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Abstract

Background: Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural
determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often
requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus
can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing
computational methods for particle picking often use low-resolution templates for particle matching, making
them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for
the automatic recognition of particle images from cryo-EM micrographs.

Results: We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from
noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion.
The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be
recursively trained to be highly “knowledgeable”. Our approach exhibits an improved performance and accuracy
when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM
datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true
particles contain fewer features.

Conclusions: The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from
raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity
and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification,
significantly improving the efficiency of cryo-EM data processing.

Keywords: Cryo-EM, Particle recognition, Convolutional neural network, Deep learning, Single-particle
reconstruction

Background
Single-particle cryo-EM images suffer from heavy back-
ground noise and low contrast, due to the limited electron
dose used in imaging in order to reduce radiation damage
to the biomolecules of interest [1]. Hence, a large number
of single-particle images, extracted from cryo-EM micro-
graphs, is required to perform a reliable 3D reconstruction
of the underlying structure. Particle recognition thus

represents the first bottleneck in the practice of cryo-EM
structure determination. During the past decades, many
computational methods have been proposed for auto-
mated particle recognition, mostly based on template
matching, edge detection, feature extraction or neural net-
works [2–15]. The template matching methods depend on
a local cross-correlation that is sensitive to noise, and a
substantial fraction of false positives may result from
false correlation peaks [2–8]. Similarly, both the edge-
based [9, 10] and feature-based methods [11–13] suffer
from a dramatical reduction of performance with lower
contrast of the micrographs. In a different approach, a
method based on a three-layer pyramidal-type artificial
neural network was developed [14, 15]. However, there
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is only one hidden layer in the designed neutral net-
work, which is insufficient to extract rich features from
single-particle images. A common problem for these
automated particle recognition algorithms lies in the
fact that they cannot distinguish “good particles” from
“bad” ones, including overlapped particles, local aggre-
gates, background noise fluctuations, ice contamination
and carbon-rich areas. Thus, additional steps compris-
ing unsupervised image classification or manual verifi-
cation and selection are necessary to sort out “good
particles” after initial automated particle picking. For
example, TMaCS uses the support vector machine
(SVM) algorithm to classify the particles initially picked
by a template-matching method to remove false posi-
tives [16].
Deep learning is a type of machine learning that

focuses on learning from multiple levels of feature
representation, and can be used to make sense of
multi-dimensional data such as images, sound and text
[17–22]. It is a process of layered feature extraction. In
other words, features in greater detail can be extracted
by moving the hidden layer down to a deeper level
using multiple non-linear transformations [22]. Convo-
lutional neural network (CNN) is a biologically inspired
deep, feed-forward neural network that has demon-
strated an outstanding performance in speech recogni-
tion [23] and image processing, such as handwriting
recognition [24], facial detection [25] and cellular image
classification [26]. Its unique advantage lies in the fact
that the special structure of shared local weights re-
duces the complexity of the network [27, 28]. Multidi-
mensional images can be directly used as inputs of the
network, which avoids the complexities of feature ex-
traction in the reconstructed data [17, 27].
The particle recognition problem in cryo-EM is funda-

mentally a binary classification problem, and is based on
the features of single-particle images. We devised a novel

automated particle recognition approach based on deep
CNN learning [27]. Our algorithm, named DeepEM, is
built upon an eight-layer CNN, including an input layer,
three convolutional layers, three subsampling layers,
and an output layer (Fig. 1). In this study, we applied
this deep-learning approach to tackle the problem of
automated template-free particle recognition. The
DeepEM algorithm was examined through the task of
detecting “good particles” from cryo-EM micrographs
taken in a variety of situations, and demonstrated
improved accuracy over other template-matching
methods.

Methods
Design of the DeepEM algorithm
The DeepEM algorithm is based on a convolutional
neural network, a multilayered neural network with
local connections. It contains convolutional layers, sub-
sampling layers and fully connected layers, in addition
to the input and output layers (Fig. 1). The convolu-
tional and subsampling layers produce feature maps
through repeated application of the activation function
across sub-regions of the images, which represent low-
frequency features extracted from the previous layer
(Additional file 1: Figure S1).
In the convolutional layer, which is the core building

block of a CNN, the connections are local, but expand
throughout the entire input image. Such a network
architecture ensures that the outputs of the convolu-
tional layer are effectively activated in response to the
detection of meaningful input spatial features. The fea-
ture maps from the previous layer are convoluted by a
learnable kernel. All convolution operation outputs are
then transformed by a nonlinear activation function.
We used the sigmoid function (1) as the nonlinear acti-
vation function.

Fig. 1 The architecture of the convolutional neural network used in DeepEM. The convolutional layer and the subsampling layer are abbreviated
as C and S, respectively. C1:6@222×222 means that it is a convolutional layer and is the first layer of the network. This layer is comprised of six
feature maps, each of which has a size of 222 × 222 pixels. The symbols and numbers above the feature maps of other layers have the equivalent
corresponding meaning
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sigmoid xð Þ ¼ 1= 1þ e−xð Þ ð1Þ

The convolution operations in the same convolutional
layer share the same connectivity weights with the previous
layer, so that:

X l½ �
j ¼ sigmoid

X
i∈Mj

X l−1½ �
i �W l½ �

ij þ B l½ �
 !

; ð2Þ

where l represents the convolutional layer; W represents
the shared weights; M represents different feature maps
from the previous layer; j represents one of the output
feature maps; B represents the bias in the layer; and the
star symbol (*) represents the convolution operation.
Subsampling is another important concept in CNNs.

A subsampling layer is designed to subsample the input
data to progressively decrease the spatial size of the rep-
resentation and reduce the number of parameters and
computational cost in the network, thus reducing poten-
tial over-fitting [29]. We computed the subsampling av-
erages after each convolutional layer using the following
expression:

X l½ �
ij ¼ 1

MN

XM

m

XN

n
X l−1½ �

iMþm;jNþn ð3Þ

where i and j represent the position of the output map;
M and N represent the subsampling size in two orthog-
onal dimensions.
The basic network architecture of DeepEM contains

three convolutional layers (the first, third, and fifth
layers) and three subsampling layers (the second, fourth
and sixth layers). The last layer is fully connected to the
previous layer, which outputs a prediction for the classi-
fication of the input image by the weight matrix and the
activation function (Fig. 1).

Training of the DeepEM network
Prior to the application of DeepEM for automated
particle recognition, the CNN needs to be trained with
a manually assembled dataset, sampling both true par-
ticle images (positive training data) and non-particle
images (negative training data) (Examples in Fig. 3a, b).
Only a well-trained CNN should be used to recognize
particles from raw micrographs. We used the error
back-propagation method [30] to train the network,
which produces an output of “1” for the true particle
images and “0” for the non-particle images. The weights
and biases in the CNN model are initialized with a ran-
dom number between 0 and 1, and are then updated in
the training process. We used the squared-error loss
function [30] as the objective function in our model.
For a training dataset with the number of N, it is
defined as:

EN ¼ 1
2N

XN

n¼1
tn−ynk k2; ð4Þ

where tn is the target of the nth training image, and yn
is the value of the output layer in response to the nth
input training image. During the process of training, the
objective function is minimized using an error back-
propagation algorithm [30], which performs a gradient-
based update as follows:

ω t þ 1ð Þ ¼ ω tð Þ− η

N

XN

k¼1
εn

∂εn
∂ω

ð5Þ

where εn = ‖tn − yn‖; ω(t) and ω(t + 1) represent the
parameters before and after the update of an iteration,
respectively; η is the learning rate and was set to 1 in
this study.
The data augmentation technique has shown a certain

improvement in the accuracy of CNN training with a large
number of parameters [14, 26]. During our DeepEM train-
ing, each original particle image in the training dataset
was rotated by 90°, 180° and 270°, in order to augment the
size of data sampling by a factor of four. The intensity of
each pixel from an original or rotated image was then
used as the input of a neuron of the input layer. The
desired output was set to 1 for the positive data and 0 for
the negative data in the error back-propagation procedure.
The experimental cryo-EM micrographs may contain

heterogeneous objects, such as protein impurities, ice
contamination, carbon-rich areas, overlapping particles
and local aggregates. Moreover, since the molecules in
the single-particle images assume random orientations,
significantly different projection structures of the same
macromolecule may coexist in a micrograph. These
factors make it difficult to assemble a relatively balanced
training dataset at the beginning, which must include
representative positive and negative particle images. The
initially trained CNN is prone to missing some target
particles in certain views or recognizing some unwanted
particles whose appearances are similar to the target.
The training dataset can be optimized by adding a
greater number of representative particle images to the
original training dataset after testing on a separate set of
micrographs that are independent of the ones used for
assembling the original training dataset, and then re-
training the network following the workflow chart
shown in Fig. 2. After a sufficient number of iterations
of training, the CNN becomes more “knowledgeable” in
differentiating positive particles from negative ones.
Since the input particle images size may vary in differ-

ent datasets, one can set different hyper-parameters for
each case, including the number of feature maps, the
kernel size of the convolutional layers and the pooling
region size of the pooling layers. We empirically initial-
ized these hyper-parameters and fine-tuned them during
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the training process (Fig. 2). The details of the hyper-
parameters used in this study are shown in Table 1. In
general, the output dimension of the convolutional layer is
chosen as 70–90% of its input dimension, and the output
dimension of the subsampling layer is scaled to about half
its input dimension. We implemented the DeepEM algo-
rithm based on the DeepLearnToolbox [31], a toolbox for
the development of deep learning algorithms, in conjunc-
tion with Matlab.

Particle recognition and selection in the DeepEM model
When a well-trained CNN is used to recognize particles,
a square box of pixels is taken as the CNN input. Each
input image boxed out of a testing micrograph is rotated
incrementally, to generate three additional copies of the
input image with rotations of 90°, 180° and 270°, relative
to the original. Each copy is used as a separate input to
generate a CNN output. The final expectation value of
each input image is taken as the average of its four out-
put values from the non-rotated and rotated copies. The
boxed area is initially placed into a corner of the testing
micrograph, and is raster-scanned across the whole
micrograph to generate an array of CNN outputs.

We used two criteria to select particles. First, a thresh-
old score must be defined. The boxed image is identified
as a candidate if the CNN output score of the particle is
above the threshold score. Those particles whose CNN
scores are below the threshold are rejected. We used the
F-measure [32], which is a measure of the accuracy of a
test that combines both precision and recall for binary
classification problems, to determine the threshold score
in our approach, which is defined as.

Fβ ¼ 1þ β2
� �� precision�recall

β2�precisionþ recall
� � ; ð6Þ

where β is a coefficient weighting the importance of
precision and recall. In our method, we used the F2
score, which weights the recall higher than the precision.
The F2-score reaches its best value at 1 and its worst at
0. We defined the cutoff threshold at the highest value
of the F2-score.
Secondly, candidate images were further selected

based on the standard deviation of the pixel intensities.
There are often carbon-rich areas or contaminants in
raw micrographs where the initially detected particles
may not be good choices for downstream single-particle
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Fig. 2 The workflow diagram of the DeepEM algorithm. The dashed box on the left represents the learning process; the dashed box on the right
represents the recognition process

Table 1 Hyper-parameters used in different datasets

Dataset Particle
size

Corresponding layer in DeepEM

C1 S2 C3 S4 C5 S6

KLH 272 × 272 6@222X222 6@74X74 12@54X54 12@27X27 12@18X18 12@9X9

19S 160 × 160 6@141X141 6@47X47 12@38X38 12@19X19 12@16X16 12@8X8

26S 150 × 150 6@120X120 6@60X60 12@46X46 12@23X23 12@14X14 12@7X7

Inflammasome 112 × 112 6@98X98 6@49X49 12@40X40 12@20X20 12@14X14 12@7X7
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analysis. The pixels belonging to the “particles” in these
areas usually have higher or lower standard deviations
compared with those in other areas with clean amorph-
ous ice. We therefore set a narrow range of the pixel
standard deviation to remove the candidate particles that
are initially picked from these unwanted areas [6, 16]
(Additional file 1: Figure S2).

DeepEM algorithm workflow
Learning process
Input: Training dataset.
Output: Trained CNN parameters (weights and biases)

1. Rotate each input particle image three times, each
with a 90° increment;

2. Set the output of the positive data as 1, and the
output of the negative data as 0;

3. Initialize the hyper-parameters;
4. Randomly initialize the weights and biases in each

convolutional layer;
5. While (Learning error > Defined error), do

a. Tune the hyper-parameters or optimize the training
dataset by adding more representative positive and
negative particles from a new set of micrographs,
which are independent of those used in the previous
iterations, to the training dataset;

b. Train weights and biases via the error back-
propagation algorithm;

c. Apply the trained CNN to an independent testing
dataset to measure the learning error

6. End while

Recognition process
Input: Micrographs and trained CNN.
Output: Box files of selected particles in the EMAN2
[33] format for each micrograph

1. Iterate the following steps (a-c) until the whole
micrograph has been raster-scanned;
a. Extract a square the size of a particle, starting

from a corner of the input micrograph;
b. Rotate the boxed image three times, each with a

90-degree increment;
c. Use the trained CNN to process four copies of

the boxed image, including the non-rotated and
rotated copies, and average the resulting output
scores of the four images;

2. Pick the particle candidates based on scores that are
not only local maxima but also above the threshold
score;

3. Select particle images based on their standard
deviations;

4. Write the coordinates of the selected particle images
into the box file.

Performance evaluation
We evaluated the performance of the method based on
the precision-recall curve [34], which is one of the most
popular metrics for the performance evaluation of various
particle-selection algorithms. The precision and recall are
defined by Eqs. (7) and (8), respectively.

Precision ¼ TP
TPþ FP

ð7Þ

Recall ¼ TP
TPþ FN

ð8Þ

The precision represents the fraction of true positives
(TP) among the total particle images selected (TP + FP),
and the recall represents the fraction of true particle im-
ages selected among all the true particle images (TP + FN)
contained in the micrographs. The precision-recall curve
is generated from the algorithm by varying the threshold
score used in the particle recognition procedure. When
the threshold increases, the precision would increase and
the recall would decrease accordingly. Thus, the threshold
is manifested as a balance between the precision and the
recall. For a good performance in particle selection, both
the precision and the recall are expected to achieve higher
values at a certain threshold.

DeepEM training on the keyhole limpet Hemocyanin
(KLH) dataset
The KLH dataset was acquired from the US National
Resource for Automated Molecular Microscopy (nramm.-
scripps.edu). KLH is ~8 MDa protein particle with a size
of ~40 nm. It consists of 82 micrographs at 2.2 Å/pixel
that were acquired on a Philips CM200 microscope at
120 kV. The size of the micrograph is 2048 by 2048 pixels.
There are two main types of projection views of the KLH
complex, the side view and the top view. We boxed the
particle images with a dimension of 272 pixels. 800 par-
ticle images were manually selected for the positive train-
ing dataset. The same number of randomly selected non-
particle images from the first fifty micrographs was used
as a negative dataset (Fig. 3a). Each original image in the
training dataset was rotated at 90° increments to create
three additional images to augment the training data. We
also selected some particle images as a testing dataset con-
taining positive and negative data that were not used in
the prior training step. The testing dataset was used to test
the intermediately trained CNN model (Fig. 2). The accur-
acy or error of the CNN learning output from the testing
dataset was used as a feedback parameter to tune the
hyper-parameters, including the number of feature maps,
kernel size of the convolutional layers, and subsampling
size of the subsampling layers in the network. Throughout
the training-testing cycles, we tuned the hyper-parameters
and updated the training dataset until the accuracy of the
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CNN learning reached a satisfactory level. The ac-
ceptable value was often set as ~95% at the threshold
of 0.5 (Fig. 2).

Application to experimental cryo-EM data
The original sizes of the micrographs of the inflamma-
some, 19S regulatory particle and 26S proteasome were
7420 by 7676, 3710 by 3838 and 7420 by 7676 pixels,
respectively. The pixel sizes of the inflammasome, 19S
regulatory particle and proteasome holoenzyme were 0.86,
0.98 and 0.86 Å/pixel, respectively. For the inflammasome
and 26S proteasome, the micrographs were binned 4
times. Therefore, the pixel size used for the inflammasome
and proteasome holoenzyme was 3.44 Å/pixel. For the
19S regulatory particle, the micrographs were binned 2
times, resulting in a pixel size of 1.96 Å/pixel. Thus, the
resulting sizes of the micrographs used in our tests were
all 1855 by 1919 pixels; the dimension of the particle im-
ages of the inflammasome, 19S and 26S complexes were
112, 160 and 150 pixels, respectively. These experimental

cryo-EM datasets were acquired using a FEI Tecnai
Arctica microscope (FEI, USA) at 200 kV, equipped with a
Gatan K2 Summit direct electron detector. Finally, we ap-
plied the DeepEM algorithm to these cryo-EM datasets.
The hyper-parameters tuned for these datasets are shown
in Table 1. Different from the training for the KLH data-
set, we added true positive and false positive data, which
were manually verified on a separate set of micrographs
independent of the testing dataset used for tuning the
hyper-parameters, to optimize the training dataset and to
train the network recursively for the low-contrast datasets
(Additional file 1: Figure S3).

Results
Experiments on the KLH dataset
We first tested our DeepEM algorithm on the Keyhole
Limpet Hemocyanin (KLH) dataset [35] that was previ-
ously used as a standard testing dataset to benchmark
various particle selection methods [3, 4, 6, 8, 11–13, 16].
For the KLH dataset, the recall and the precision both
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Fig. 3 The DeepEM results for the KLH and 19S regulatory particle datasets. a and b Examples of positive and negative particle images
selected for the CNN training in conjunction with the KLH and 19S datasets, respectively. c and d Typical micrographs from the KLH and
19S datasets, respectively. The white square boxes indicate the positive particle images selected by DeepEM. The boxes with a triangle inside
indicate that a false-positive particle image was picked. The star marks one example of a false negative, a true particle missed by the recognition
program. e The F2-score curves provide different thresholds for particle recognition in the KLH and 19S datasets, the arrows indicate the peaks of
each curve, where the cutoff threshold value is defined. f The precision-recall curves plotted against a manually selected list of particle images
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reached ~90% at the same time in the precision-recall
curve (Fig. 3f ) plotted against a manually selected set of
particle images from 32 micrographs that did not in-
clude any particle images used in the training dataset.
Our approach achieved a higher precision over all the
particle images selected, whereas the recall was kept at a
high value, indicating that fewer false-negative particle
images were missed among the micrographs. In a typical
KLH micrograph (Fig. 3c), all true particle images were
automatically recognized by our method with a thresh-
old of 0.84, as determined by the F2-score (see Methods
and Eq. 6) (Fig. 3e). A comparison of the precision-recall
curves between DeepEM, RELION [36] and TMACS
[16] suggests that DeepEM outperforms these two
template-matching based methods (Additional file 1:
Figure S4).
To understand the impact of the number of training

particles on algorithm performance, we varied the par-
ticle number in the KLH training dataset from 100 to
1200, and plotted the corresponding precision-recall
curves (Fig. 4). In each testing case, the number of posi-
tive particles was kept equal to that of the negative parti-
cles. Although there was clear improvement in the
precision-call curve when the training particle number
was increased from 100 to 400, there was little improve-
ment with a further increase of the training dataset size.
The best result was obtained in the training run with
800 positive particle images.

Experiments on cryo-EM datasets
We also applied our method to several challenging cryo-
EM datasets collected using a direct electron detector,
including the 19S regulatory particle, 26S proteasome
and NLRC4/NAIP2 inflammasome [37]. Figure 3d shows

a typical micrograph of the 19S regulatory particle, in
which DeepEM selected almost all true particle images
contained in the micrograph. At the same time, it
avoided selecting non-particles from areas containing
aggregates and carbon film. The precision-recall curve
resulting from the test on the 19S dataset is shown in
Fig. 3f. The precision and recall both reach ~80% at the
same time. The picked particles were approximately as
well-centered as the manually boxed ones. To further
verify that the selected particle images are correct, we
performed unsupervised 2D classification. The resulting
reference-free class averages from about 100 micrographs
were consistent with different views of the protein samples
(Additional file 1: Figure S5).
Two difficult cases from the inflammasome dataset were

examined. Figure 5a shows a micrograph with a high par-
ticle density that contains excessively overlapped particles
and ice contamination. Most methods based on template
matching were incapable of avoiding particle picking from
overlapped particles and ice contaminants in this case.
Figure 5b presents another difficult situation, in which the
side views of the inflammasome display a lower SNR, lack
low-frequency features, and are dispersed with a very low
spatial density. In both cases, DeepEM still performed
quite well in particle recognition, while avoiding the selec-
tion of overlapping particles and non-particles. Further
tests on similar cases from other protein samples sug-
gested that this observation had a good reproducibility
(Additional file 1: Figure S6). Most importantly, DeepEM
was able to determine the structure of the human 26S
proteasome [38].

Computational efficiency
The DeepEM algorithm was first tested on a Macintosh
with a 3.3 GHz Intel Core i5 and 32 GB memory, run-
ning Matlab 2014b. When the size of the particle images
increases, the parameter space increases substantially, so
that it costs more computational time for each micro-
graph. We usually binned the original micrographs 2 or
4 times to reduce the size of the particle images. For the
KLH dataset, it took about 7300 s per micrograph with a
micrograph size of 2048 by 2048 pixels and particle
image size of 272 by 272 pixels. For the 19S regulatory
particle, inflammasome and 26S proteasome datasets, it
took about 790, 560, and 1160 s per micrograph with a
binned micrograph size of 1855 by 1919 pixels and par-
ticle image sizes of 112 by 112, 160 by 160, and 150 by
150 pixels, respectively. To speed up the calculations,
multiple instances of the code were run in parallel. We
also implemented a Graphic Processing Unit (GPU)-ac-
celerated version of DeepEM in Matlab. We tested it on
a desktop computer with 4.0 GHz Intel Core i7-6700 k,
64GB memory and Geforce GTX 970, running Matlab
2016a and CUDA 8.0. It only took about 190, 50, 40,
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and 60 s per micrograph for the KLH, 19S regulatory
particle, inflammasome and 26S proteasome datasets,
respectively. The GPU-accelerated DeepEM version
therefore speeds up the computation by at least an order
of magnitude.

Discussion
Based on the principles of deep CNN, we have devel-
oped the DeepEM algorithm for single-particle recogni-
tion in cryo-EM. The method allows automated particle
extraction from raw cryo-EM micrographs, thus im-
proving the efficiency of cryo-EM data processing. In
our current scheme, a new dataset containing particles
of significantly different features may render the previ-
ously trained hyper-parameters suboptimal. Readers are
directed to Table 1 as references for the hyper-
parameter tuning for specific cases. Indeed, finding a
set of fine-tuned hyper-parameters leading to optimized
learning results on new datasets therefore demands
additional user intervention in CNN training. In the
above-described examples, we screened several combi-
nations of hyper-parameters to empirically pinpoint an
optimal setting. This procedure may be inefficient and
can be laborious in certain cases. An automated
method for the systemic tuning of hyper-parameters
could be developed in the future to address this issue.
The execution of the DeepEM algorithm requires

users to first label several hundreds of ‘good particles’
and ‘bad particles’ for CNN training purpose, which can
be readily assembled from several micrographs. Further
processing of these raw particle images is not needed. By
contrast, in the traditional template-matching methods
[2–8, 36], users need to first obtain many high-quality
class averages or an initial 3D model, which involves
multiple steps of single-particle analysis significantly

more laborious than the single step of manual particle
labeling required by our DeepEM approach. If the tem-
plate is based on a 3D model, it is usually not trivial to de-
termine a high-quality initial model from new samples,
which involves a complete procedure of the ab initio 3D
structure determination at low resolution [1]. If the tem-
plate is based on a set of 2D class averages, users still have
to first manually pick thousands of particles and then per-
form 2D image clustering to generate high-quality 2D
classes. Moreover, the number of the reference images are
often very limited and hardly include all kinds of orienta-
tions, potentially introducing orientation bias in particle
picking through template matching. Thus, the preparation
step of DeepEM is considerably easier than those of
template-matching methods.
Although there are unlimited possibilities for the design

of deep CNNs, we made some explorations that helped us
understand the optimal use of CNNs for our single-
particle recognition problem. First, we examined the noise
tolerance of the algorithm with simulated datasets. When
the SNR is decreased to 0.005, the DeepEM can still
recognize particle images after proper training (Fig. 6).
Second, we replaced the sigmoid activation function with
a rectified linear unit (ReLU) function. Our results indi-
cate that the ReLU function gives rise to a slightly inferior
accuracy in particle recognition than the sigmoid function
(Additional file 1: Figure S7). Third, we attempted to de-
sign a six-layer CNN, but found that it failed to produce a
better or equivalent performance (data not shown). Thus,
it is likely that the eight-layer CNN we designed possesses
the minimum depth suited to our problem. A deeper
CNN might enable greater capacities in these tasks and
awaits further investigation. Finally, from the experiments
on the inflammasome dataset, we noticed that DeepEM is
more effective for feature-rich data. It exhibits a reduced
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precision-recall curves corresponding to the cases shown in (a) and (b)
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performance when tested on the side views as compared
to the top views of the inflammasome (Fig. 4c), because
the side views exhibit significantly less low-frequency
features than the top views. Thus, the richness of low-
frequency particle features is positively correlated with the
achievable performance of CNNs.
Our DeepEM algorithm framework exhibits several

advantages. First, with sufficient training, DeepEM can
select true particles without picking non-particles in a
single, integrative step of particle recognition. In fact, it
performs as well as a human worker. Similar perform-
ance was previously only made possible by combining
several steps, encompassing automated particle picking,
unsupervised classification and manual curation. Second,
DeepEM features traits representative of other artificial
intelligence (AI) or machine learning systems. The more
it is trained or learned, the better it performs. We found
that with iterative updating or optimization of the training
dataset, the particle recognition performance of DeepEM
can be further improved, which was not possible for
conventional particle-recognition algorithms developed so
far. Therefore, the performance of earlier algorithms was
intricately bound by their mathematics and control pa-
rameters, and DeepEM overcomes these limitations.

Conclusion
DeepEM, which is derived from deep CNNs, has proved
to be a very useful tool for particle extraction from noisy
micrographs in the absence of templates. This approach
gives rise to improved “precision-recall” performance in

particle recognition, and demonstrates a higher tolerance
to much lower SNRs in the micrographs than was possible
with older methods based on template-matching. Thus, it
enables automated particle picking, selection and verifica-
tion in an integrated fashion, with a quality comparable to
that of a human worker. We expect that this development
will broaden the applications of modern AI technology in
expediting cryo-EM structure determination. Related AI
technologies may be developed in the near future to ad-
dress key challenges in this area, such as deep classifica-
tion of highly heterogeneous cryo-EM datasets.

Additional file

Additional file 1: Figure S1. The feature maps of the convolutional
and subsampling layers from a typical particle image of KLH learned by
our CNN. Figure S2. (a) and (b) show a comparison of the results
obtained before and after additional selection using standard deviation
of the KLH dataset, respectively. (c) and (d) show a comparison of the
results obtained before and after additional selection using standard
deviation of the 19S, respectively. Figure S3. (a) and (b) show a
comparison of the results obtained before and after optimization of the
training dataset, respectively. Figure S4. Comparison of DeepEM with
TMACS and RELION using the KLH dataset as benchmark. The curves of
TMACS [16] and RELION [36] were directly obtained from published data.
Figure S5. Reference-free 2D classification of 19S proteasomes recognized
by DeepEM. Figure S6. Results of the recognition of the side view of the
26S proteasome by DeepEM. Figure S7. A comparison of the results of
different activation functions tested on the KLH dataset (PDF 477 kb)
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