)	Iran	Single center	48	Adult patients with an expectedn need of mechanical ventialtion ≥48h and at least 7 days stay in ICU;10≤25(OH)D≤30 ng/mL	Intromuscular cholecalciferol 300,000 IU	18.66 ± 3.28	$\textbf{17} \pm \textbf{3.25}$	
VIOLET (5)	USA	Multicenter, 44 hospitals	1,059	Adults and had one or more acute risk factors for death or lung injury needed for ICU admission.	A single enteral dose of 540,000 IU vitamin D3	11.2 ± 4.8	11.0 ± 4.7	
Miri et al. (22)	Iran	Single center	40	adult (age between 18 and 65 years) patients with MV	Intromuscular vitamin D3 300,000 IU	8.43 ± 6.8	11.35 ± 18.23	
Karsy et al. (25)	USA	Single center	267	age≥18 years, an expected ICU stay ≥48 h, 25(OH)D≤20 ng/mL	A single dose of vitamin D3 540,000IU orally	14.6 ± 4.2	13.9 ± 4.6	
Ding et al. (21)	China	Single center	57	ICU stay >48 h sepsis patients	Intromuscular vitamin D3 300,000 IU	-	-	
Miroliaee et al. (9)	Iran	Multicenter, 2 hospitals	46	>18 years old who had been diagnosed with VAP	Intromuscular vitamin D3 300,000 IU	17.12 ± 6.11	19.5 ± 4.60	
Han et al. (6)	USA	Multicenter, 2 hospitals	21	Receiving in ICU; ≥18 years; Expected to require MV≥72 hours; expected to remain in ICU ≥96 hours	2 pills of 50,000IU of vitamin D3 daily for 5 days	20.0 ± 7.3	21.5 ± 12.2	
Quraishi et al. (3)	USA	Single center, 3 ICUs	20	\geq 18 years; within 24 h of new-onset sepsis	A single enteral dose of 400,000IU cholecalciferol	17 (13–25)	19 (13–22)	
Amrein et al. (8)	Austria	Single center, 5 ICUs	475	\geq 18 years; expected to stay in ICU \geq 48 h; 25(OH)D \leq 20 ng/mL	Loading dose of 540,000 IU of vitamin D_3 orally or via nasogastric tube	13.0 ± 4.1	13.1 (9.7–16.6)	
Amrein et al. (23)	Austria	Single center	25	25(OH)D-deficient adult patients with expected ICU stay \geq 48 h	540,000 IU of vitamin D3 orally or <i>via</i> feeding tube	13.1	14.1	

The bold value means that the serum 25(OH)D level was lower than normal values indicating that the patients was in vitamin D deficiency conditions.

Egger's test (27), our meta meets the above condition. The Egger's test result indicates no publication bias.

Each trial was sequentially omitted to analyze the individual effects of the trial on the overall results, showing that there was a significant difference between groups when the VIOLET study (5) was omitted from the pooled analysis (**Supplemental File 6**).

Variable risks of bias were analyzed in all included trials to downgrade the quality of the evidence. The GRADE levels of evidence for the mortality truncated to day 28 and for the mortality truncated to day 90 were both low (**Supplemental File 7**).

Trial Sequential Analysis

TSA indicated that the current information size did not cross the Lan-DeMets sequential monitoring boundary by the optimal information size, suggesting insufficient sample size in investigating the mortality truncated to day 28. An optimal sample size of 2,158 patients was estimated, which was expected to reach the plausible endpoint (**Supplemental File 8**).

Meta-Regression and Subgroup Analysis

Univariate meta-regression revealed that the sample size (P = 0.012), vitamin D3 dosage (P = 0.039) and the method of administration (P = 0.041) might be associated with the heterogeneity between studies. The full list of factors

involved in the univariate meta-regression is provided in **Supplemental File 9**. A post hoc subgroup analysis based on the dosage and administration route of vitamin D3 was performed and found that the mortality truncated to day 28 might significantly decrease in patients who received vitamin D3 300,000 IU, with an RR of 0.47 (95% CI 0.29–0.77, P = 0.003) (**Supplemental File 10**), and in patients who were intramuscularly administered, with an RR of 0.47 (95% CI 0.29–0.77, P = 0.003) (**Supplemental File 11**).

DISCUSSION

In the present meta-analysis, we pooled the results from 10 RCTs on the use of a high dose of vitamin D3 in critically ill adult patients and found that the high dose of vitamin D3 did not reduce mortality truncated to day 28 and day 90, but was associated with decreased length of ventilator days. No statistic differences were found in the length of ICU and hospital stay.

Our results seemed at odds with a previous meta-analysis that indicated that vitamin D3 administration was associated with a significant reduction in mortality at the longest follow-up available (14). Our sensitivity analysis suggested that removal of the VIOLET study caused substantial changes in the final results, suggesting that the VIOLET trial was the main reason for the

	Vitamir	n D3	Placel	00		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	CI M-H, Fixed, 95% CI
1.1.1 mortality 28 day	/						
Amrein 2011	6	12	6	13	3.0%	1.08 [0.48, 2.45]	_
Amrein 2014	52	237	68	238	35.1%	0.77 [0.56, 1.05]	
Ding 2017	3	29	5	28	2.6%	0.58 [0.15, 2.20]	
Han 2016	1	11	1	10	0.5%	0.91 [0.07, 12.69]	
Hasanloei 2020	1	24	5	24	2.6%	0.20 [0.03, 1.59]	
Karsy 2019	11	134	13	133	6.7%	0.84 [0.39, 1.81]	
Miri 2019	8	22	11	18	6.3%	0.60 [0.31, 1.16]	· -•-+
Miroliaee 2017	5	24	11	22	5.9%	0.42 [0.17, 1.01]	
Quraishi 2015	2	10	3	10	1.5%	0.67 [0.14, 3.17]	
VIOLET 2019	92	531	69	528	35.7%	1.33 [0.99, 1.77]	
Subtotal (95% CI)		1034		1024	100.0%	0.93 [0.78, 1.11]	•
Total events	181		192				
Heterogeneity: Chi ² =	15.14, df =	9 (P =	0.09); l ² =	= 41%			
Test for overall effect:	Z = 0.79 (I	P = 0.43	5)				
1.1.2 mortality 90 day	/						
Amrein 2011	6	12	6	13	2.2%	1.08 [0.48, 2.45]	
Amrein 2014	83	237	102	238	38.0%	0.82 [0.65, 1.03]	I ™ 1
Ding 2017	3	29	5	28	1.9%	0.58 [0.15, 2.20]	
Han 2016	1	11	1	10	0.4%	0.91 [0.07, 12.69]	
Hasanloei 2020	1	24	5	24	1.9%	0.20 [0.03, 1.59]	
Karsy 2019	11	134	13	133	4.9%	0.84 [0.39, 1.81]	
Miri 2019	8	22	11	18	4.5%	0.60 [0.31, 1.16]	·
Miroliaee 2017	5	24	11	22	4.3%	0.42 [0.17, 1.01]	
Quraishi 2015	2	10	3	10	1.1%	0.67 [0.14, 3.17]	
VIOLET 2019	125	531	109	528	40.8%	1.14 [0.91, 1.43]	
Subtotal (95% CI)		1034		1024	100.0%	0.91 [0.79, 1.05]	•
Total events	245		266				
Heterogeneity: Chi ² =	12.10, df =	9 (P =	0.21); l² =	= 26%			
Test for overall effect:	Z = 1.24 (I	P = 0.21)				
							0.1 0.2 0.5 1 2 5 10
							Favours [Vitamin D3] Favours [Placebo]
IGURE 2 The effect of vitami	in D3 on moi	rtality trun	cated to da	ay 28 an	d day 90 in	critically ill adult patients.	

difference between our results and the previous meta-analysis (14). The VIOLET trial confirmed that high-dose vitamin D3 did not reduce the mortality at day 28 and day 90. Some limitations need attention in the VIOLET study, including that the study included mild critically ill patients (total SOFA score in the vitamin D3 group was 5.6 .ou.6 and 5.4 an.7 in the placebo group); the 25[OH]D level of included patients was <20 ng/ml rather than 12 ng/ml, who were more likely to benefit from vitamin D supplementation; 23.6% of the vitamin D3 group patient's 25[OH]D level were still lower than 30 ng/ml at day 3; and also the lack of maintenance doses of vitamin D3, which were all likely to bias the trial to null (28). The ongoing VITDALIZE study, including ICU patients with 25[OH]D level <12 ng/ml who received a bolus of 540,000 IU vitamin D3 followed by 4,000 IU daily for 90 days will advance our knowledge in this field (29).

High dose of vitamin D3 did not improve clinical outcomes in critically ill patients (30). There might be several potential explanations. First, vitamin D3 supplementation is widely practiced in westernized populations (31), which might dilute the effect of high dose provided during RCTs. Second, vitamin D3 supplementations in RCTs were provided as inactive form that need ongoing metabolic steps to be activated. However, many critically ill patients are seemed to be incapable of activating native vitamin D sufficiently (8). Third, high dose of vitamin D3 supplementation may not be sufficient to fill the stocks and fill the pre-existing deficit in critically ill patients (5, 8). Lack of effect might be due to the failure to restore adequate status following the supplementation. Fourth, vitamin D3 supplementation in RCTs was limited in time and did not reflect chronic impregnation of the body. And last, vitamin D3 was given in supra physiological dose, alone without synergistic factors (32, 33), which could inhibit related metabolic pathways. In severe acute illness, the optimal vitamin D3 dosage remains unclear. Rapid decreases in circulating 25[OH]D concentration

Study or Subgroup Mean SD Total Weight IV. Random, 95% Cl IV. Random, 95% Cl 1.3.1 ventilator days Miri 2019 17.63 14 22 27.72 22.48 18 11.6% -10.09 [-22.01, 1.83] Hasanloei 2020 20.75 10.71 24 30.63 4.86 24 74.7% -9.88 [-14.59, -5.17] Han 2016 14 10 11 20 15 10 13.6% -6.00 [-17.02, 5.02] Subtotal (95% Cl) 57 52 100.0% -9.38 [-13.44, -5.31] Heterogeneity: Tau ² = 0.00; Ch ² = 0.42, df = 2 (P = 0.81); l ² = 0% 720 12.0 6.10 19.2% -9.00 [-13.82, -4.18] Miri 2019 19.5 12.2 22 28.72 23.58 18 6.6% -9.22 [-21.25, 2.81] Quraishi 2015 3 7 20 12 6 10 19.2% -9.00 [-13.82, -4.18] Han 2016 16 8 20 23 14 0 9.6% -7.00 [-6.63, 2.36] Curaishi 2015 13 5.4 6.4 133		Vit	amin D	3	P	lacebo			Mean Difference	Mean Difference
1.3.1 ventilator days Miri 2019 17.63 14 22 27.72 22.48 18 11.6% -10.09 [-22.01, 1.83] Hasanloei 2020 20.75 10.71 24 30.63 4.86 24 74.7% -9.88 [-14.59, -5.17] Han 2016 14 10 11 20 15 10 13.6% -6.00 [-17.02, 5.02] Subtotal (95% CI) 57 52 100.0% -9.38 [-13.44, -5.31] Heterogeneity: Tau ² = 0.00; Ch ² = 0.42, df = 2 (P = 0.81); l ² = 0% Test for overall effect: Z = 4.52 (P < 0.00001) 1.3.2 ICU stay Miri 2019 19.5 12.2 22 28.72 23.58 18 6.6% -9.22 [-21.25, 2.81] Quraishi 2015 3 7 012 6 10 19.2% -9.00 [-13.82, -4.18] Han 2016 16 8 20 23 14 10 9.6% -7.00 [-16.36, 2.36] Ding 2017 5.48 4.08 29 6.68 4.87 28 26.7% -1.20 [-5.34, 1.14] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Karsy 2019 6.4 9.8 134 5.4 6.4 133 27.6% 1.00 [-0.98, 2.98] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% CI) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Ch ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: Z = 1.54 (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, 4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-41.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% -1.30 [-2.68, 0.08] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% -1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Ch ² = 1.3.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21)	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
Miri 2019 17.63 14 22 27.72 22.48 18 11.6% -10.09 [-22.01, 1.83] Hasanloei 2020 20.75 10.71 24 30.63 4.86 24 74.7% -9.88 [-14.59, -5.17] Han 2016 14 10 11 20 15 10 13.6% -6.00 [-17.02, 50.2] Subtotal (95% CI) 57 52 100.0% -9.88 [-13.44, -5.31] Heterogeneity: Tau ² = 0.00; Chi ² = 0.42, df = 2 (P = 0.81); P = 0% Test for overall effect: Z = 4.52 (P < 0.00001) 1.3.2 ICU stay Miri 2019 19.5 12.2 22 28.72 23.58 18 6.6% -9.22 [-21.25, 2.81] Quraishi 2015 3 7 20 12 6 10 19.2% -9.00 [-13.82, -4.18] Han 2016 16 8 20 23 14 10 9.6% -7.00 [-13.8, 2.4.18] Han 2016 16 8 20 23 14 10 9.6% -7.00 [-13.8, 2.4.18] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% CI) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); P = 68% Test for overall effect: Z = 1.54 (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] UIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Armein 2011 16 18 12 15 22 13 5.1% 10.0 [-14.77, 1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Armein 2011 16 18 12 15 22 13 5.1% 10.0 [-14.73, 1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); I ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) Arrein 2014 20.1 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); I ² = 64% Test for overall effect: Z = 1.25 (P = 0.21)	1.3.1 ventilator days									
Hasanloei 2020 20.75 10.71 24 30.63 4.86 24 74.7% -9.88 [-14.59, -5.17] Han 2016 14 10 11 20 15 10 13.6% -6.00 [-17.02, 5.02] Subtotal (95% CI) 57 52 100.0% -9.38 [-13.44, -5.31] Heterogeneity: Tau ² = 0.00; Chi ² = 0.42, df = 2 (P = 0.81); P = 0% Test for overall effect: Z = 4.52 (P < 0.00001) 1.3.2 ICU stay Miri 2019 19.5 12.2 22 28.72 23.58 18 6.6% -9.22 [-21.25, 2.81] Quraishi 2015 3 7 20 12 6 10 19.2% -9.00 [-13.82, -4.18] Han 2016 16 8 20 23 14 10 9.6% -7.00 [-16.36, 2.36] Ding 2017 5.48 4.08 29 6.68 4.87 28 26.7% -1.20 [-3.54, 1.14] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Karsy 2019 6.4 9.8 134 5.4 6.4 133 27.6% 1.00 [-6.61, 14.61] Subtotal (95% CI) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); P = 68% Test for overall effect: Z = 1.54 (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2011 16 18 12 15 22 13 5.1% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 0.80 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2011 16 18 12 15 22 13 5.1% 0.80 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2011 16 18 12 15 22 13 5.1% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 1.3.5t, df = 5 (P = 0.02); P = 64% Test for overall effect: Z = 1.25 (P = 0.21) Favours Vitamin D.31 Eavours Vitamin D.31 Eavo	Miri 2019	17.63	14	22	27.72	22.48	18	11.6%	-10.09 [-22.01, 1.83]	
Han 2016 14 10 11 20 15 10 13.6% $-6.00[-17.02, 5.02]$ Subtotal (95% CI) 57 52 100.0% $-9.38[-13.44, -5.31]$ Heterogeneity: Tau ² = 0.00; Chi ² = 0.42, df = 2 (P = 0.81); l ² = 0% Test for overall effect: Z = 4.52 (P < 0.00001) 1.3.2 ICU stay Miri 2019 19.5 12.2 22 28.72 23.58 18 6.6% $-9.22[-21.25, 2.81]$ Quraishi 2015 3 7 20 12 6 10 19.2% $-9.00[-18.82, -4.18]$ Han 2016 16 8 20 23 14 10 9.6% $-7.00[-16.36, 2.36]$ Ding 2017 5.48 4.08 29 6.68 4.87 28 26.7% $-1.20[-3.54, 1.14]$ Amrein 2014 9.6 134 237 10.7 114 238 2.3% $-1.10[-23.48, 21.28]$ Karsy 2019 6.4 9.8 134 5.4 6.4 133 27.6% $1.00[-0.98, 2.98]$ Amrein 2011 10 12 12 6 15 13 8.0% $4.00[-6.67, 0.74]$ Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: Z = 1.54 (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% $-18.00[-31.45, -4.55]$ Quraishi 2015 13 6 20 21 10 10 17.4% $-8.00[-14.73, -1.27]$ VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% $-1.30[-2.68, 0.08]$ Amrein 2011 16 18 12 15 22 13 5.1% $1.00[-41.71, 16.71]$ Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% $1.80[-1.16, 4.76]$ Subtotal (95% CI) 820 822 100.0% $-2.42[-6.21, 1.36]$ Heterogeneity: Tau ² = 9.61; Chi ² = 1.8.5, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) Test for overall effect: Z = 1.25 (P = 0.21) Heterogeneity: Tau ² = 9.61; Chi ² = 1.8.5, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) Heterogeneity: Tau ² = 0.62; Chi ² = 1.8.5, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21)	Hasanloei 2020	20.75	10.71	24	30.63	4.86	24	74.7%	-9.88 [-14.59, -5.17]	
Subtotal (95% CI) 57 52 100.0% -9.38 [-13.44, -5.31] Heterogeneity: Tau ² = 0.00; Chi ² = 0.42, df = 2 (P = 0.81); I ² = 0% Test for overall effect: Z = 4.52 (P < 0.00001) 1.3.2 ICU stay Miri 2019 19.5 12.2 22 28.72 23.58 18 6.6% -9.22 [-21.25, 2.81] Quraishi 2015 3 7 20 12 6 10 19.2% -9.00 [-13.82, -4.18] Han 2016 16 8 20 23 14 10 9.6% -7.00 [-16.36, 2.36] Ding 2017 5.48 4.08 29 6.68 4.87 28 26.7% -1.20 [-3.54, 1.14] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-2.348, 21.28] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.00 [-2.348, 21.28] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% CI) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); I ² = 68% Test for overall effect: Z = 1.54 (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-41.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 30.5% -1.30 [-2.68, 0.8] Amrein 2011 16 18 12 15 22 13 5.1% 0.80 [-41.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 32.7% 0.80 [-41.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 32.7% 0.80 [-41.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 32.7% 0.80 [-41.73, -1.27] Harrein 2011 16 18 12 15 22 13 5.1% 0.80 [-41.73, -1.27] Harrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); I ² = 64% Test for overall effect: Z = 1.25 (P = 0.21)	Han 2016	14	10	11	20	15	10	13.6%	-6.00 [-17.02, 5.02]	
Heterogeneity: Tau ² = 0.00; Chi ² = 0.42, df = 2 (P = 0.81); l ² = 0% Test for overall effect: $Z = 4.52$ (P < 0.00001) 1.3.2 ICU stay Miri 2019 19.5 12.2 22 28.72 23.58 18 6.6% -9.22 [-21.25, 2.81] Quraishi 2015 3 7 20 12 6 10 19.2% -9.00 [-13.82, -4.18] Han 2016 16 8 20 23 14 10 9.6% -7.00 [-16.36, 2.36] Ding 2017 5.48 4.08 29 6.68 4.87 28 26.7% -1.20 [-3.54, 1.14] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Karsy 2019 6.4 9.8 134 5.4 6.4 133 27.6% 1.100 [-0.98, 2.98] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% Cl) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: $Z = 1.54$ (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% 8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2014 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% Cl) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: $Z = 1.25$ (P = 0.21)	Subtotal (95% CI)			57			52	100.0%	-9.38 [-13.44, -5.31]	◆
Test for overall effect: $Z = 4.52$ (P < 0.0001) 1.3.2 ICU stay Miri 2019 19.5 12.2 22 28.72 23.58 18 6.6% -9.22 [-21.25, 2.81] Quraishi 2015 3 7 20 12 6 10 19.2% -9.00 [-13.82, -4.18] Han 2016 16 8 20 23 14 10 9.6% -7.00 [-16.36, 2.36] Ding 2017 5.48 4.08 29 6.68 4.87 28 26.7% -1.20 [-3.54, 1.14] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Karsy 2019 6.4 9.8 134 5.4 6.4 133 27.6% 1.00 [-9.8, 2.98] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% CI) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: $Z = 1.54$ (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: $Z = 1.25$ (P = 0.21)	Heterogeneity: Tau ² =	0.00; Ch	i ² = 0.4	2, df =	2 (P = 0	.81); l ²	= 0%			
1.3.2 ICU stay Miri 2019 19.5 12.2 22 28.72 23.58 18 6.6% -9.22 [-21.25, 2.81] Quraishi 2015 3 7 20 12 6 10 19.2% -9.00 [-13.82, -4.18] Han 2016 16 8 20 23 14 10 9.6% -7.00 [-16.36, 2.36] Ding 2017 5.48 4.08 29 6.68 4.87 28 26.7% -1.20 [-3.54, 1.14] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Karsy 2019 6.4 9.8 134 5.4 6.4 133 2.76% 1.00 [-0.98, 2.98] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% CI) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: Z = 1.54 (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21)	Test for overall effect: 2	Z = 4.52	(P < 0.	00001)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3.2 ICU stay									
Quraishi 2015 3 7 20 12 6 10 19.2% -9.00 [-13.82, -4.18] Han 2016 16 8 20 23 14 10 9.6% -7.00 [-16.36, 2.36] Ding 2017 5.48 4.08 29 6.68 4.87 28 26.7% -1.20 [-3.54, 1.14] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Karsy 2019 6.4 9.8 134 5.4 6.4 133 27.6% 1.00 [-0.98, 2.98] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% Cl) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: Z = 1.54 (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% Cl) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21)	Miri 2019	19.5	12.2	22	28.72	23.58	18	6.6%	-9.22 [-21.25, 2.81]	
Han 2016 16 8 20 23 14 10 9.6% -7.00 [-16.36, 2.36] Ding 2017 5.48 4.08 29 6.68 4.87 28 26.7% -1.20 [-3.54, 1.14] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Karsy 2019 6.4 9.8 134 5.4 6.4 133 27.6% 1.00 [-0.98, 2.98] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% Cl) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: Z = 1.54 (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Subtotal (95% Cl) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) -20 -10 0 10	Quraishi 2015	3	7	20	12	6	10	19.2%	-9.00 [-13.82, -4.18]	_ _
Ding 2017 5.48 4.08 29 6.68 4.87 28 26.7% -1.20 [-3.54, 1.14] Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Karsy 2019 6.4 9.8 134 5.4 6.4 133 27.6% 1.00 [-0.98, 2.98] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% CI) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: Z = 1.54 (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.86 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21)	Han 2016	16	8	20	23	14	10	9.6%	-7.00 [-16.36, 2.36]	
Amrein 2014 9.6 134 237 10.7 114 238 2.3% -1.10 [-23.48, 21.28] Karsy 2019 6.4 9.8 134 5.4 6.4 133 27.6% 1.00 [-0.98, 2.98] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% Cl) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: $Z = 1.54$ (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% Cl) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: $Z = 1.25$ (P = 0.21)	Ding 2017	5.48	4.08	29	6.68	4.87	28	26.7%	-1.20 [-3.54, 1.14]	
Karsy 2019 6.4 9.8 134 5.4 6.4 133 27.6% 1.00 [-0.98, 2.98] Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% CI) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: $Z = 1.54$ (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2014 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: $Z = 1.25$ (P = 0.21)	Amrein 2014	9.6	134	237	10.7	114	238	2.3%	-1.10 [-23.48, 21.28]	
Amrein 2011 10 12 12 6 15 13 8.0% 4.00 [-6.61, 14.61] Subtotal (95% CI) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Ch ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: $Z = 1.54$ (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21)	Karsy 2019	6.4	9.8	134	5.4	6.4	133	27.6%	1.00 [-0.98, 2.98]	
Subtotal (95% CI) 474 450 100.0% -2.76 [-6.27, 0.74] Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: Z = 1.54 (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-2.158, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21)	Amrein 2011	10	12	12	6	15	13	8.0%	4.00 [-6.61, 14.61]	
Heterogeneity: Tau ² = 10.59; Chi ² = 18.72, df = 6 (P = 0.005); l ² = 68% Test for overall effect: $Z = 1.54$ (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: $Z = 1.25$ (P = 0.21)	Subtotal (95% CI)			474			450	100.0%	-2.76 [-6.27, 0.74]	◆
Test for overall effect: $Z = 1.54$ (P = 0.12) 1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); I ² = 64% Test for overall effect: $Z = 1.25$ (P = 0.21) -20 -10 0 10 Eavours [Vitamin D3] Eavours [Place]	Heterogeneity: Tau ² =	10.59; C	hi² = 18	3.72, df	= 6 (P =	= 0.005)	; l ² = 6	8%		
1.3.3 Hospital stay Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45 , -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-31.45 , -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73 , -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68 , 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58 , 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71 , 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16 , 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21 , 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% -20 -10 0 10 Favours Witamin D3] Eavours Witamin D3] Eav	Test for overall effect:	Z = 1.54	(P = 0.	12)						
Han 2016 18 11 11 36 19 10 6.6% -18.00 [-31.45, -4.55] Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); I ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) -20 -10 0 10 Eavours [Vitamin D3] Eavours [Place]	1.3.3 Hospital stay									
Quraishi 2015 13 6 20 21 10 10 17.4% -8.00 [-14.73, -1.27] VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% -2.42 [-6.21, 1.36] Test for overall effect: Z = 1.25 (P = 0.21) -2.0 -10 0 10 Eavours [Vitamin D3] Eavours [Place] -2.0 -10 0 10	Han 2016	18	11	11	36	19	10	6.6%	-18.00 [-31.45, -4.55]	·
VIOLET 2019 9.1 9.2 406 10.4 11 418 36.9% -1.30 [-2.68, 0.08] Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); I ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) -20 -10 0 10 Eavours [Vitamin D3] Eavours [Place]	Quraishi 2015	13	6	20	21	10	10	17.4%	-8.00 [-14.73, -1.27]	
Amrein 2014 20.1 134 237 19.3 114 238 2.7% 0.80 [-21.58, 23.18] Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) -20 -10 0 10 Eavours IVitamin D3 Eavours IVitamin D3 Eavours IPlaced	VIOLET 2019	9.1	9.2	406	10.4	11	418	36.9%	-1.30 [-2.68, 0.08]	-
Amrein 2011 16 18 12 15 22 13 5.1% 1.00 [-14.71, 16.71] Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) -20 -10 0 10 Favours [Vitamin D3] Eavours [Place]	Amrein 2014	20.1	134	237	19.3	114	238	2.7%	0.80 [-21.58, 23.18]	
Karsy 2019 10.9 15.6 134 9.1 7.9 133 31.4% 1.80 [-1.16, 4.76] Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); I ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) -20 -10 0 10 Eavours [Vitamin D3] Eavours [Place]	Amrein 2011	16	18	12	15	22	13	5.1%	1.00 [-14.71, 16.71]	
Subtotal (95% CI) 820 822 100.0% -2.42 [-6.21, 1.36] Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) -20 -10 0 10 Favours [Vitamin D3] Favours [Place]	Karsy 2019	10.9	15.6	134	9.1	7.9	133	31.4%	1.80 [-1.16, 4.76]	
Heterogeneity: Tau ² = 9.61; Chi ² = 13.95, df = 5 (P = 0.02); l ² = 64% Test for overall effect: Z = 1.25 (P = 0.21) -20 -10 0 10 Eavours [Vitamin D3] Eavours [Place]	Subtotal (95% CI)			820			822	100.0%	-2.42 [-6.21, 1.36]	
Test for overall effect: Z = 1.25 (P = 0.21) -20 -10 0 10 Favours [Vitamin D3] Favours [Place]	Heterogeneity: Tau ² =	9.61; Ch	$i^2 = 13.$	95, df =	: 5 (P =	0.02); l ^a	$^{2} = 64\%$, ,		
-20 -10 0 10 Eavours [Vitamin D3] Eavours [Place]	Test for overall effect: 2	Z = 1.25	(P = 0.	21)						
-20 -10 0 10 Eavours Mitamin D31 Eavours (Place)										
Favours [Vitamin D3] Eavours [Place]										-20 -10 0 10 20
										Favours [Vitamin D3] Favours [Placebo]

were proven to be highly prevalent in critical illness (34, 35). Therefore, the use of a high loading dose for the rapid restoration of vitamin D levels appears necessary (36). However, various high loading doses (vitamin D3, 300,000–540,000 IU) were employed in the current studies. No standard for the high dose has been established. A significantly decrease mortality was observed in the subgroup of critically ill patients with vitamin D3 300,000IU. And it also appears reasonable that 540,000 IU, which has been proven to be safe and effective (5, 8), could be administered in critical illness (11).

Interestingly, we observed that there was a significant decrease in mortality in the subgroup of patients whose vitamin D3 was administered by intramuscular injection. Whyte MP et al. proved that compared with oral or iv dosing, intramuscular injections of vitamin D resulted in prolonged increased serum 25[OH]D level (37). Given the prevalence of gastrointestinal dysfunction and the unreliability of enteral absorption in the critically ill population (38), intramuscular supplementation may be a more effective alternative for vitamin D repletion (26). Due to the limited sample size, we are cautious about the improved prognosis.

We found that the ventilator days were significantly decreased after high dose vitamin D3 supplementation. Some trials

have revealed the molecular role of vitamin D3 in skeletal muscle tissue function and metabolism, such as suppressing inflammatory cytokines (39), decreasing the pulmonary vascular permeability index in high-risk lung injury patients (10), improving lung function (40), and positively correlating with muscle strength (12). These probably could explain why high dose vitamin D3 shorten the duration of mechanical ventilation.

Our study had several limitations. First, most of the trials included in our meta-analysis had a small sample size, while only one multicenter large-scale RCT was included. More trials are needed to further validate the effects of vitamin D3 in critically ill patients. Second, only two of the included RCTs in our meta-analysis adopted liquid chromatographytandem mass spectrometry (LC-MS/MS), which is the reference method used to measure 25[OH]D levels. The other available methodologies showed a variable systematic bias in measured 25[OH]D values vs. LC-MS/MS (41). The analysis of mixed 25[OH]D measurements might have introduced bias to the final results. Third, we substituted other mortality rates for the 28 day and 90 day mortality, and the subgroup analyses included a relatively small number of studies, which could have potentially introduced bias and should be interpreted cautiously.

Study or Subaroun	Events	Total I	vents	Total	Weig	iht M-H	, Fixed, 95% Cl	M-H. Fixed, 95% Cl	
1.5.1 Hypercalcemia	1								
VIOLET 2019	14	513	11	523	100.0	0% 1	.30 [0.59, 2.83]	1	
Subtotal (95% CI)		513		523	100.0	0% 1.	30 [0.59, 2.83]	-	
Total events	14		11						
Heterogeneity: Not a	pplicable								
Test for overall effect	: Z = 0.65 (P	= 0.51)							
1.5.3 Hyperphospha	temia								
Amrein 2014	4	37	1	43	100.0	9% 4.8	65 [0.54, 39.78]	ı — — — — —	
Subtotal (95% CI)		37		43	100.0	0% 4.6	5 [0.54, 39.78]		
Total events	4		1						
Heterogeneity: Not a	pplicable								
Test for overall effect	: Z = 1.40 (P	= 0.16)							
1.5.4 Fall									
Amrein 2014	23	153	33	136	56.4	1% 0	.62 [0.38, 1.00]]	
VIOLET 2019	36	507	27	507	43.6	6% 1	.33 [0.82, 2.16]	」	
Subtotal (95% CI)		660		643	100.0	0% 0.	93 [0.67, 1.30]	I 🕈	
Total events	59		60						
Heterogeneity: Chi ² =	= 4.89, df = 1	(P = 0.	03); I ^z =	80%					
Test for overall effect	: Z = 0.42 (P	= 0.67)							
1.5.5 Fall-related fra	cture								
Amrein 2014	2	237	2	238	49.9	9% 1	.00 [0.14, 7.07]]	
VIOLET 2019	4	507	2	507	50.1	% 2.0	00 [0.37, 10.87]		
Subtotal (95% CI)	_	744		745	100.0	0% 1.	50 [0.43, 5.30]		
Fotal events	6	(D) (C)	4						
Heterogeneity: Chi ² =	= U.27, df = 1	(P = 0, -0.52)	60); l* =	0%					
rescior overall ellect	. Z = 0.03 (F	- 0.55,							
	Vitamin I	03	Pla	acebo			Mean Differend	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference	100 cebo]
Study or Subgroup	Vitamin I <u>Mean SD</u> evel)3 Total	Pla Mean	acebo SD	Total	Weight	Mean Differend IV, Fixed, 95%	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference <u>6 CI IV, Fixed, 95% CI</u>	100 cebo]
Study or Subgroup 1.6.1 Total calcemia k Amrein 2014	Vitamin I <u>Mean SD</u> evel 9 0.6	03 Total 237	Pla <u>Mean</u> 8.84	acebo SD	Total	<u>Weight</u> 38.6%	Mean Differend IV, Fixed, 95% 0.16 (0.04. 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference <u>6 CI IV, Fixed, 95% CI</u> .28]	100 cebo]
<u>Study or Subgroup</u> 1.6.1 Total calcemia I Amrein 2014 Han 2016	Vitamin I <u>Mean SD</u> evel 9 0.6 8.41 0.63	03 <u>Total</u> 237 11	Pla <u>Mean</u> 8.84 8.33	0.68 0.75	Total 238 10	Weight 38.6% 1.4%	Mean Differend <u>IV, Fixed, 95%</u> 0.16 (0.04, 0. 0.08 (-0.52, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference <u>6 CI IV, Fixed, 95% CI</u> .28]	100 cebo]
<u>Study or Subgroup</u> 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019	Vitamin I <u>Mean SD</u> evel 9 0.6 8.41 0.63 10.2 13.8	03 Total 237 11 134	Pla Mean 8.84 8.33 8.4	0.68 0.75 1	Total 238 10 133	Weight 38.6% 1.4% 0.1%	Mean Differend IV, Fixed, 95% 0.16 (0.04, 0. 0.08 (-0.52, 0. 1.80 (-0.54, 4)	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference <u>6 Cl IV, Fixed, 95% Cl</u> .28] .68]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Substat (DE% CD	Vitamin I <u>Mean SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8	03 <u>Total</u> 237 11 134 507	Pla Mean 8.84 8.33 8.4 8.8	0.68 0.75 1 0.7	Total 238 10 133 503	Weight 38.6% 1.4% 0.1% 59.8%	Mean Difference IV, Fixed, 95% 0.16 (0.04, 0. 0.08 (-0.52, 0. 1.80 (-0.54, 4. 0.10 (0.01, 0. 0.42 (0.55, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference <u>6 Cl IV, Fixed, 95% Cl</u> .28] .68] .14] .19]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 //OLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² –	Vitamin I Mean SD evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62 df = 3.05	03 <u>Total</u> 237 11 134 507 889 2 = 0.45	Pl: <u>Mean</u> 8.84 8.33 8.4 8.8	0.68 0.75 1 0.7	238 10 133 503 884	Weight 38.6% 1.4% 0.1% 59.8% 100.0%	Mean Difference <u>IV, Fixed, 95%</u> 0.16 (0.04, 0. 0.08 (-0.52, 0. 1.80 (-0.54, 4. 0.10 (0.01, 0. 0.12 (0.05, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference <u>6 Cl IV, Fixed, 95% Cl</u> .28] .68] .14] .19] .20]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect 2	Vitamin I Mean SD evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P =	03 <u>Total</u> 237 11 134 507 889 P = 0.45 0.0007)	Pla <u>Mean</u> 8.84 8.33 8.4 8.8 9; 1 ² = 0%	0.68 0.75 1 0.7	238 10 133 503 884	Weight 38.6% 1.4% 0.1% 59.8% 100.0%	Mean Difference IV, Fixed, 95% 0.16 (0.04, 0 0.08 (-0.52, 0 1.80 (-0.54, 4 0.10 (0.01, 0 0.12 (0.05, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .14] .19] .20]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect : 1.6.2 Ionized calcemi	Vitamin I <u>Mean SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level	03 <u>Total</u> 237 11 134 507 889 P = 0.45 0.0007)	Pi; <u>Mean</u> 8.84 8.33 8.4 8.8 9; i ² = 0%	0.68 0.75 1 0.7	238 10 133 503 884	Weight 38.6% 1.4% 0.1% 59.8% 100.0%	Mean Difference IV, Fixed, 95% 0.16 (0.04, 0. 0.08 (-0.52, 0. 1.80 (-0.54, 4 0.10 (0.01, 0. 0.12 (0.05, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .68] .14] .19] 20]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect : 1.6.2 Ionized calcemia Amrein 2014	Vitamin I Mean SD 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28	237 11 134 507 889 2 = 0.45 0.0007) 237	Pl: <u>Mean</u> 8.84 8.33 8.4 8.8); ² = 09 4.52	0.68 0.75 1 0.7 6	238 10 133 503 884 238	Weight 38.6% 1.4% 0.1% 59.8% 100.0%	Mean Difference IV, Fixed, 95% 0.16 (0.04, 0. 0.08 (-0.52, 0. 1.80 (-0.54, 4. 0.10 (0.01, 0. 0.12 (0.05, 0. 0.04 (-0.01, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .68] .14] .19] 20]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83	237 11 134 507 889 2 = 0.45 0.0007) 237 153	Pla <u>Mean</u> 8.84 8.33 8.4 8.8); I ² = 0% 4.52 4.6	0.68 0.75 1 0.7 6 0.28 0.8	Total 238 10 133 503 884 238 177	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5%	Mean Difference IV, Fixed, 95% 0.16 (0.04, 0. 0.08 (-0.52, 0. 1.80 (-0.54, 4. 0.10 (0.01, 0. 0.12 (0.05, 0. 0.04 (-0.01, 0. 0.10 (-0.08, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .14] .19] 20] .09] .28]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Fest for overall effect J 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI)	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83	237 11 134 507 889 2 = 0.45 0.0007) 237 153 390	Pia 8.84 8.33 8.4 8.8 9; 1 ² = 0% 4.52 4.6	0.68 0.75 1 0.7 6 0.28 0.8	Total 238 10 133 503 884 238 177 415	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0%	Mean Difference IV, Fixed, 95% 0.16 (0.04, 0. 0.08 (-0.52, 0. 1.80 (-0.54, 4) 0.10 (0.01, 0. 0.12 (0.05, 0. 0.04 (-0.01, 0. 0.04 (-0.08, 0. 0.04 (-0.00, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .14] .19] 20] .09] .28] .28] .09]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall officit 2 Subtotal (95% CI)	Vitamin I <u>Mean SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = 4.56 0.28 4.7 0.83 0.41, df = 1 (f - 1.90 (P =	237 11 134 507 889 2 = 0.45 0.0007) 237 153 390 2 = 0.52 0.027	Pia Mean 8.84 8.33 8.4 8.8 9; 1 ² = 0% 4.52 4.6 9; 1 ² = 0%	0.68 0.75 1 0.7 6 0.28 0.8	Total 238 10 133 503 884 238 177 415	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0%	Mean Differend <u>IV, Fixed, 95%</u> 0.16 [0.04, 0 0.08 [-0.52, 0 1.80 [-0.54, 4 0.10 [0.01, 0 0.12 [0.05, 0. 0.04 [-0.01, 0 0.04 [-0.08, 0 0.04 [-0.00, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .14] .19] 20] .09] .28] .09]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect :	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P =	237 11 134 507 889 2 = 0.45 0.0007) 237 153 390 2 = 0.52 0.07)	Pia Mean 8.84 8.33 8.4 8.8 9; 1 ² = 09 4.52 4.6 9; 1 ² = 09	0.68 0.75 1 0.7 6 0.28 0.8	Total 238 10 133 503 884 238 177 415	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0%	Mean Difference IV, Fixed, 95% 0.16 (0.04, 0. 0.08 (-0.52, 0. 1.80 (-0.54, 4. 0.10 (0.01, 0. 0.12 (0.05, 0. 0.04 (-0.01, 0. 0.10 (-0.08, 0. 0.04 (-0.00, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .68] .14] .19] .20] .09] .28]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect : 1.6.3 Phosphorus	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P =	237 11 134 507 889 2 = 0.45 0.0007) 237 153 390 2 = 0.52 0.07)	Pia Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09	0.68 0.75 1 0.7 6 0.28 0.8	238 10 133 503 884 238 177 415	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0%	Mean Difference IV, Fixed, 95% 0.16 (0.04, 0. 0.08 (-0.52, 0. 1.80 (-0.54, 4. 0.10 (0.01, 0. 0.12 (0.05, 0. 0.04 (-0.01, 0. 0.04 (-0.08, 0. 0.04 (-0.00, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .68] .14] .19] 20] .09] .28]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect : 1.6.3 Phosphorus Amrein 2014 Marcian 2014	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84	237 11 134 507 889 2 = 0.45 0.0007) 237 153 390 2 = 0.52 0.07) 237	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54	0.68 0.75 1 0.7 6 0.28 0.8 6	Total 238 10 133 503 884 238 177 415 238	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6%	Mean Difference <u>IV, Fixed, 95%</u> 0.16 [0.04, 0 0.08 [-0.52, 0 1.80 [-0.54, 4 0.10 [0.01, 0 0.12 [0.05, 0 0.04 [-0.01, 0 0.04 [-0.08, 0 0.04 [-0.00, 0	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .68] .14] .19] .20] .09] .28] .09] .28] .20]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karay 2016	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84 4.03 0.88 2.4 4 5 0.4 4 5	237 11 134 507 827 11 134 507 827 153 390 237 153 390 237 237 11 134 507 827 10 10 10 10 10 10 10 10 10 10	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54 3.26	acebo SD 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.28	Total 238 10 133 503 884 238 177 415 238 10 238 10 238 10 238 10 238 10 238 10 238 10 238 10 238 238 238 238 20 238 20 20 20 20 20 20 20 20 20 20	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 2.5% 2.5%	Mean Difference <u>IV, Fixed, 95%</u> 0.16 [0.04, 0 0.08 [-0.52, 0 1.80 [-0.54, 4 0.10 [0.01, 0 0.12 [0.05, 0 . 0.04 [-0.01, 0 0.04 [-0.08, 0 0.04 [-0.00, 0. 0.01 [-0.18, 0 0.77 [-0.24, 1]	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 661 IV, Fixed, 95% CI .28] .68] .14] .19] 20] .09] .28] .09] .28] .09] .09]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karsy 2019 Subtotal (95% CI)	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84 4.03 0.88 3.4 1.5	237 11 134 507 237 11 134 507 80 237 153 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 387 237 11 134 387 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 237 153 390 237 237 153 390 237 237 153 390 237 237 153 390 237 237 153 390 237 237 237 237 237 237 237 237	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54 3.26 3	acebo SD 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.9	Total 238 10 133 503 884 238 177 415 238 10 133 381	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 2.5% 28.9% 100.0%	Mean Difference N, Fixed, 95% 0.16 [0.04, 0 0.08 [-0.52, 0 1.80 [-0.54, 4 0.10 [0.01, 0 0.12 [0.05, 0. 0.04 [-0.01, 0 0.04 [-0.08, 0 0.04 [-0.00, 0. 0.04 [-0.24, 1 0.40 [0.10, 0 0.14 [-0.22, 0	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6C1 IV, Fixed, 95% C1 .28]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karsy 2019 Subtotal (95% CI) Heterogeneity: Chi ² = :	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (f Z = 3.40 (P = 4.56 0.28 4.7 0.83 0.41, df = 1 (f Z = 1.80 (P = 3.55 0.84 4.03 0.88 3.4 1.5 6.20, df = 2 (f	237 11 134 507 237 11 134 507 80 237 153 390 237 153 237 153 237 153 237 153 237 153 237 153 153 153 153 153 153 153 153	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54 3.26 3.26 3.26 3.26 3.26 3.26 3.26 3.26	acebo SD 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.9 %	Total 238 10 133 503 884 238 177 415 238 10 133 381	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 2.5% 28.9% 100.0%	Mean Differend <u>IV, Fixed, 95%</u> 0.16 [0.04, 0, 0.08 [-0.52, 0, 1.80 [-0.54, 4, 0.10 [0.01, 0, 0.12 [0.05, 0, 0.04 [-0.01, 0, 0.04 [-0.00, 0, 0.04 [-0.00, 0, 0.07 [-0.24, 1, 0.40 [0.10, 0, 0.14 [-0.02, 0,	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6C1 IV, Fixed, 95% C1 .28]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karsy 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect :	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84 4.03 0.88 3.4 1.5 6.20, df = 2 (F Z = 1.74 (P =	33 Total 237 11 134 507 92 0.45 0.0007) 237 153 390 237 11 34 390 237 11 382 2 0.052 0.007)	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54 3.26 3.26 3 3.54 3.26	acebo SD 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.9 %	Total 238 10 133 503 884 238 177 415 238 10 133 381	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 2.5% 28.9% 100.0%	Mean Differend <u>IV, Fixed, 959</u> 0.16 [0.04, 0 0.08 [-0.52, 0 1.80 [-0.54, 4 0.10 [0.01, 0 0.12 [0.05, 0. 0.04 [-0.01, 0 0.04 [-0.08, 0 0.04 [-0.00, 0. 0.01 [-0.18, 0 0.77 [-0.24, 1 0.40 [0.10, 0 0.14 [-0.02, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .68] .14] .19] 20] .09] .28] .09] .28] .09] .28] .7] .70] .30]	100 cebo]
Study or Subgroup 1.6.1 Total calcernia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcernia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karsy 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect : 1.6.4 Creatinine	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84 4.03 0.88 3.4 1.5 6.20, df = 2 (F Z = 1.74 (P =	D3 Total 237 11 134 507 92 0.45 0.0007) 237 153 390 2 0.52 0.007) 131 134 382 2 0.05 0.008) 134	Pi; Mean 8.84 8.33 8.4 8.8 (); I ² = 09 4.52 4.6 (); I ² = 09 3.54 3.26 3 (); I ² = 68	acebo <u>\$0</u> 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.9 %	Total 238 10 133 503 884 238 177 415 238 10 133 381	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 28.9% 100.0%	Mean Difference IV, Fixed, 95% 0.16 [0.04, 0. 0.08 [-0.52, 0. 1.80 [-0.54, 4. 0.10 [0.01, 0. 0.12 [0.05, 0. 0.04 [-0.01, 0. 0.10 [-0.08, 0. 0.04 [-0.00, 0. 0.01 [-0.18, 0. 0.77 [-0.24, 1. 0.40 [0.10, 0. 0.14 [-0.02, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .68] .14] .19] .20] .09] .28] .09] .20] .2	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karsy 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : Test for overall effect : 1.6.4 Creatinine Han 2016	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84 4.03 0.88 3.4 1.5 6.20, df = 2 (F Z = 1.74 (P = 1.51 0.83	D3 Total 237 11 134 507 500 237 153 390 237 153 390 20.52 20.007) 11 134 382 20.007) 237 11 344 382 20.058 11 34	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54 3.26 3 3.54 3.26 3 3.54 3.26 3.215	acebo SD : 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.9 % 1.41	Total 238 10 133 503 884 238 177 415 238 10 133 381 10	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 28.9% 100.0% 100.0%	Mean Difference <u>IV, Fixed, 95%</u> 0.16 [0.04, 0 0.08 [-0.52, 0 1.80 [-0.54, 4] 0.10 [0.01, 0 0.12 [0.05, 0. 0.04 [-0.01, 0 0.04 [-0.08, 0 0.04 [-0.00, 0. 0.01 [-0.18, 0 0.77 [-0.24, 1] 0.40 [0.10, 0 0.14 [-0.02, 0. -0.64 [-1.64, 0]	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .28] .14] .19] 20] .09] .28] .09] .20] .20] .20] .20] .20] .30] .30]	100 cebo]
Study or Subgroup 1.6.1 Total calcernia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcernia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karsy 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.4 Creatinine Han 2016 Subtotal (95% CI)	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84 4.03 0.88 3.4 1.5 6.20, df = 2 (F Z = 1.74 (P = 1.51 0.83	D3 Total 237 11 134 507 507 50 237 153 390 2.652 237 11 134 390 237 11 134 382 22 0.007) 237 11 134 382 29 0.058 11 11	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54 3.26 3.26 3 3.26 3.26 3.215	acebo SD 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.9 % 1.41	Total 238 10 133 503 884 238 177 415 238 10 133 381 10 10 10	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 2.5% 28.9% 100.0% 100.0%	Mean Differend <u>IV, Fixed, 959</u> 0.16 [0.04, 0 0.08 [-0.52, 0 1.80 [-0.54, 4 0.10 [0.01, 0 0.12 [0.05, 0. 0.04 [-0.01, 0 0.04 [-0.08, 0 0.04 [-0.00, 0. 0.01 [-0.18, 0 0.77 [-0.24, 1 0.40 [0.10, 0 0.14 [-0.02, 0. -0.64 [-1.64, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .68] .14] .19] 20] .09] .28] .09] .28] .09] .28] .30] .30]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karsy 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.4 Creatinine Han 2016 Subtotal (95% CI) Heterogeneity: Not app	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84 4.03 0.88 3.4 1.5 6.20, df = 2 (F Z = 1.74 (P = 1.51 0.83 plicable	D3 Total 237 11 134 507 507 8 237 11 134 507 237 153 390 20.52 0.007) 237 11 134 382 2 20.008 11 11 10	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54 3.26 3.26 3.26 3.26 3.215	acebo SD 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.9 % 1.41	Total 238 10 133 503 884 238 177 415 238 10 133 381 10 10 10	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 2.5% 28.9% 100.0% 100.0%	Mean Differend <u>IV, Fixed, 959</u> 0.16 [0.04, 0 0.08 [-0.52, 0 1.80 [-0.54, 4 0.10 [0.01, 0 0.12 [0.05, 0. 0.04 [-0.01, 0 0.04 [-0.08, 0 0.04 [-0.00, 0. 0.01 [-0.18, 0 0.77 [-0.24, 1 0.40 [0.10, 0 0.14 [-0.02, 0. -0.64 [-1.64, 0 -0.64 [-1.64, 0]	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 CI IV, Fixed, 95% CI .28] .68] .14] .19] 20] .09] .20] .20] .20] .30] .36]	100 cebo]
Study or Subgroup 1.6.1 Total calcernia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcernia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karsy 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.4 Creatinine Han 2016 Subtotal (95% CI) Heterogeneity: Not apj Test for overall effect :	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84 4.03 0.88 3.4 1.5 6.20, df = 2 (F Z = 1.74 (P = 1.51 0.83 plicable Z = 1.25 (P =	33 Total 237 11 134 507 89 9 = 0.45 0.0007) 237 153 390 237 153 390 237 11 134 382 2 = 0.52 0.007) 237 11 134 390 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 153 390 237 11 134 390 237 153 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 390 237 11 134 390 134 390 134 390 134 390 134 390 11 134 390 11 134 392 134 390 11 134 392 11 134 392 11 134 392 10 13 134 392 11 134 392 11 134 392 11 134 392 10 13 392 10 13 392 10 13 392 10 13 392 10 13 13 13 392 10 10 10 10 10 10 10 10 10 10	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54 3.26 3.26 3.26 3.26 3.215	acebo SD 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.9 % 1.41	Total 238 10 133 503 884 238 177 415 238 10 133 381 10 10 10	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 28.9% 100.0% 100.0% 100.0%	Mean Differend IV, Fixed, 959 0.16 [0.04, 0 0.08 [-0.52, 0 1.80 [-0.54, 4 0.10 [0.01, 0 0.12 [0.05, 0. 0.04 [-0.01, 0 0.04 [-0.08, 0 0.04 [-0.00, 0. 0.04 [-0.00, 0. 0.01 [-0.18, 0 0.77 [-0.24, 1 0.40 [0.10, 0 0.14 [-0.02, 0. -0.64 [-1.64, 0 -0.64 [-1.64, 0	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference <u>6 Cl IV, Fixed, 95% Cl</u> .28] .14] .19] 20] .09] .28] .09] .20] .20] .36] .36]	100 cebo]
Study or Subgroup 1.6.1 Total calcernia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcernia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karsy 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.4 Creatinine Han 2016 Subtotal (95% CI) Heterogeneity: Not apj Test for overall effect :	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84 4.03 0.88 3.4 1.5 6.20, df = 2 (F Z = 1.74 (P = 1.51 0.83 plicable Z = 1.25 (P =	33 Total 237 11 134 507 507 8 237 11 134 507 237 153 390 20.52 0.007) 237 11 134 382 2 0.008) 11 11 0.21)	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54 3.26 3.26 3.26 3.26 3.215	acebo SD : 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.9 % 1.41	Total 238 10 133 503 884 238 177 415 238 10 133 381 10 10 10	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 28.9% 100.0% 100.0% 100.0%	Mean Differend IV, Fixed, 95% 0.16 [0.04, 0 0.08 [-0.52, 0 1.80 [-0.54, 4 0.10 [0.01, 0 0.12 [0.05, 0. 0.04 [-0.01, 0 0.04 [-0.08, 0 0.04 [-0.00, 0. 0.04 [-0.00, 0. 0.01 [-0.18, 0 0.77 [-0.24, 1 0.40 [0.10, 0 0.14 [-0.02, 0. -0.64 [-1.64, 0. -0.64 [-1.64, 0.	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference <u>6 Cl IV, Fixed, 95% Cl</u> .28] .14] .19] 20] .09] .28] .09] .28] .09] .20] .36] .36]	100 cebo]
Study or Subgroup 1.6.1 Total calcemia I Amrein 2014 Han 2016 Karsy 2019 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.2 Ionized calcemia Amrein 2014 VIOLET 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.3 Phosphorus Amrein 2014 Han 2016 Karsy 2019 Subtotal (95% CI) Heterogeneity: Chi ² = : 1.6.4 Creatinine Han 2016 Subtotal (95% CI) Heterogeneity: Not apj Test for overall effect :	Vitamin I <u>Mean</u> <u>SD</u> evel 9 0.6 8.41 0.63 10.2 13.8 8.9 0.8 2.62, df = 3 (F Z = 3.40 (P = a level 4.56 0.28 4.7 0.83 0.41, df = 1 (F Z = 1.80 (P = 3.55 0.84 4.03 0.88 3.4 1.5 6.20, df = 2 (F Z = 1.74 (P = 1.51 0.83 plicable Z = 1.25 (P =	33 Total 237 11 134 507 507 8 237 11 134 507 237 153 390 2-0.52 0.077 11 134 382 2-2.0.07 11 134 382 2-2.0.08 11 134 0.21	Pla Mean 8.84 8.33 8.4 8.8 9; I ² = 09 4.52 4.6 9; I ² = 09 3.54 3.26 3.26 3.26 3.26 3.215	acebo SD : 0.68 0.75 1 0.7 6 0.28 0.8 6 1.26 1.4 0.9 % 1.41	Total 238 10 133 503 884 238 177 415 238 10 133 381 10 10 10	Weight 38.6% 1.4% 0.1% 59.8% 100.0% 92.5% 7.5% 100.0% 68.6% 28.9% 100.0% 100.0% 100.0%	Mean Differend IV, Fixed, 959 0.16 [0.04, 0, 0.08 [-0.52, 0, 1.80 [-0.54, 4, 0.10 [0.01, 0, 0.12 [0.05, 0, 0.04 [-0.01, 0, 0.04 [-0.08, 0, 0.04 [-0.00, 0, 0.04 [-0.00, 0, 0.01 [-0.18, 0, 0.77 [-0.24, 1, 0.40 [0.10, 0, 0.14 [-0.02, 0, -0.64 [-1.64, 0, -0.64 [-1.64, 0,	0.01 0.1 1 10 Favours [Vitamin D3] Favours [Pla ce Mean Difference 6 Cl IV, Fixed, 95% Cl .28] .28] .14] .19] 20] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .09] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .00] .28] .09] .28] .09] .28] .00] .20	100 cebo]

CONCLUSIONS

A high dose of vitamin D3 was not associated with decreased mortality truncated to day 28 and day 90 in critically ill patients, but could significantly reduce the ventilator days. However, more large-scale RCTs are needed to further validate the effects of high dose vitamin D3 in critically ill patients.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

ZG: conceptualization, methodology, formal analysis, writing original draft, and supervision. JX: methodology and formal analysis. CL: conceptualization and validation. LL: formal analysis and writing—original draft. YY: methodology, formal analysis, writing—review and editing, and supervision. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by National Natural Science Foundation of China (81971888 and 81971829), Jiangsu

REFERENCES

- Lucidarme O, Messai E, Mazzoni T, Arcade M, du Cheyron D. Incidence and risk factors of vitamin D deficiency in critically ill patients: results from a prospective observational study. *Intensive Care Med.* (2010) 36:1609– 11. doi: 10.1007/s00134-010-1875-8
- Vassiliou A G, Jahaj E, Mastora Z, Stagaki E, Orfanos S E, Kotanidou A. Serum admission 25-hydroxyvitamin D levels and outcomes in initially non-septic critically Ill patients. *Shock.* (2018) 50:511–8. doi: 10.1097/SHK.000000000001105
- Quraishi S A, McCarthy C, Blum L, Cobb J P, Camargo C A. Plasma 25-Hydroxyvitamin D Levels at Initiation of Care and Duration of Mechanical Ventilation in Critically Ill Surgical Patients. *JPEN J Parenter Enteral Nutr.* (2016) 40:273–8. doi: 10.1177/0148607114566276
- Gomes T L, Fernandes R C, Vieira L L, Schincaglia R M, Mota J F, Nobrega M S, et al. Low vitamin D at ICU admission is associated with cancer, infections, acute respiratory insufficiency, and liver failure. *Nutrition*. (2019) 60:235–40. doi: 10.1016/j.nut.2018.10.018
- National Heart L, Blood Institute P C T N, Ginde A A, Brower R G, Caterino J M, Finck L, et al. Early high-dose vitamin D3 for critically Ill, vitamin D-deficient patients. N Engl J Med. (2019) 381:2529– 40. doi: 10.1056/NEJMoa1911124
- Han J E, Jones J L, Tangpricha V, Brown M A, Brown L A S, Hao L, et al. High dose vitamin D administration in ventilated intensive care unit patients: a pilot double blind randomized controlled trial. *J Clin Transl Endocrinol.* (2016) 4:59–65. doi: 10.1016/j.jcte.2016.04.004
- Quraishi S A, De Pascale G, Needleman J S, Nakazawa H, Kaneki M, Bajwa E K, et al. Effect of cholecalciferol supplementation on vitamin D status and cathelicidin levels in sepsis: a randomized, placebo-controlled trial. *Crit Care Med.* (2015) 43:1928–37. doi: 10.1097/CCM.00000000001148

Provincial Special Program of Medical Science (BE2018743), and Huai'an Health Research Project 2019 (HAWJ201905).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnut.2022. 762316/full#supplementary-material

Supplemental File 1 | Checklist for the meta-analysis applied to this manuscript according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement.

Supplemental File 2 | Full search strategy for PubMed, Web of Science, EMBASE, and the Cochrane Central database.

Supplemental File 3 | The risk of bias of the included trials.

Supplemental File 4 | Risk of bias assessment of the included trials.

Supplemental File 5 | Publication bias of mortality truncated to day 28 and day 90.

Supplemental File 6 | Sensitivity analysis.

Supplemental File 7 | GRADE profile for assessing the quality of evidence for vitamin D3 in critically ill patients.

Supplemental File 8 | Trial sequential analysis revealing the optimal sample size for detecting the plausible effect of vitamin D3 use on mortality truncated to 28 days.

Supplemental File 9 | Univariate meta-regression analysis.

Supplemental File 10 | Subgroup analysis. Patients were divided by dose of vitamin D3 (300,000 IU, 400,000 IU, and 540,000 IU).

Supplemental File 11 | Subgroup analysis. Patients were divided by vitamin D3 administration route (enteral and intramuscular).

- Amrein K, Schnedl C, Holl A, Riedl R, Christopher K B, Pachler C, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. *JAMA*. (2014) 312:1520–30. doi: 10.1001/jama.2014.13204
- Miroliaee A E, Salamzadeh J, Shokouhi S, Fatemi A, Ardehali S H, Hajiesmaeili M R, et al. Effect of vitamin D supplementation on procalcitonin as prognostic biomarker in patients with ventilator associated pneumonia complicated with vitamin D deficiency. *Iran J Pharm Res.* (2017) 16:1254–63.
- Parekh D, Dancer R C A, Scott A, D'Souza V K, Howells P A, Mahida R Y, et al. Vitamin D to prevent lung injury following esophagectomya randomized, placebo-controlled trial. *Crit Care Med.* (2018) 46:e1128– 35. doi: 10.1097/CCM.00000000003405
- Amrein K, Papinutti A, Mathew E, Vila G, Parekh D. Vitamin D and critical illness: what endocrinology can learn from intensive care and vice versa. *Endocr Connect.* (2018) 7:R304–15. doi: 10.1530/EC-18-0184
- Borges R C, Barbeiro H V, Barbeiro D F, Soriano F G. Muscle degradation, vitamin D and systemic inflammation in hospitalized septic patients. J Crit Care. (2020) 56:125–31. doi: 10.1016/j.jcrc.2019.12.017
- Martucci G, McNally D, Parekh D, Zajic P, Tuzzolino F, Arcadipane A, et al. Trying to identify who may benefit most from future vitamin D intervention trials: a post hoc analysis from the VITDAL-ICU study excluding the early deaths. *Crit Care.* (2019) 23:200. doi: 10.1186/s13054-019-2472-z
- Putzu A, Belletti A, Cassina T, Clivio S, Monti G, Zangrillo A, et al. Vitamin D and outcomes in adult critically ill patients. A systematic review and meta-analysis of randomized trials. *J Crit Care*. (2017) 38:109– 14. doi: 10.1016/j.jcrc.2016.10.029
- Liberati A, Altman D G, Tetzlaff J, Mulrow C, Gotzsche P C, Ioannidis J P, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ.* (2009) 339:b2700. doi: 10.1136/bmj.b2700

- Cumpston M, Li T, Page M J, Chandler J, Welch V A, Higgins J P, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. *Cochrane Database Syst Rev.* (2019) 10:ED000142. doi: 10.1002/14651858.ED000142
- Higgins J P, Altman D G, Gotzsche P C, Juni P, Moher D, Oxman A D, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. (2011) 343:d5928. doi: 10.1136/bmj.d5928
- Higgins J P, Thompson S G, Deeks J J, Altman D G. Measuring inconsistency in meta-analyses. *BMJ*. (2003) 327:557–60. doi: 10.1136/bmj.327.7414.557
- Brok J, Thorlund K, Gluud C, Wetterslev J. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J Clin Epidemiol. (2008) 61:763–9. doi: 10.1016/j.jclinepi.2007.10.007
- Wetterslev J, Thorlund K, Brok J, Gluud C. Estimating required information size by quantifying diversity in random-effects model meta-analyses. *BMC Med Res Methodol.* (2009) 9:86. doi: 10.1186/1471-2288-9-86
- 21. Ding F, Zang B, Fu J, Ji K. Effect of vitamin D3 on the severity and prognosis of patients with sepsis: a prospective randomized double-blind placebo study. *Zhonghua Wei Zhong Bing Ji Jiu Yi Xue.* (2017) 29:106–10.
- 22. Miri M, Kouchek M, Rahat Dahmardeh A, Sistanizad M. Effect of High-Dose Vitamin D on Duration of Mechanical Ventilation in ICU Patients. *Iran J Pharmaceut Res IJPR*. (2019) 18:1067–72.
- 23. Amrein K, Sourij H, Wagner G, Holl A, Pieber T R, Smolle K H, et al. Short-term effects of high-dose oral vitamin D3 in critically ill vitamin D deficient patients: a randomized, double-blind, placebo-controlled pilot study. *Crit Care.* (2011) 15:R104. doi: 10.1186/cc10120
- Hasanloei M A V, Rahimlou M, Eivazloo A, Sane S, Ayremlou P, Hashemi R. Effect of oral versus intramuscular vitamin D replacement on oxidative stress and outcomes in traumatic mechanical ventilated patients admitted to intensive care unit. *Nutr Clin Pract.* (2020) 35:548–58. doi: 10.1002/ncp.10404
- Karsy M, Guan J, Eli I, Brock AA, Menacho ST, Park MS. The effect of supplementation of vitamin D in neurocritical care patients: RandomizEd Clinical TrIal oF hYpovitaminosis D (RECTIFY). J Neurosurg. (2019) 1– 10. doi: 10.3171/2018.11.JNS182713
- Nair P, Venkatesh B, Lee P, Kerr S, Hoechter D J, Dimeski G, et al. A Randomized study of a single dose of intramuscular cholecalciferol in critically Ill adults. *Crit Care Med.* (2015) 43:2313–20. doi: 10.1097/CCM.00000000001201
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. *BMJ*. (1997) 315:629– 34. doi: 10.1136/bmj.315.7109.629
- Preiser J C, Christopher K. High-dose vitamin D3 for critically Ill vitamin Ddeficient patients. N Engl J Med. (2020) 382:1670. doi: 10.1056/NEJMc2000993
- Amrein K, Parekh D, Westphal S, Preiser J C, Berghold A, Riedl R, et al. Effect of high-dose vitamin D3 on 28-day mortality in adult critically ill patients with severe vitamin D deficiency: a study protocol of a multicentre, placebocontrolled double-blind phase III RCT (the VITDALIZE study). *BMJ Open.* (2019) 9:e031083. doi: 10.1136/bmjopen-2019-031083
- Langlois P L, Szwec C, D'Aragon F, Heyland D K, Manzanares W. Vitamin D supplementation in the critically ill: A systematic review and meta-analysis. *Clin Nutr.* (2018) 37:1238–46. doi: 10.1016/j.clnu.2017.05.006
- Ross A C. The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr. (2011) 14:938– 9. doi: 10.1017/S1368980011000565

- Zhang V, Jiang X, Farukhi Y Z, Rosen C J, Schnatz P F. Vitamin D and calcium: what do we need to know? *Clin Obstet Gynecol.* (2013) 56:654– 8. doi: 10.1097/GRF.0b013e3182a98274
- Barrea L, Muscogiuri G, Frias-Toral E, Laudisio D, Pugliese G, Castellucci B, et al. Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota. *Crit Rev Food Sci Nutr.* (2021) 61:3066–90. doi: 10.1080/10408398.2020.1792826
- 34. De Pascale G, Quraishi S A Vitamin D status in critically ill patients: the evidence is now bioavailable! *Crit Care.* (2014) 18:449. doi: 10.1186/cc13975
- Czarnik T, Czarnik A, Gawda R, Gawor M, Piwoda M, Marszalski M, et al. Vitamin D kinetics in the acute phase of critical illness: a prospective observational study. *J Crit Care.* (2018) 43:294–9. doi: 10.1016/j.jcrc.2017.09.179
- McNally J D. Vitamin D as a modifiable risk factor in critical illness: questions and answers provided by observational studies. J Pediatr (Rio J). (2014) 90:99–101. doi: 10.1016/j.jped.2013.12.002
- Whyte MP, Haddad JG, Walters DD, Stamp TC. Vitamin D bioavailability: serum 25-hydroxyvitamin D levels in man after oral, subcutaneous, intramuscular, and intravenous vitamin D administration. J Clin Endocrinol Metab. (1979) 48:906–11. doi: 10.1210/jcem-48-6-906
- Reintam Blaser A, Poeze M, Malbrain M L, Bjorck M. Oudemansvan Straaten H M, Starkopf J, et al. Gastrointestinal symptoms during the first week of intensive care are associated with poor outcome: a prospective multicentre study. *Intensive Care Med.* (2013) 39:899– 909. doi: 10.1007/s00134-013-2831-1
- Van den Berghe G, Van Roosbroeck D, Vanhove P, Wouters P J, De Pourcq L, Bouillon R. Bone turnover in prolonged critical illness: effect of vitamin D. J Clin Endocrinol Metab. (2003) 88:4623–32. doi: 10.1210/jc.2003-030358
- Sutherland E R, Goleva E, Jackson L P, Stevens A D, Leung D Y. Vitamin D levels, lung function, and steroid response in adult asthma. *Am J Respir Crit Care Med.* (2010) 181:699–704. doi: 10.1164/rccm.200911-1710OC
- Roth H J, Schmidt-Gayk H, Weber H, Niederau C. Accuracy and clinical implications of seven 25-hydroxyvitamin D methods compared with liquid chromatography-tandem mass spectrometry as a reference. *Ann Clin Biochem.* (2008) 45:153–9. doi: 10.1258/acb.2007.007091

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Gao, Xie, Li, Liu and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.