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Identification of microRNA expression quantitative trait loci (miR-eQTL) can yield insights into 

regulatory mechanisms of microRNA transcription, and can help elucidate the role of microRNA 

as mediators of complex traits. Here we present a miR-eQTL mapping study of whole blood from 

5239 individuals, and identify 5269 cis-miR-eQTLs for 76 mature microRNAs. Forty-nine percent 

of cis-miR-eQTLs are located 300–500kb upstream of their associated intergenic microRNAs, 

suggesting that distal regulatory elements may affect the interindividual variability in microRNA 

expression levels. We find that cis-miR-eQTLs are highly enriched for cis-mRNA-eQTLs and 

regulatory SNPs. Among 243 cis-miR-eQTLs that were reported to be associated with complex 

traits in prior genome-wide association studies, many cis-miR-eQTLs miRNAs display differential 

expression in relation to the corresponding trait (e.g., rs7115089, miR-125b-5p, and HDL 

cholesterol). Our study provides a roadmap for understanding the genetic basis of miRNA 

expression, and sheds light on miRNA involvement in a variety of complex traits.

Introduction

MicroRNAs (miRNAs), a class of small noncoding RNAs, serve as key post-transcriptional 

regulators of gene expression and mRNA translation 1, 2. miRNAs are increasingly 

recognized as mediators in a variety of biological processes including cardiovascular 

development and disorders 3, 4. Highly specific miRNA expression patterns have been 

reported in association with heart failure 5, 6, myocardial infarction 7, and cancer 8. 

However, the influence of genetic variation on miRNA expression and function still remains 

unclear.

Recently, many genome-wide expression quantitative trait locus (eQTL) mapping studies 

have revealed common genetic loci associated with mRNA expression levels of many 

genes 9, 10, 11, 12. These eQTL analyses have demonstrated that transcript levels of many 

mRNAs behave as heritable quantitative traits. In contrast to more extensive investigations 

of mRNA eQTLs in multiple tissues 13 such as blood 9, brain 10, fat 11, and liver 12, there are 

relatively few studies of miRNA eQTLs (miR-eQTLs) and those that have been published to 

date are based on modest sample sizes (n<200) 14, 15, 16, 17, 18. These studies have identified 

relatively few cis-miR-eQTLs; uncertainty persists regarding the number of miR-eQTLs in 

humans and their relations to regulatory elements in the human genome.

We conduct a genome-wide miR-eQTL study by utilizing genome-wide genotypes and 

miRNA expression profiling of whole blood derived RNA from 5239 Framingham Heart 

Study (FHS) participants. We analyze the associations of approximately 10 million 1000 

Genomes Project 19 imputed SNPs (at minor allele frequency [MAF] >0.01 and imputation 

quality ratio >0.1) with whole blood-derived miRNA expression levels of 280 mature 

miRNAs expressed in >200 individuals, representing 11% of all discovered human miRNAs 

to date (2576 mature miRNAs have been reported in miRbase v20: www.mirbase.org). We 

calculate both cis- and trans- miR-eQTLs genome wide, and identify cis-miR-eQTLs with 

concordant effects in two pedigree independent study groups. By cross-linking cis-miR-

eQTLs SNPs with regulatory SNPs annotated by the ENCODE project 20 and with complex 

trait-associated SNPs identified in prior genome-wide association studies (GWAS) 21, 22, 

and by linking cis-miR-eQTL miRNAs with differentially expressed miRNAs for complex 
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traits, we sought to dissect the genetic regulation of miRNA expression and explore the 

extent to which cis-miR-eQTLs may affect interindividual phenotype variability.

Results

Heritability of global miRNA expression in peripheral blood

The demographic and clinical characteristics of the 5239 FHS participants included in our 

analysis are shown in Supplementary Data 1. The pedigree structure formed by these 

participants is shown in Supplementary Data 2. We detected 280 mature miRNAs that 

were expressed in >200 participants (these miRNAs were used for identification of miR-

eQTLs and unless specifically stated, miRNAs mentioned in the results and discussion refers 

to mature miRNAs), of these, 247 miRNAs were expressed in >1000 participants 

(Supplementary Fig 1). The distribution of narrow-sense heritability of miRNA expression 

for the 247 miRNAs expressed in >1000 participants is shown in Supplementary Fig 2, with 

an average heritability estimate ( ) of 0.11; 133 miRNAs (54%) had >0.1, and 9 

miRNAs (miR-100-5p, miR-668, miR-133a, miR-127-3p, miR-409-3p, miR-20a-3p, 

miR-941, miR-191-3p, miR-1303) had >0.3 (details in Supplementary Data 3).

Cell type effects and reproducibility of miR-eQTLs

To evaluate whether blood cell type proportions significantly influence miR-eQTLs, we 

compared miR-eQTLs identified in 2138 FHS third generation cohort participants (in whom 

differential cell counts and proportion data were available) with and without adjustment for 

measured blood cell counts and cell type proportions (see Methods). Cell types did not 

appreciably influence miR-eQTLs (Supplementary Fig 3), however, we cannot exclude the 

possibility of small cell type effects. In the subsequent sections, we focus on miR-eQTLs 

from analyses that were unadjusted for cell counts (Supplementary Data 4). The miR-

eQTLs from the model that adjusted for imputed cell counts in the larger set of 5024 

participants are provided in Supplementary Data 5.

To evaluate the reproducibility of detected miR-eQTLs, we split our overall sample set 1:1 

into two sets by pedigrees creating separate discovery and replication sets, and identified 

cis- and trans-miR-eQTLs in each set. At discovery FDRs of <0.1, <0.05, and <0.01, the 

replication rates for cis-miR-eQTLs were 53%, 56%, and 68% respectively, at a replication 

FDR<0.1, and 100% showed allele-specific directional effect concordance between the 

discovery and replication sets (Fig 1A–B). In contrast, no trans-miR-eQTLs replicated (at 

FDR<0.1), although 91% of trans-miR-eQTLs showed allele-specific directional effect 

concordance in the discovery and replication sets (Supplementary Fig 4). Therefore, in the 

subsequent sections, we mainly report cis-miR-eQTLs identified in the overall FHS set 

(unadjusted for cell counts).

Genome-wide identification of miR-eQTLs

At FDR<0.1 (corresponding p value threshold is 6.6×10−5), we identified 5269 cis-miR-

eQTLs for 76 miRNAs (27% of interrogated expressed miRNAs) (Fig 2). These cis-miR-

eQTLs were further pruned by removing redundant cis-miR-eQTLs with high linkage 
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disequilibrium (LD). At a series of LD r2 thresholds, i.e., r2=0.2, 0.5, 0.7, 0.9 and 1, there 

were 283, 572, 982, 1602 and 2727 cis-miR-eQTLs retained. We further narrowed down the 

list to 52 peak cis-miR-eQTLs representing the single top cis-miR-eQTL for each miRNA or 

miRNA cluster shown in Supplementary Data 6. Table 1 shows 16 of the 52 peak cis-miR-

eQTLs with GWAS SNPs in the NHGRI GWAS Catalog and the NHLBI GRASP data 

set 21, 22. A miRNA cluster is defined as a group of miRNAs located within 10kb in the 

same chromosome (using the criteria described in www.mirbase.org). miRNAs with higher 

heritability estimates were more likely to have cis-miR-eQTLs. All of the 9 miRNAs with 

>0.3 were found to have cis-miR-eQTLs. The top cis-miR-eQTLs tended to explain a 

greater proportion of the variance in the respective miRNA transcript as a function of 

increasing  (Fig 3). When the heritability of miRNA transcripts  increased from (0 

to 0.1) to (0.3 to 1), the proportion of variance of the miRNA transcript explained by single 

cis-miR-eQTLs ( ) increased from 0.02 to 0.08 on average.

At FDR<0.10 (corresponding p value threshold is 1.0×10−8), we identified 270 trans-miR-

eQTLs for 15 miRNAs (5% of interrogated expressed miRNAs). Supplementary Fig 5 

showed 2-D regional plot of cis- and tran-miR-eQTLs genome-widely (un-adjusted cell 

counts). Supplementary Data 7–8 showed trans-miR-eQTLs at FDR<0.1 identified in the 

overall samples adjusted and un-adjusted cell counts respectively. We acknowledged those 

trans-miR-eQTLs need to be validated in independent cohorts.

cis-miR-eQTLs showing 5’ positional bias for miRNAs

Among the 76 mature miRNAs with cis-miR-eQTLs, 49 (64%) were intragenic, located 

within annotated protein-coding genes (located in exons, introns, or UTR regions of the host 

genes), and 27 (36%) were intergenic. We discovered a marked positional bias of cis-miR-

eQTLs, with many cis-miR-eQTLs located in the 5’-upstream region of the corresponding 

miRNA rather than within miRNA coding regions or the 3’-downstream regions.

Among the 982 non-redundant (LD r2<0.7) cis-miR-eQTLs (representing 1984 SNP-

miRNA pairs), the relative distance of cis-miR-eQTLs to the corresponding mature miRNAs 

is shown in Fig 4 and the relative distance of cis-miR-eQTLs to the transcriptional start site 

(TSS) is shown in Supplementary Fig 6. Specifically, for intragenic miRNAs, 418 cis-miR-

eQTLs (493 SNP-miRNA pairs, 58%) were located in the 5’-upstream region of the 

corresponding primary miRNAs and 432 cis-miR-eQTLs (536 SNP-miRNA pairs, 63%) 

were in the region defined by 200kb upstream to 100kb downstream of the TSS. In contrast, 

for intergenic miRNAs, 238 cis-miR-eQTLs (825 SNP-miRNA pairs, 83%) were located in 

the 5’-upstream region of the corresponding primary miRNAs, and 125 cis-miR-eQTLs (487 

SNP-miRNA pairs, 49%) were in the region defined by 500kb to 300kb upstream of the TSS 

(Supplementary Data 9). There were 207 cis-miR-eQTLs (247 SNP-miRNA pairs, 29%) 

for intragenic miRNAs and 99 cis-miR-eQTLs (129 SNP-miRNA pairs, 13%) for intergenic 

miRNAs located within −/+ 50kb of the TSS of the corresponding miRNAs.
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Genomic features of cis-miR-eQTLs

Most of the detected cis-miR-eQTLs are not located in protein-coding regions, i.e., 39% of 

eQTLs in intronic and 57% in intergenic regions (Supplementary Data 10). We found 

significant enrichment of cis-miR-eQTLs with expression regulatory elements (Table 2, 

Supplementary Data 11 and Supplementary Fig 7), including CpG islands (2%), promoters 

(9%), enhancers (35%), and transcription factor (TF) binding regions (15%). We also found 

that cis-miR-eQTLs were enriched for miRNA mediated/targeted gene regulatory 

regions 23, 24.

There were 1066 (20%) cis-miR-eQTLs that overlapped with cis-mRNA-eQTLs identified 

in whole blood (enrichment p<1e-300 by hypergeometric test) 9, 25. An example is shown in 

Supplementary Fig 8; 132 cis-miR-eQTLs (36%) for 12 intergenic mature miRNAs were 

also cis-mRNA-eQTLs for upstream protein-coding genes. We overlapped the 1 megabyte 

(Mb) region flanking the 132 cis-miR-eQTLs (chr14: 100.5Mb −102.5Mb) with the 

regulatory feature tracks download from UCSC Genome Browser (genome.ucsc.edu). 

Supplementary Fig 8 showed that the nearby regions of the 132 cis-miR-eQTLs for those 12 

miRNAs overlap with Enhancer active region (chr14:101,100kb-101,200kb, H3K4Me1 and 

H2K27AC track, marked in lightyellow rectangle). The highly un-methylated status of 

GM12878, K562, HeLa-S3 and HepG2 cell lines are in chr14:101,400kb-101,600kb 

upstream of those cis-mRNA-eQTL miRNAs (CpG Methylation by Methy450K Bead 

Arrays from ENCODE/HAIB track, marked by pink color).

We also discovered eleven intragenic mature miRNAs share cis-eQTLs with their host 

mRNA genes (Supplementary Data 12). For cis-miR-eQTLs that overlapped with cis-

mRNA-eQTLs, we performed conditional analysis to test if the associations between SNPs 

and miRNAs remained significant when conditioning on the corresponding mRNA 

expression levels using results from 5024 FHS participants with genotype, and miRNA, and 

mRNA expression data. As show in Supplementary Data 13, we found 923 cis-miR-

eQTLs for 3384 miRNA-SNP association pairs (87%) that remained significant at FDR<0.1 

(corresponding p<6.6×10−5) when conditioning on mRNA expression levels. These findings 

indicate that cis genetic variants may affect expression levels of neighboring miRNAs and 

mRNAs.

cis-miR-eQTLs and miRNA signatures for complex traits

We linked the cis-miR-eQTLs with GWAS SNPs in the NHGRI GWAS Catalog and the 

NHLBI GRASP data set 21, 22. Among 5269 cis-miR-eQTLs, 243 cis-miR-eQTLs (for 31 

miRNAs) overlapped with GWAS SNPs, including SNPs associated with multiple complex 

traits (Table 1, Fig 2, and regional association plots for several traits including height, 

menarche, platelet count, and lipid levels are shown in Supplementary Fig 9).

For miRNAs with cis-miR-eQTLs showing association with complex traits in GWAS, we 

further tested if expression of these miRNAs in FHS participants was associated with the 

corresponding traits. We discovered a number of miRNAs that showed differential 

expression in relation to the complex traits that correspond to the traits associated with their 

eQTLs in GWAS (Table 1). For example (Fig 5A–B), among cis-miR-eQTLs of 
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miR-100-5p and miR-125b-5p, we found 28 cis-miR-eQTLs (i.e., GWAS SNPs) that were 

associated in GWAS with lipid traits (HDL cholesterol, LDL cholesterol, total cholesterol 

[TC], and triglycerides), 1 (rs7941030) with multiple sclerosis, and 1 (rs1216554) with 

rheumatoid arthritis. These eQTLs are located ∼519kb upstream of their two associated 

miRNAs. We also found that miR-125b-5p showed differential expression in relation to 

plasma total cholesterol (p=0.005, by linear regression tests, see Methods) and HDL 

cholesterol (p=1.68e-5), and miR-100-5p showed differential expression in relation to HDL 

cholesterol (p=0.039). Another example (Fig 5C–D) is for miR-339-3p and miR-339-5p, 

which are located in an intron of c7orf50. Among the 282 cis-miR-eQTLs SNPs of 

miR-339-3p and 279 cis-miR-eQTLs of miR-339-5p, 8 were associated with TC and 3 with 

LDL cholesterol. We also found that expression of miR-339-3p was associated with TC 

(p=2.5e-7). These results establish links between SNPs affecting both miRNA expression 

levels and complex traits. Mendelian randomization tests provided evidence that four cis-

miR-eQTLs SNPs (rs6951245, rs11763020, rs1997243 and rs2363286) alter the expression 

levels of miR-339-3p and miR-339-5p, and in turn affect interindividual variability of TC 

levels (causal p<0.05).

Discussion

On the basis of extensive integrated analyses of miRNA expression and genetic variants 

genome wide in 5239 individuals, we established a clear pattern of heritability of blood 

miRNA expression, and identified a substantial number of miRNAs that are controlled by 

cis genetic regulatory elements. Our results for cis-miR-eQTLs were highly replicable; in 

contrast, trans-miR-eQTLs were not replicable. Previously reported miR-eQTLs were 

identified in studies with small sample sizes (n<200) and revealed a few miR-eQTLs. For 

example, Borel et al. using umbilical cord blood from 180 newborns, identified only 12 cis-

miR-eQTLs at FDR<0.5 14. In another study, no cis-miR-eQTLs were found in 176 

lymphoblastoid cell lines from European and African ancestry samples 15. Proxy SNPs of 

two cis-miR-eQTLs that we identified (rs2187519 for miR-100 and rs7797405 for miR-550) 

were reported by Borel et al.14 (rs10750218 as a proxy for rs2187519 and rs12670233 for 

rs7797405 are in modest LD at r2=0.29 and r2=0.48 respectively).

As our data are from a well powered multi-generation study, we were able to assess narrow 

sense heritability ( ) of each miRNA expression trait. By comparing the overall 

heritability of the miRNAs and single cis-miR-eQTLs, we discovered that miRNAs with 

higher heritability were more likely to have cis-miR-eQTLs. When the heritability of 

miRNA transcripts  increased, the proportion of variance of the miRNA transcript 

explained by single cis-miR-eQTLs ( ) increased as well. Our heritability study of 

mRNA expression traits revealed single cis-mRNA-eQTLs explained 33–53% of variances 

in corresponding mRNA expression levels 26. In contrast, single cis-miR-eQTLs explained 

much less proportion of variances in corresponding miRNA expression levels (∼1.3% on 

average).

In contrast to the functional annotation of cis-mRNA eQTLs, most of which are within 

∼250kb of mRNA transcription start sites and without 5’ or 3’ positional bias 13, we 
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discovered that most cis-miR-eQTLs (58% for intragenic miRNAs and 83% for intergenic 

miRNAs) are located upstream of mature/primary miRNAs. For intergenic miRNAs, a 

significant fraction of cis-miR-eQTLs are quite far upstream (∼300–500kb). Distal 

regulatory elements can interact with the proximal elements that regulate miRNA 

expression 27. In our results, we found that a significant fraction of cis-miR-eQTLs are 

distal, suggesting that variants in far upstream regions may play important roles in miRNA 

transcription. In addition, our results revealed that distal cis-miR-eQTLs explained a modest 

proportion (∼1.3% on average) of variance in miRNA expression levels. We speculate that 

the mild effects of cis-miR-eQTLs on miRNA expression result from evolutionary selection 

to stabilize the biological functions mediated by miRNAs.

Genetic variants that modify chromatin accessibility and transcription factor binding are a 

major mechanism through which genetic variation leads to expression differences for 

protein-coding genes in humans 28. The investigation of regulatory mechanisms of miRNA 

transcription is still evolving. Genomic feature analyses of cis-miR-eQTLs reveal that a 

large proportion of cis-miR-eQTLs are located in regulatory elements such as CpG islands 

(2%), promoters (9%), enhancers (35%), and transcription factor (TF) binding regions 

(15%). We also discovered that cis-miR-eQTLs show a significant enrichment for mRNA-

eQTLs and 87% of cis-miR-eQTLs that also are mRNA-eQTLs remained significant when 

conditioning on the corresponding mRNA expression levels. For example, as shown in 

Supplementary Fig 8, 132 cis-miR-eQTLs (36%) for 12 intergenic miRNAs were also cis-

mRNA-eQTLs for upstream protein-coding genes. This finding suggests that genetic 

variants may influence the expression of both miRNAs and nearby protein-coding genes. 

These eQTL regulatory effects may act via modified chromatin accessibility, transcription 

factor binding affinity, or DNA methylation.

The mechanisms of transcriptional regulation of intragenic miRNAs are more complex than 

intergenic miRNAs, as intragenic miRNAs may mirror the regulatory mechanisms of their 

host genes, or be transcribed independently as a consequence of their unique promoter 

regions 29. We identified 11 mature miRNAs from intragenic miRNAs that share cis eQTLs 

with their host protein coding genes (Supplementary Data 12). Among the cis-mRNA-

eQTL miRNAs, 15 miRNAs having alternative intronic promoters (alternative intronic 

promoters were from 29). We overlapped the cis-miR-eQTLs and expression regulatory 

elements annotations from ENCODE nearby regions of each miRNA (+/−50kb). We found, 

in some examples (Supplementary Fig 10), cis-miR-eQTLs near alternative intronic 

promoter regions demonstrated promoter and enhancer activities and were highly un-

methylated in some cell lines. Our findings provide a guide for further functional studies of 

transcriptional elements of miRNAs.

We identified numerous cis-miR-eQTLs that are associated with complex diseases/traits in 

GWAS (Table 1). Equally noteworthy, we found several examples in which the miRNAs 

associated in cis with these GWAS SNPs were associated with the corresponding trait (e.g., 

three-way association of HDL cholesterol with its GWAS SNP, rs7115089, and with the 

corresponding miR-125b-5p). A single miRNA may target hundreds of protein-coding 

genes. Therefore, the effect of genetic variants on miRNAs can play an important regulatory 

role in mediating the targeted protein-coding genes, as well as complex phenotypes. We 
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speculate that some of the protein-coding genes targeted by miRNAs may also be involved 

in the cellular pathways related to the trait. For example, miR-125b-5p expression was 

associated with HDL cholesterol (p=1.7×10−5, by a linear regression test). In a parallel 

project focusing on differentially expressed mRNAs in association with lipid levels, we 

found 17 genes targeted by miR-125b-5p (9% of miR-125b-5p targeted genes in 

miRTarBase 24) that showed differential expression in association with HDL cholesterol (at 

p<0.05 corrected for ∼18,000 genes, by a linear regression test)30. Some of these genes are 

involved in metabolic processes, e.g., PRDX2, which was down-regulated in association 

with HDL cholesterol (p=1.1×10−15, by a linear regression test). Further studies and 

biological experiments are needed to investigate whether these cis-miR-eSNPs affect the 

corresponding miRNA targeting genes.

In summary, our genome-wide miR-eQTL mapping study provides new insights into the 

genetic regulation of miRNA transcription and the roles of miRNAs in complex diseases. 

Our findings may help to identify new opportunities for drug treatment or diagnosis of 

human diseases.

Methods

Study populations

The FHS is a community-based study that began enrolling participants in 1948. In 1971, the 

offspring and offspring spouses (the Offspring cohort) of original FHS cohort participants 

were recruited and they have been examined every four to eight years 31. From 2002 to 

2005, the adult children of the offspring cohort participants (the third generation cohort) 

were recruited and examined 32. In this study, we investigated 2272 offspring cohort 

attendees at examination cycle 8 (2005–2008) and 3057 third generation cohort attendees at 

examination cycle 2 (2008–2010). This study was approved under Boston University 

Medical Center protocol H-27984. Written informed consent was obtained from each 

participant.

miRNA expression profiling

miRNAs were measured from venous blood samples obtained from participants after 

overnight fasting. Whole blood samples (2.5ml) were collected in PAXgene Blood RNA™ 

tubes (Qiagen, Valencia, CA) and frozen at –800C. Total RNA was isolated from the frozen 

PAXgene Blood RNA tubes (Asuragen, Inc. Austin, TX) and a 2100 Bioanalyzer Instrument 

(Agilent, Santa Clara, CA) was used for RNA quality assessment. Isolated RNA samples 

were converted to complementary DNA (cDNA) using TaqMan miRNA Reverse 

Transcription Kit and MegaPlex Human RT Primer Pool Av2.1 and Pool Bv3.0. (Life 

Technologies, Foster City, CA) in a 384 well Thermal Cycler. The cDNA samples were 

PreAmplified using TaqMan PreAmp Master Mix and PreAmp Primers, Human Pool A v2.1 

and Pool B v3.0 (Life Technologies, Foster City, CA).

qRT-PCR reactions were performed with the BioMark System using (Fluidigm, South San 

Francisco, CA) TaqMan miRNA Assays(Life Technologies, Foster City, CA). As described 

in the published literature, measurement of RNA by qRT-PCR is reliable and has high 
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specificity and sensitivity 33, 34, 35, 36. The initial miRNA list encompassed all commercially 

available TaqMan miRNA assays obtainable at the start of the project (754 mature 

miRNAs). These miRNAs were initially assayed for measurement feasibility in RNA 

samples from 450 FHS participants. All qRT-PCR reactions were performed in the BioMark 

Real-Time PCR system using the following protocol: 10 min at 95°C, 15 sec at 95°C and 1 

min at 60°C for 30 cycles. Single copy can be detected with BioMark system at 26–27 Cycle 

Thresholds. For replicates >95% of the data points had coefficients of variation <10% (mean 

∼4%).

miRNA normalization

We normalized miRNA expression using a model that adjusts raw miRNA cycle threshold 

Ct values for 4 technical variables: isolation batch (50 batches), RNA concentration, RNA 

quality (defined as RNA integrity number [RIN]), and RNA 260/280 ratio (ratio of 

absorbance at 260 and 280nm; measured using a spectrophotometer). Histograms 

(Supplementary Fig 11) show that this model explains 20% to 60% of variability of raw 

miRNA measurements for 80% of miRNAs

Genotyping

DNA was isolated from buffy coat or from immortalized lymphoblast cell lines. Genotyping 

was conducted with the Affymetrix 500K mapping array and the Affymetrix 50K gene-

focused MIP array, using previously described quality control procedures 37. Genotypes 

were imputed to the 1000 Genomes Project panel 19 of approximately 36.3 million variants 

using MACH 38. We filtered out SNPs with MAF<0.01 and imputation quality ratio<0.1 

(the imputation quality ratio is denoted by the ratio of the variances of the observed and the 

estimated allele counts), resulting in 9.8×106 SNPs (approximately 10 million SNPs) that 

were eligible for further miRNA eQTL testing.

miR-eQTL mapping

Because of the computational burden of running linear mixed effects (LME) models for 

approximately 10 million (SNPs) × 280 miRNAs (miRNAs expressed in >200 samples), we 

adapted a two-step analysis strategy. Step 1: linear regression was used to model the 

association between miRNA Ct values (miR) and the imputed SNP genotypes – adjusted for 

age, sex, cohort, and technical covariates – yielding results for roughly 280 miRNAs × 10 

million SNPs, as shown in Equation 1. Associated SNP-miRNA pairs residing within 1Mb 

of the mature miRNA (cis) and those residing more than 1 Mb away (trans) were identified 

separately. We chose liberal p value thresholds to pre-filter the miR-eQTLs, at p<1×10−3 for 

cis and p<1×10−5 for trans. These p value thresholds were chosen to ensure that miR-eQTLs 

at a false discovery rate (FDR) <0.1 were not omitted as a result of this pre-filtering step. 

Step 2: we used a linear mixed model 39 to re-calculate the associations of SNPs and miRNA 

expression levels for the pre-selected eQTLs from step 1, adjusted for age, sex, and technical 

covariates as fixed effects and a familial correlation matrix (FAM) as the random effect 

using the lmekin() function of Kinship Package (http://cran.r-project.org/web/packages/

kinship/) 39, as shown in Equation 2. In Equation 1 and 2, ε is the error term for each 

independent observation.
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(1)

(2)

Genome coordinate annotation for miRNAs used miRbase v20 (mirbase.org), and for SNPs 

we used the February 2009 assembly of the human genome (hg19, GRCh37 Genome 

Reference Consortium Human Reference 37). Based on the coordinates of 280 mature 

miRNAs and 9.8 × 106 SNPs, we estimated there were 13,935,272 (1.4 × 107) potential 

SNP-miRNA pairs where the SNP was located within 1Mb on either side of the 

corresponding mature miRNA. We estimated there were 1.4 × 107 potential cis SNP-

miRNA pairs, and 2.7 × 109 (i.e., 280 × 9.8 × 106 - 1.4 × 107) potential trans SNP-miRNA 

pairs. We used the Benjamini-Hochberg method 40 to calculate FDR for cis- and trans-miR-

eQTLs by correcting for 1.4 × 107 potential cis SNP-miRNA pairs and 2.7 × 109 potential 

trans SNP-miRNA pairs, respectively. We selected an FDR threshold of 0.1, corresponding 

to p<6.6×10−5 for cis- and p<1.0×10−8 for trans-miR-eQTLs.

For identified cis-miR-eQTLs at FDR<0.1, we used FESTA (Fragmented Exhaustive Search 

for TAgSNPs) 41 to select non-redundant miR-eQTLs based on a series of LD r2 thresholds, 

0.2, 0.5, 0.7, 0.9 and 1. FESTA used a mixture of search techniques to partition the whole 

SNP set into disjointed precincts and selected a tag SNP for each SNP block, which 

represented a set of SNPs at a LD r2 >threshold 41.

To estimate the replicability of miR-eQTLs, we split the overall sample set 1:1 into 

discovery and replication sets. The discovery and replication sets represent independent 

pedigrees to ensure that individuals in the two sets were unrelated. We used the methods 

described above to identify miR-eQTLs in the discovery and replication sets, separately. We 

evaluated the concordance of effect sizes of cis- and trans-miR-eQTLs in the discovery and 

replication sets. We identified eQTLs at FDR<0.1 in the discovery set, and attempted to 

replicate them in the replication set.

mRNA expression data

Whole blood samples (2.5ml) were collected in PAXgene™ tubes by Asuragen, Inc. 

(PreAnalytiX, Hombrechtikon, Switzerland). Total RNA was isolated according to the 

company’s standard operating procedures for automated isolation of RNA from 96 samples 

in a single batch on a KingFisher® 96 robot. Then 50ng RNA samples were amplified using 

the WT-Ovation Pico RNA Amplification System (NuGEN, San Carlos, CA) as 

recommended by the manufacturer in an automated manner using the genechip array station 

(GCAS). RNA expression was conducted using the Affymetrix Human Exon Array ST 1.0 

(Affymetrix, Inc., Santa Clara, CA). The core probe sets were annotated using the 

Affymetrix annotation files from Netaffx (www.netaffx.com, HuEx-1_0-st-

v2.na29.hg18.probeset.csv).
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The raw gene expression data were at first preprocessed by quartile normalization. Then the 

RMA (robust multi-array average) values of every gene (17,318 measured genes) were 

adjusted for a set of technical covariates, e.g. chip batch, by fitting linear mixed regression 

(LME) models. Imputed blood cell counts (i.e. white blood cell [WBC], red blood cell 

[RBC], platelet, lymphocyte, monocyte, eosinophil, and basophil) (Joehanes R, in 

preparation) were also evaluated as covariates and adjusted if deemed significant, as detailed 

below. The residuals were retained for further analysis.

Matching cis-miR-eQTLs with cis-mRNA-eQTLs

We overlapped the cis-miR-eQTLs at FDR<0.1 reported in this study with cis-mRNA-

eQTLs at FDR<0.1identifed by 9, 25, hyergeometirc test was used to evaluate if cis-miR-

eQTLs were significantly enriched for cis-mRNA-eQTLs. For those overlap eQTLs, i.e., 

cis-miR-eQTLs that were also cis-mRNA-eQTLs, we used the same linear mixed regression 

model as described in “miR-eQTL mapping” section to re-analyze the associations between 

genotypes and miRNA expression levels but conditional regression on corresponding 

mRNA expression levels.

Estimating effects of cell counts in the miRNA eQTLs

Since the miR-eQTLs in whole blood may be driven by cellular composition, we compared 

the miR-eQTLs in 2138 individuals with measured cell counts before and after correction 

for cell count effects (Supplementary Fig 3). Differential cell counts and proportions in 

whole blood were measured in 2138 individuals in the FHS third generation cohort, 

including seven cell types, white blood cell [WBC], red blood cell [RBC], platelet, 

neutrophil, lymphocyte, monocyte, eosinophil and basophil. The cell counts and proportions 

for 5024 FHS participants were estimated using mRNA expression values by partial least 

squares (PLS) regression prediction. The estimated cell count proportion values are highly 

consistent with the measured cell counts proportion values (Joehanes R, PhD, unpublished 

data, 2014).

We did not find any evidence that cell counts affected the miR-eQTLs; however, we cannot 

exclude small effects from cell counts. Therefore, we report miR-eQTLs unadjusted for cell 

counts in our main results, and secondarily report miR-eQTLs adjusted for imputed cell 

counts (i.e. WBC, RBC, platelets, lymphocytes, monocytes, eosinophils, and basophils) in 

Supplementary Data 5. Please note that there were 215 samples without mRNA expression 

data; therefore, the maximum sample size of unadjusted for cell counts is 5239 and the 

maximum sample size of analyses adjusted for cell counts is 5024.

Estimating the heritability of miRNA expression levels

To estimate the narrow-sense heritability of the expression for a specific miRNA (denoted as 

), we used the model as shown in Equation 3.

(3)
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Here, age, sex, and technical covariates were included as fixed effects, FAM was the familial 

correlation matrix included as the random effect. FAM represented additive polygenic 

genetic effects 39. ε is the error term for each independent observation.  was the 

proportion of the additive polygenic genetic variance ( ) among the total phenotypic 

variance ( ) of miRNA expression: . We estimated  for every 

miRNA expression trait (247 miRNAs expressed in more than 1000 samples) using the 

lmekin() function of Kinship package (http://cran.r-project.org/web/packages/kinship/) 39.

Estimating proportion of variance in miRNAs attributable to miR-eQTLs

To estimate the proportion of variance in a single miRNA trait that is attributable to a single 

miR-eQTL (denoted as ), we used the following two models: Full model:

(4)

Null model:

(5)

Here, age, sex, cohort (offspring cohort and the third generation cohort in the FHS) and 

technical covariates were included as fixed effects, FAM was the familial correlation matrix 

included as the random effect. ε is the error term for each independent observation. The 

proportion of variance in a single miRNA trait that is attributable to a single miR-eQTL was 

denoted as  and was calculated as follows:

(6)

where  was the total phenotypic variance of a miRNA expression trait;  and 

 were the polygenic and error variances, respectively, when modeling with the tested 

miR-eQTL;  and  were the polygenic and error variances, when modeling 

without the tested miR-eQTL. The lmekin() function in the Kinship package 39 was used to 

estimate .

Identification of differentially expressed miRNAs for complex traits

We used the NHGRI GWAS Catalog (http://www.genome.gov/gwastudies/) 21 and NHLBI 

GRASP database (http://apps.nhlbi.nih.gov/grasp/) 22 to annotate complex trait associated 

miR-eQTLs. The cis-miR-eQTLs identified in this study were compared with SNPs in the 

NHGRI GWAS Catalog and NHLBI GRASP GWAS results for SNPs at p<1×10−5.

For the complex traits that could be mapped with cis-miR-eQTLs (and also were measured 

in the FHS), including menarche, lipids (HDL cholesterol, triglycerides [TG], and total 

cholesterol [TC]), type II diabetes mellitus (T2D), and glucose level we used linear mixed 
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models to test their association with miR-eQTL miRNAs in FHS individuals. These 

phenotypes were ascertained at examinations 8 and 2 for the offspring and the third 

generation cohorts, respectively. We identified differentially expressed miRNAs associated 

with HDL cholesterol, TC, TG, T2D, and glucose after accounting for age, sex, cell counts, 

and technical covariates (see methods miRNA normalization) and family structure in LME 

models implemented in the lmekin function 39. Differentially expressed miRNA associated 

with age at menarche were tested in LME models (lmekin) after accounting for birth year, 

cell counts, technical covariates and family structure.

miRNA transcription start site and promoter regions

The transcriptional regulatory mechanisms affecting miRNA expression are unclear. There 

are technical barriers to the precise identification of primary miRNAs, transcription start 

sites (TSSs), and promoter regions for most mature miRNAs 29. Recently, Marsico et al. 29 

and Chen et al.42 predicted miRNAs TSSs. Their results were incorporated with the results 

from previous similar studies 43. However, by comparing the TSS positions identified by 

these two studies, there was, on average, 55kb distance difference between TSSs positions to 

the corresponding mature miRNAs. Therefore, in our analysis, we annotated the miRNA 

TSSs collected and predicted by these two studies, respectively. The predicted promoter 

annotations for miRNAs were obtained from Marsico et al. which were screened within −/+ 

50kb from the TSSs for each miRNA 29.

Functional annotation of cis-miR-eQTLs

We annotated the genomic features cis-miR-eQTLs (n=5269) using HaploReg 44, which 

integrates results from ENCODE 20. The overlap of cis-miR-eQTLs with ENCODE 

annotated SNPs in promoter, enhancer and transcription factor (TF) binding sites were 

retrieved (Supplementary Data 11).

For enrichment tests of functional SNPs in cis-miR-eQTLs identified in this study, we 

downloaded regulatory tracks contained in the UCSC Genome Browser (genome.ucsc.edu), 

including ENCODE histone modification sites, and transcription factor and CTCF binding 

sites in lymphoblastoid cell lines (GM12878), ORegAnno (Open Regulatory Annotation) 45, 

UCSC CpG islands, and long intergenic non-coding RNA 46. We also downloaded other 

regulatory tracks, including experimentally validated miRNA targets from TARbase 47, and 

experimentally supported miRNA-mediated gene regulatory sites from Patrocles 23. 

Binominal tests were used to evaluate if the identified cis-miR-eQTLs set (5269 cis-miR-

eQTLs) showed enrichment for regulatory SNPs for each track (methods described by 13).

We further determined whether or not the detected cis-miR-eQTLs SNPs were enriched for 

promoter, enhancer, or protein binding regions on the genome. To do so, we annotated all 

cis-miR-eQTLs (n=5269) using HaploReg 44, which integrates results from ENCODE 20. 

We examined enrichment in 9 different cell lines (i.e., GM12878, H1-hESC, HepG2, 

HMEC, HSMM, HUVEC, K562, NHEK and NHLF). The null distributions of eQTLs were 

generated using a permutation strategy by randomly selecting equal number of SNPs 

(n=5269) 100 times. The pools of candidate SNPs for the permutation were from 1000-

genomes imputed SNPs with MAF>0.01 and imputation quality ratio>0.1. In order to match 
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the distribution of MAFs of the permutation SNPs (the permutation-SNPs set) with the cis-

miR-eQTLs SNPs (the tested-SNPs set), we categorized MAF into four categories: MAF of 

(0.01, 0.05), (0.05, 0.1), (0.1, 0.2), and (0.2, 0.5). For each MAF category, we kept the 

proportion of SNPs in the permutation-SNPs set equal to the proportion of SNPs in the 

tested-SNPs set. In the four MAF categories, the proportions of SNPs are 3%, 7%, 19% and 

71% respectively. The average of the overlap between permutation and regulatory region 

SNPs (i.e. SNPs in promoter, enhancer, and protein binding regions) was compared with the 

overlap between the tested-SNPs and regulatory region SNPs.

Mendelian randomization test

We used a two-stage least squares (2SLS) Mendelian randomization (MR) method 48 to 

estimate the causal relationships between miRNAs and complex traits measured in FHS 

participants; the traits analyzed included menarche, lipids (HDL, TG, and TC), T2D, and 

glucose, using cis-miR-eQTLs as instrumental variables (IV). MR was only performed in 

the pre-filtered SNP-miRNA-trait pairs, when a SNP was a cis-miR-eQTL and also present 

in NHGRI GWAS Catalog (http://www.genome.gov/gwastudies/) 21 or in the NHLBI 

GRASP database (http://apps.nhlbi.nih.gov/grasp/) 22, and the miRNA showed differential 

expression in relation to the corresponding trait at p<0.05 in FHS participants.

To determine the strength of the genetic instrument, an F-statistic in a linear regression 

model was derived from the proportion of variation in the miRNA expression levels 

(miRNA Ct values) that was explained by the corresponding cis-miR-eQTL, by modeling 

age, sex, family structure and 4 technical variables as covariates (see in the miRNA 

normalization section). cis-miR-eQTLs with an F-statistic less than 10, indicating a weak 

instrument, was excluded. The first stage of the 2SLS method involves using a linear 

regression of the modifiable exposure (miRNA) on the IV (SNP) and covariates, and saving 

the predicted miRNA values. In the second stage, the outcome (complex trait) is regressed 

on the predicted miRNA values. The regression coefficient obtained in the second stage can 

be interpreted as being the causal effect of the exposure (miRNA) on the outcome (complex 

trait). The Durbin–Wu-Hausman test 49 is used to estimate whether the estimates derived 

from the first and second stage of the 2SLS are consistent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide identification of cis miR-eQTLs
a) Venn diagram of cis-miR-eQTLs identified in pedigree independent discovery (n=2671) 

and replication sets (n=2658). The number indicated cis-miR-eQTLs identified in discovery, 

replication or both at FDR<0.1. b) T values of cis-miR-eQTLs between discovery and 

replication groups.
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Figure 2. Manhattan plot of cis miR-eQTLs
Genome-wide -log10 (P) value plots are shown for every interrogated miRNA (280 

expressed miRNAs). 76 miRNAs having cis-miR-eQTLs are labeled in this figure (for 52 

unique peak loci). The horizontal dotted line indicates FDR<0.1 (corresponding to 

p<6.6×10−5). cis-miR-eQTL SNPs overlapping with GWAS SNPs reported in NHGRI 

GWAS Catalog (http://www.genome.gov/gwastudies/) 21 and NHLBI GRASP database 

(http://apps.nhlbi.nih.gov/grasp/) 22 are shown in red.
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Figure 3. The variance proportion of miRNA expression explained by single cis- miR-eQTLs at 
different heritability levels
This figure was plotted by the boxplot function in the R library. The boxes indicate the 

interquartile range (IQR) of data between 75% (Q3) and 25% (Q1). The bars below and 

above each box indicate the data in Q1–1.5 × IQR and Q3+1.5 × IQR respectively.
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Figure 4. The distribution of distance between cis- miR-eQTLs and miRNA position
cis-miR-eQTLs for intergenic miRNAs are generally located further upstream than for 

intragenic miRNAs. The position of the first nuclear acid of the mature miRNA is marked as 

0. The distribution statistics are based on 982 unique cis-miR-eQTLs with LD r2<0.7.
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Figure 5. Regional association plot of cis- miR-eQTLs that were associated with GWAS SNPs
a) miR-eQTLs for intergenic miRNAs miR-100-5p and miR-125b-5p, with GWAS SNPs for 

lipid traits, multiple sclerosis, and rheumatoid arthritis. The highlighted SNP, rs7115089, is 

associated with both HDL and total cholesterol at GWAS p<5×10−8 by linear regression 

tests 50 b) the triangular relationships between SNP (i.e., rs7115089), miRNA (i.e., 

miR-125b-5p) and HDL cholesterol; c) miR-eQTLs for intragenic miRNAs miR-339-3p and 

miR-339-5p, with GWAS SNPs for TC and LDL; d) the triangular relationships between 

SNP (i.e., rs6951245), miRNA (i.e., miR-339-3p) and TC. –log10 (p) indicates the –log10 

transformed miRNA-SNP association p values.

Huan et al. Page 22

Nat Commun. Author manuscript; available in PMC 2015 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huan et al. Page 23

T
ab

le
 1

Su
m

m
ar

y 
as

so
ci

at
io

n 
re

su
lts

 f
or

 1
6 

pe
ak

 c
is

-m
iR

-e
Q

T
L

s 
ha

vi
ng

 s
up

po
rt

in
g 

G
W

A
S 

ev
id

en
ce

P
ea

k 
ci

s-
m

iR
-e

Q
T

L
C

hr
.

m
iR

N
A

s
G

en
om

e
co

nt
ex

t
(m

iR
N

A
)

m
iR

-
eQ

T
L

F
D

R

P
ro

xy
m

iR
-

eQ
T

L
s

ov
er

la
p

w
it

h
G

W
A

S
SN

P
s

G
W

A
S 

tr
ai

ts
G

W
A

S
p 

va
lu

e
T

ra
it

si
gn

at
ur

e
m

iR
N

A
s

rs
76

07
36

9
ch

r2
m

iR
-2

6b
-5

p
In

tr
on

(C
T

D
SP

1)
1.

2E
-0

5
rs

15
41

77
7

H
ei

gh
t

8.
6E

-9

rs
22

41
52

7
Se

ve
re

 s
ta

tin
-

in
du

ce
d 

m
yo

pa
th

y
1.

3E
-6

rs
17

57
24

85
K

aw
as

ak
i d

is
ea

se
(w

ith
 c

or
on

ar
y

ar
te

ry
 le

si
on

s)

6.
4E

-6

rs
13

16
51

04
ch

r5
m

iR
-2

18
-5

p,
 m

iR
-

21
8-

2-
3p

In
tr

on
(S

L
IT

3)
7.

6E
-1

21
rs

42
82

33
9

H
ei

gh
t

6.
6E

-1
6

rs
93

42
83

6
ch

r6
m

iR
-3

0a
-3

p
In

tr
on

(C
6o

rf
15

5)
8.

3E
-2

8
rs

73
49

90
5

K
aw

as
ak

i d
is

ea
se

5.
4E

-6

rs
11

76
38

35
ch

r7
m

iR
-3

39
-3

p,
 m

iR
-

33
9-

5p
In

tr
on

(C
7o

rf
50

)
2.

5E
-3

0
rs

69
51

24
5

T
ot

al
 c

ho
le

st
er

ol
6.

1E
-8

m
iR

-3
39

-3
p

(p
=

2.
5E

-7
)

rs
13

24
25

26
L

D
L

 c
ho

le
st

er
ol

7.
7E

-6

rs
18

39
61

2
ch

r7
m

iR
-5

50
a-

3p
In

tr
on

(Z
N

R
F

2)
2.

3E
-0

6
rs

20
60

70
8

W
hi

te
 b

lo
od

 c
el

l
co

un
t (

W
B

C
)

3.
9E

-6

rs
77

89
19

4
ch

r7
m

iR
-1

48
a-

3p
In

te
rg

en
ic

5.
8E

-0
3

rs
69

51
82

7
T

ri
gl

yc
er

id
es

7.
9E

-7

rs
17

74
73

35
ch

r8
m

iR
-5

98
In

tr
on

(X
K

R
6)

7.
0E

-0
5

rs
22

44
64

8
T

ri
gl

yc
er

id
es

3.
0E

-7
m

iR
-5

98
(p

=
0.

03
2)

rs
78

36
05

9
Sy

st
em

ic
 lu

pu
s

er
yt

he
m

at
os

us
(S

L
E

) 
(f

em
al

es
)

4.
0E

-1
0

rs
10

09
08

00
Se

co
nd

 to
 f

ou
rt

h
di

gi
t l

en
gt

h 
ra

tio
5.

3E
-6

rs
28

64
01

10
ch

r9
m

iR
-2

04
-5

p
In

tr
on

 (
T

R
P

M
3)

2.
6E

-1
8

rs
29

93
00

8
C

om
m

on
 v

ar
ia

bl
e

im
m

un
od

ef
ic

ie
nc

y
(S

pl
en

ec
to

m
y)

2.
5E

-6

rs
23

70
74

7
ch

r1
1

m
iR

-1
00

-5
p,

 m
iR

-
12

5b
-5

p
In

te
rg

en
ic

1.
8E

-1
30

rs
71

15
08

9
T

ot
al

 c
ho

le
st

er
ol

3.
2E

-1
0

m
iR

-1
25

b-
5p

(p
=

0.
00

5)

Nat Commun. Author manuscript; available in PMC 2015 September 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huan et al. Page 24

P
ea

k 
ci

s-
m

iR
-e

Q
T

L
C

hr
.

m
iR

N
A

s
G

en
om

e
co

nt
ex

t
(m

iR
N

A
)

m
iR

-
eQ

T
L

F
D

R

P
ro

xy
m

iR
-

eQ
T

L
s

ov
er

la
p

w
it

h
G

W
A

S
SN

P
s

G
W

A
S 

tr
ai

ts
G

W
A

S
p 

va
lu

e
T

ra
it

si
gn

at
ur

e
m

iR
N

A
s

H
D

L
 c

ho
le

st
er

ol
8.

4E
-9

m
iR

-1
00

-5
p

(p
=

0.
03

9)
;

m
iR

-1
25

b-
5p

(p
=

1.
68

E
-5

)

L
D

L
 c

ho
le

st
er

ol
7.

6E
-6

rs
79

41
03

0
M

ul
tip

le
 s

cl
er

os
is

8.
2E

-6

rs
11

04
26

99
ch

r1
1

m
iR

-4
83

-3
p

In
tr

on
(I

G
F

2)
9.

6E
-0

4
rs

65
78

98
5

C
or

on
ar

y 
ar

te
ry

di
se

as
e 

(C
A

D
)

1.
6E

-6

rs
49

05
99

8
ch

r1
4

m
iR

-1
27

-3
p,

 m
iR

-
13

4,
 m

iR
-3

70
, m

iR
-

37
6a

-3
p,

 m
iR

-3
82

-
5p

, m
iR

-4
31

-5
p,

m
iR

-4
33

, m
iR

-3
29

,
m

iR
-4

09
-3

p,
 m

iR
-

49
4,

 m
iR

-4
11

-3
p,

m
iR

-6
54

-5
p,

 m
iR

-
66

8,
 m

iR
-5

43
, m

iR
-

32
3a

-3
p,

 m
iR

-3
37

-3
p

In
te

rg
en

ic
2.

7E
-5

9
rs

65
75

79
3

A
ge

 a
t m

en
ar

ch
e

1.
7E

-1
0

m
iR

-3
76

a-
3p

(p
=

0.
00

7)
;

m
iR

-3
82

-5
p

(p
=

0.
04

6)

rs
71

49
24

2
Pl

at
el

et
 c

ou
nt

(P
L

T
)

2.
7E

-8

rs
21

27
86

8
ch

r1
4

m
iR

-6
25

-5
p,

 m
iR

-
62

5-
3p

In
tr

on
(F

U
T

8)
3.

6E
-0

6
rs

12
69

06
8

D
es

ia
ly

la
te

d
G

ly
ca

n 
Pe

ak
 1

/B
ia

nt
en

na
ry

no
ng

al
ac

to
sy

la
te

d
gl

yc
an

s 
/G

ly
ca

n
Pe

ak
 1

4.
4E

-1
8

rs
12

56
52

6
T

yp
e 

2 
di

ab
et

es
4.

7E
-6

m
iR

-6
25

-5
p

(p
=

0.
03

5)

rs
28

48
33

25
ch

r1
5

m
iR

-6
28

-3
p

In
tr

on
(C

C
P

G
1)

8.
1E

-0
7

rs
71

68
86

9
M

ea
n 

co
rp

us
cu

la
r

vo
lu

m
e 

(M
C

V
)

4.
3E

-6

rs
27

37
ch

r1
7

m
iR

-1
52

In
tr

on
(C

O
P

Z
2)

3.
1E

-0
8

rs
15

53
75

4
B

od
y 

m
as

s 
in

de
x

(B
M

I)
2.

8E
-6

rs
11

07
98

28
A

tte
nt

io
n-

de
fi

ci
t/h

yp
er

ac
tiv

ity
di

so
rd

er
 (

A
D

H
D

)

6.
5E

-6

rs
65

04
34

0
Pr

im
ar

y 
T

oo
th

D
ev

el
op

m
en

t
du

ri
ng

 I
nf

an
cy

(N
um

be
r 

of
 te

et
h

by
 o

ne
 y

ea
r 

of
 a

ge
)

6.
1E

-7

Nat Commun. Author manuscript; available in PMC 2015 September 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huan et al. Page 25

P
ea

k 
ci

s-
m

iR
-e

Q
T

L
C

hr
.

m
iR

N
A

s
G

en
om

e
co

nt
ex

t
(m

iR
N

A
)

m
iR

-
eQ

T
L

F
D

R

P
ro

xy
m

iR
-

eQ
T

L
s

ov
er

la
p

w
it

h
G

W
A

S
SN

P
s

G
W

A
S 

tr
ai

ts
G

W
A

S
p 

va
lu

e
T

ra
it

si
gn

at
ur

e
m

iR
N

A
s

rs
28

57
61

21
ch

r1
9

m
iR

-1
27

0
In

tr
on

(Z
N

F
82

6P
)

2.
1E

-5
0

rs
72

51
20

4
Fa

st
in

g 
bl

oo
d

gl
uc

os
e

4.
0E

-6
m

iR
-1

27
0

(p
=

0.
00

2)

rs
25

62
66

4
Fa

st
in

g 
in

su
lin

8.
7E

-6

rs
37

30
01

ch
r2

2
m

iR
-1

30
b-

5p
, m

iR
-

13
0b

-3
p

E
xo

n
(P

P
IL

2)
1.

1E
-0

5
rs

86
18

44
M

yo
ca

rd
ia

l
in

fa
rc

tio
n 

(M
I)

,
su

dd
en

 c
ar

di
ac

ar
re

st
 in

 p
at

ie
nt

s
w

ith
 c

or
on

ar
y

ar
te

ry
 d

is
ea

se
(C

A
D

)

5.
3E

-6

Nat Commun. Author manuscript; available in PMC 2015 September 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huan et al. Page 26

Table 2

Summary of human genome regulatory features of cis-miR-eQTLs

Genome Regulatory Track Nucleotides per
track

Fold Change P-value+

UCSC CpG Islands 21575631 2.6 2.97E-16

lincRNAs 127119148 0.8 1

Known regulatory elements
(Oreganno)

11265267 3.2 7.48E-15

miRNA targets (TARbase) 49662027 6.9 5.15E-289

miRNA-mediated gene
regulatory sites (Patrocles)

3375454 10.0 1.64E-37

GM12878 CTCF 44516245 2.0 7.42E-15

GM12878 H3k27ac 125879335 1.9 4.11E-35

GM12878 H3k27me3 1136357520 1.4 1.17E-92

GM12878 H3k36me3 631024019 1.6 2.80E-106

GM12878 H3k4me1 242340600 1.9 6.59E-63

GM12878 H3k4me3 120458965 2.0 2.90E-37

+
P-values are for binomial tests for enrichment of observed over expected;

GM12878 is a lymphoblastoid cell line; CTCF mark CTCF Binding Sites by ChIP-seq from ENCODE; H3k27ac and H3K4me1 mark active/poised 
enhancers; H3K4me3 mark, active/poised promoters; and H3K36me3 mark actively transcribed regions. me, methylation.
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