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Since early December 2019, the COVID-19 pandemic has impacted global society:
over 400 million people have been infected with SARS-CoV-2, and there have been nearly
6 million deaths worldwide (1.4%) (Johns Hopkins Coronavirus Resource Center, CRC,
https://coronavirus.jhu.edu/map.html, accessed on 28 February 2022). Added to this
are consequences of the long-term effects of SARS-CoV-2 (long COVID Syndrome, LCS)
which leads to millions of people suffering from exhaustion, cognitive problems and other
long-lasting symptoms after infection [1]. The exact causes of LCS are not still known, but
it is certainly a consequence of the infection. It is estimated that at least 10% to 30% of
people who are infected with the coronavirus can develop long-term symptoms. It is not
clear why some people develop LCS for a long time and others do not. It is interesting
to note that this feature is quite common in SARS-CoV-2 infection. In fact, since the first
studies on COVID-19, a great heterogeneity in phenotypic expression has emerged with
asymptomatic subjects, patients with mild forms of the disease, subjects with severe forms
that require hospitalization, and others with a more severe phenotype who end up needing
intensive care [2]. Although most exposed individuals become infected, rare individuals
have also been observed who do not become infected despite repeated exposure [3]. This
considerable inter-individual clinical variability constitutes an as-yet unclear scientific and
medical enigma that is not clear [1].

In the past two years, there has been great progress in unraveling this conundrum and
thereby contributing to the understanding of pathogenesis of COVID-19 [4]. Numerous
studies of human genetics have been produced; some of which published in this Special
Issue of Genes [5–11]. Common and rare variants have been identified using traditional hu-
man genetics approaches: genome-wide association studies (GWAS) and direct sequencing
of genes coding for protein involved in precise biochemical pathways implicated in the
pathogenesis of the infection [12–15]. These studies have made it possible to identify alleles
of increased susceptibility and/or partial resistance to the COVID-19 disease, in coding and
non-coding regions of genes. However, certainly the most important contribution emerged
from the International Consortium COVID Human Genetic Effort (www.COVIDhge.com,
accessed on 28 February 2022), which made it possible to find for the first time that about
3% of patients with critical COVID-19 pneumonia had congenital errors of immunity (IEI)
that compromise innate and interferon-mediated immunity as a result of mutations in the
genes TLR3, TLR7, and IRF7 (especially in patients < 65 years) [16,17]. In addition, the
same consortium found the presence of autoantibodies (auto-Abs) neutralizing interferon
type I in at least 10% of other patients with severe disease [17]. Overall, this research has
shown that 20% of severe COVID-19 cases have a defect in the interferon circuit [18]. This
proportion is unprecedented among infectious diseases [15]. However, what is the genetic
basis of the remaining 80% of patients? Some of the articles published in this Special Issue
have suggested additional candidate genes and identified pathways and study strategies
that may receive confirmation in the coming months on different case series and differ-
ent populations. For example, Mbarek et al. [11] compared whole-genome sequencing
data of 14,398 adults and Qatari-national with 925 Italian individuals using an innova-
tive genome approach and identified a subset of genes involved in innate immunity and
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host–pathogen interactions. Russo et al. [9] examined the coding sequences of 10 common
variable immunodeficiency-associated genes obtained by the whole-exome sequencing
of 121 hospitalized patients and showed significant enrichment in predicted pathogenic
point mutations in severe patients compared with non-severe patients. These data not
only confirm and extend the involvement of IEIs in COVID-19, but contribute to building
the rationale for individualized management based on B-cell therapy. Monticelli et al. [7]
provide evidence that a variant (p.Val197Met) (rs12329760) in the TMPRSS2 gene has a
deleterious effect on protease and a protective effect on the patients. Its role appears particu-
larly relevant in two subgroups of patients—young males and elderly women—and among
those affected by co-morbidities, where the variant frequency is higher among individuals
who are mildly affected by the disease and do not need hospitalization or oxygen therapy
than among those more severely affected, who required oxygen therapy, ventilation, or
intubation. This study provides useful information for the identification of patients at risk
of developing a severe form of COVID-19, and encourages the usage of drugs affecting the
expression of TMPRSS2 or inhibiting protein activity. Indeed, recent evidence supports the
idea of inhibiting TMPRSS2 activity as a possible COVID-19 therapy [7].

It is evident that by broadening the knowledge of human genetics and deepening
the studies on innate and adaptive immunity, together with the effects of the different
variants of SARS-CoV-2 that have emerged or will emerge, it will be possible to develop
new diagnostic tests and personalized medicine protocols.

Overall, the papers in this Special Issue cover various genetic and molecular aspects of
SARS-CoV-2 infection, suggesting how integrating biological knowledge of the pathogen
and the host may lead to possible new pandemics in the future.

Conflicts of Interest: The authors declare no conflict of interest.
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