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The Unfolded Protein Response (UPR) plays a key role in the adaptive response to loss of protein homeostasis within
the endoplasmic reticulum (ER). The UPR has an adaptive function in protein homeostasis, however, sustained activa-
tion of the UPR due to hypoxia, nutrient deprivation, and increased demand for protein synthesis, alters the UPR pro-
gram such that additional perturbation of ER homeostasis activates a pro-apoptotic program. Since ubiquitination
followed by proteasomal degradation of misfolded proteins within the ER is a central mechanism for restoration of
ER homeostasis, inhibitors of this pathway have proven to be valuable anti-cancer therapeutics. Ubiquitin activating
enzyme 1(UAE1), activates ubiquitin for transfer to target proteins for proteasomal degradation in conjunction with
E2 and E3 enzymes. Inhibition of UAE1 activity in response to TAK-243, leads to an accumulation of misfolded pro-
teins within the ER, thereby aggravating ER stress, leading to DNA damage and arrest of cells in the G2/M phase of
the cell cycle. Persistent drug treatment mediates a robust induction of apoptosis following a transient cell cycle arrest.
These biological effects of TAK-243 were recapitulated in mouse models of PDAC demonstrating antitumor activity at
a dose and schedule that did not exhibit obvious normal tissue toxicity. In vitro as well as studies in mouse models
failed to show enhanced efficacy when TAK-243 was combined with ionizing radiation or gemcitabine, providing
an impetus for future studies to identify agents that synergize with this class of agents for improved tumor control
in PDAC.
Significance: The UAE1 inhibitor TAK-243, mediates activation of the unfolded protein response, accumulation of DNA
breaks and apoptosis, providing a rationale for the use as a safe and efficacious anti-cancer therapeutic for PDAC.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a
five-year survival rate of 9.3%. Surgical resection at an early stage of the
disease proves to be most effective, however, the asymptomatic nature of
the disease leads to progression into advanced stages prior to diagnosis,
when tumors metastasize to adjacent or distant tissue and organs [1,2].
Since tumor relapse is often seen in patients treatedwith only surgical inter-
vention, adjuvant therapy with a modified FOLFIRINOX regimen has been
adopted, leading to significantly longer survival than gemcitabine among
patients with resected pancreatic cancer, at the expense of a higher
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incidence of toxic effects [3–7]. Targeted agents have shown benefit in pa-
tients bearing specific mutations (e.g. in the homologous recombination re-
pair pathway, particularly BRCA) in several clinical trials [8,9], however, a
majority of patients are not likely to benefit from these agents. This under-
scores a desperate need for novel therapeutic strategies that are effective
and applicable for a majority of pancreatic cancer patients, irrespective of
mutation status.

Solid tumors are constantly exposed to stress such as hypoxia, nutrient
deprivation, as well as increased demand for protein synthesis. These
stresses result in the accumulation of misfolded and unfolded protein
within the endoplasmic reticulum (ER), a condition termed ER stress. In
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contrast to normal cells, cancer cells demonstrate a constant activation of
the ER stress signaling pathway which contributes to their survival and ad-
aptation to the tumor microenvironment [10]. ER stress activates the un-
folded protein response (UPR) which includes inhibition of protein
translation and transcriptional upregulation of chaperones that enhance
the capacity for protein folding. Since accumulation of misfolded proteins
within the ER harbors the risk of proteotoxicity, unfolded and misfolded
proteins are retrotranslocated to the cytosol and ubiquitinated for
proteasome-mediated degradation [11]. Post-translational ubiquitination
of misfolded proteins is a requisite step for ER stress associated protein deg-
radation (ERAD), involving the covalent conjugation of a ubiquitin moiety
with a lysine residue of a target protein or another ubiquitin molecule
(poly-ubiquitination). Ubiquitin activating enzyme (UAE) or E1, activates
ubiquitin via an adenylate intermediate and catalyzes its transfer to an
ubiquitin-conjugating enzyme (E2) and finally to the ubiquitin ligase (E3)
that enables the conjugation of ubiquitin to the target substrate.

In cancer, the UPR and ERAD are an adaptive cellular response to the
environment, and have been associated with oncogenic phenotypes includ-
ing transformation andmetastatic potential, in cell dormancy, genomic sta-
bility, angiogenesis as well as immunogenic tolerance [12]. Therapeutic
targeting of proteostasis in cancer is increasingly being investigated as an
opportunity to aggravate chronic ER stress within cancer cells by either
inhibiting protein folding [11,13], inhibiting UPR signaling responses, as
well as by inhibiting ERAD [14,15]. Bortezomib, a prototype for this ap-
proach, is a proteasome inhibitor and was approved in 2003 for the treat-
ment of multiple myeloma and mantle cell lymphoma [16]. Inhibition of
the 26S proteasome by the small molecule leads to the accumulation of
misfolded proteins, thus aggravating ER stress, leading to proteotoxic con-
ditions and the induction of apoptosis in cancer cells, while normal cells
survive the insult due to their reserve capacity to adapt to the increased
ER stress.

Prompted by this success, TAK-243, a first in class small molecule inhib-
itor of the UAE1, is being investigated as an anti-cancer therapeutic
[17–19]. Since there is an urgent need to improve outcomes in patients
with PDAC, the present study investigates the therapeutic potential of the
agent in mouse models of the disease, the potential of combining it with
standard of care therapies including radiation and gemcitabine as well as
themechanistic underpinnings of the agent's biological activity.We demon-
strate that TAK-243 disrupts protein homeostasis through the inhibition of
protein ubiquitination and thereby aggravating ER stress, leading to DNA
damage and arrest of cells in G2/M phase of the cell cycle. Persistent drug
treatment mediates a robust induction of apoptosis following a transient
cell cycle arrest. These biological effects of TAK-243 were recapitulated in
mouse models of PDAC and demonstrated antitumor activity at a dose
and schedule that did not demonstrate obvious normal tissue toxicity. It
should be noted that inhibition of UAE1 by TAK-243 may lead to cellular
responses that are independent of the UPR, and a result of perturbation of
a different cellular process dependent on UAE1 activity.

Material and methods

Cell lines and treatments

MiaPaCa-2 cells and Panc-1 cells were purchased from ATCC and the
mouse pancreatic ductal adenocarcinoma cell line KPC2 (FVB) has been de-
scribed previously [20]. All cells were maintained in DMEM (Corning) and
10% fetal bovine serum (Hyclone) and grown in 37 °C incubator with 5%
CO2. All cell lines were routinely tested for mycoplasma (Lonza) and au-
thenticated by short tandem repeat (STR) profiling at the University of
Michigan Sequencing Core.

Apoptotic reporter cell lines were established by infecting pancreatic
cell lines with a luciferase reporter for caspase-3 (Fig. 1A) [21]. Cells
were dosed with CTEP agents: TAK-243 (MLN7243) (selleckchem,
S8341), MLN4924 (pevonedistat or TAK-924) (selleckchem, S7109), VX-
970 (M6620) (selleckchem, S7102), VX-984 (MedChemExpress, HY-
19939S), AZD1775 (adavosertib), AZD2281 (olaparib) (selleckchem,
2

S1060), BMN-673 (talazoparib) (selleckchem, S7048), ABT-888 (veliparib)
(selleckchem, S1004) at 1 μM final concentration (in DMSO) for 4 h and lu-
ciferin (Promega) (in PBS) was added to each well at a final concentration
at 150 μg/mL and luminescence was measured using a Perkin Elmer Envi-
sion microplate reader every 30 min for up to 36 h.

Pancreatic cancer cells were infected with pLVX-XBP1-mNeonGreen
(Addgene) and stable cells were established by puromycin selection.
XBP1 reporter cells were plated onto glass bottom 6-well plate (Cellvis)
and TAK-243 at 300 nM and 5 μg/mL tunicamycin (Sigma Aldrich) were
added and imageswere taken every 30min for 24 h on a Zeiss LSM800 con-
focal microscope.

Panc-1, MiaPaCa-2 and KPC2 cells were grown in 6-well culture dishes
and treated with TAK-243 at 0 nM, 50 nM, 100 nM, 200 nM, 300 nM and 1
μMTAK-243 for 4, 8, 26, 24 h and cells were also treated with tunicamycin
(Sigma Aldrich) at 5 μg/mL as indicated.

Western blotting

Immunoblotting was performed as previously described [13]. Briefly,
whole cell lysates were collected in RIPA buffer, and 10–30 μg total protein
was fractionated by SDS-PAGE and transferred to PVDF membranes
(Millipore). Primary antibodies to BIP, ATF4, CHOP, RAD51, α-actin (all
from Cell Signaling) and ubiquitin (Santa Cruz) were applied followed by
horseradish peroxidase-conjugated goat antirabbit IgG (H + L) and goat
anti-mouse (H + L) (Jackson ImmunoResearch) as secondary antibodies.
Pierce™ ECL (Thermal Scientific) or ECL™ prime (GE Healthcare) were
used as substrate.

Immunoprecipitation

For immunoaffinity purification of endogenous ubiquitinated RAD51,
10 cm tissue culture dish was washed with cold PBS and lysed using lysis
buffer A (50 mM Tris-HCL (pH 7.5), 150 mM NaCl, 0.5 mM EDTA, 1% Tri-
ton X100) with fresh 1 mM NEM, protease and phosphatase inhibitors
(Roche). 1 mg of protein was incubated overnight at 4 °C with anti-
RAD51 antibody (Cell Signaling). Protein A sepharose beads (Pierce™)
were added to these lysates and rotated at 40C for 2 h, washed 3 times
with lysis buffer A and resuspended in 2× Laemmli buffer (Bio-Rad). The
immunoprecipitates were divided into 2 parts; 90% of immunoprecipitates
were probed for ubiquitin antibody whereas 10% of immunoprecipitates
were probed with RAD51 antibody.

Quantitative polymerase chain reaction

MiaPaCa-2 cells were grown in 6-well dishes and TAK-243was added at
a final concentration at 300 nM for 0, 6, 8 and 10 h. Total RNA was ex-
tracted with Qiagen RNeasy kit and cDNA was synthesized using High-
Capacity Reverse Transcription kit (Applied Biosystems). Quantitative
PCR was performed using SYBR Green Master Mix (Bio-Rad) on a ViiA
real-time PCR system (Applied Biosystems) with denaturation at 95 °C for
15 s; 55 °C for 30 s; 72 °C for 30 s. mRNA expression level was evaluated
using the ΔΔ Ct method.

Cell cycle analysis

Cells were pelleted and re-suspended in 100 μL PBS and fixed in ice-old
70% ethanol and stained with propidium iodide (Sigma-Aldrich) at a final
concentration of 20 μg/mL with RNase A (100 μg/mL from Invitrogen)
for 30 min. Monitoring of cell cycle phase was performed on a Cytoflex
flow cytometer (Beckman Coulter), and data was analyzed with FlowJo
software (V10).

Comet assay

Double strand DNA damage was measured by neutral method with
Trevigen CometAssay® kit according to manufacturer's instruction and
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Fig. 1. TAK-243 induces apoptosis in a dose and time dependent manner. (A) A non-invasive reporter for apoptosis. Activated caspase-3 cleaves the DEVD sequence within
the reporter to form a functioning luciferase enzyme that enzymatically releases photons of light in the presence of luciferin as substrate. (B)MiaPaCa-2 and Panc-1 cells with
apoptosis reporter were dosed with CTEP compounds (1 μM) and luciferase activity was measured every 30 min to up to 19 h. (C) MiaPaCa-2, Panc-1 and KPC2 cells with
apoptosis reporter in a 96-well plate were treated with TAK-243 at indicated concentration together with luciferin (150 μg/mL) and the plate was read every 30min to up to
36 h. (D) MiaPaCa-2 and (E) Panc-1 cells were treated with TAK-243 at 50, 100, 200, 300 and 1000 nM or tunicamycin (5 μg/mL) for 4–24 h and the cells were lysed and
assessed by immunoblotting for cleaved PARP.
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Olive and colleague [22]. Briefly, cells were treated with TAK-243
(300 nM) for 8 and 24 h and 1 × 105 cells/mL in suspension was mixed
with molten SeaPlaque™ Agarose at 1:10 (v/v, Lonza) and spread onto
CometSlide™ (Trevigen), the slides were then submerged in lysis buffer
(2% sarkosyl, 0.5 M Na2EDTA, 0.5 mg/mL proteinase K, pH 8.0) for
3

overnight at 37 °C. Electrophoresis was performed in TBE buffer at
0.6 V/cm at 4 °C, and then the slides were immersed in 70% ethanol for
30 min and then stained with SYBR™ Green (Invitrogen). All images were
takenwith a fluorescencemicroscope and analyzed by Comet Assay IV soft-
ware (Perceptive Instruments).
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Clonogenic assay

Cells were treated with TAK-243 (300 nM) or PDI shRNA (72 h) and ir-
radiated with 2, 4, 6, 8 Gy single dose with an IC-320 orthovoltage irradia-
tor (Kimtron Medical). Cells were plated the following day at a clonogenic
density with fresh medium for 7–14 days before fixing with 10% formalin
(Sigma-Aldrich) and were stainedwith 0.1% crystal violet (Sigma-Aldrich).
Radiation survival curves were normalized for drug toxicity, and the radia-
tion enhancement ratio was calculated as the ratio of the mean inactivation
dose (area under the cell survival curve) under control conditions divided
by the mean inactivation dose after drug exposure. A value significantly
greater than 1 indicates radiosensitization. Cytotoxicity in the absence of
radiation treatment was calculated by normalizing the plating efficiencies
of drug-treated cells to non–drug-treated cells [23].

Animal studies

A total of 1 × 106 MiaPaCa 2 cells were injected subcutaneously into 6
to 8 weeks old NCRNU sp/sp mice (Taconic) in 100 μL DMEM (Corning):
matrigel (BD Bioscience, 1:1) suspension. Tumor size was monitored bi-
weekly, and volume was calculated as (L × W × W)/2, where W is
tumor width and L is tumor length. Mice were randomized into 4 groups
when tumor volume reached around 100 mm3, and each group had 5
mice. TAK-243 was given at 12.5 mg/kg in 10% (2-hydroxypropyl)-β-cy-
clodextrin (Sigma Aldrich), twice per week via tail vein to one group;
Gemcitabine was given 100 mg/kg, diluted in PBS, once per week via IP
to one group, and one group of mice received both TAK-243 and
Gemcitabine, the rest of the mice were given 10% (2-hydroxypropyl)-β-cy-
clodextrin for 3 weeks. All animal experiments were approved by the Uni-
versity of Michigan Committee on the Use and Care of Animals. Tumor
tissues were harvested by the end of the treatment and fixed in 10%
neutral-buffered formalin, sections were prepared and stained by Univer-
sity of Michigan Core services. Images were taken using an Olympus BX-
84 and the number of positive cells was counted in three fields of view
and analyzed using ImageJ software.

Statistical analysis

Statistical analysis of data was performed using GraphPad Prism v8.0.
Statistical significance was determined by the 2-tailed unpaired Student t-
test. P values are reported in the graphs. *, P < 0.05; **, P < 0.01; and
***, P< 0.001. n.s. denotes not significant. For clonogenic assay, cell sur-
vival curves were fit using the linear-quadratic equation, and the mean in-
activation dose (MID), which is the linear area under the cell survival curve,
was calculated. The radiation enhancement ratio was defined as the
(MIDCTRL/MIDTREATMENT) so that a ratio > 1 indicates radiosensitization.
Data are presented as the mean ± the standard error of at least three
experiments.

Results

TAK-243 induces apoptosis in pancreatic cells

In an effort to identify effective anti-cancer agents for PDAC that can be
rapidly moved to clinical applications, we selected agents from the Cancer
Therapy Evaluation Program (CTEP) collection that target the DNAdamage
response of cancer cells so that these can be applied as radio- or chemo-
sensitizers. Targeted agents including veliparib (PARP inhibitor),
talazoparib (PARP inhibitor), and olaparib (PARP inhibitor), AZD1775
(Wee1 inhibitor), VX970 (ATR kinase inhibitor), VX984 (DNA-PK inhibi-
tor),MLN4924 (NAE1 inhibitor) and TAK-243 (UAE1 inhibitor) were inter-
rogated against live cell assay for Caspase 3/7 activation as a surrogate for
the activation of the apoptotic cascade (Fig. 1A). TAK-243, a recently de-
scribed UAE1 inhibitor [19], was identified as the most efficacious agent
among the eight tested, and demonstrated a 25 and 30-fold activation of
the caspase 3/7 reporter at 17.5 h in MiaPaCa-2 and Panc-1 cells
4

respectively. The second most effective compound AZD1775, a WEE1 ki-
nase inhibitor demonstrated a maximum of 5-fold increase in reporter acti-
vation compared to control (Fig. 1B). Since AZD1775 in combination with
gemcitabine and radiation therapy has recently demonstrated substantially
higher overall survival than prior results combining gemcitabine with radi-
ation therapy, and was well tolerated [24], we concluded that TAK-243
warranted further investigation. A dose response study using TAK-243
showed a dose-dependent activation of the reporter in each of the human
PDAC cell lines including a mouse PDAC line, KPC2. In each of the three
cell lines, concentrations as low as 100 nMTAK-243were able to induce de-
tectable levels of apoptotic cell death within 24 h, with at least a 5-fold in-
crease in reporter activation (Fig. 1C). In addition, Western blot analysis
confirmed these findings biochemically through the detection of cleaved
PARP, amarker for caspase 3 activation, in a dose and time dependentman-
ner in each of the cell lines (Fig. 1D–E).

TAK-243 induces endoplasmic reticulum stress

UAE1 is a critical E1 component of the ubiquitin-proteasome system re-
sponsible for eliminating misfolded and unfolded proteins within the ER
[25] by degradation (ERAD), and therefore plays a central role in
proteostasis within the ER. We reasoned that inhibition of UAE1 would
lead to accumulation of mis- and un-folded proteins and therefore induce
ER stress and activate the unfolded protein response (UPR). We initially
evaluated the activation of the UPR in response to TAK-243 in MiaPaCa-2
cells at the mRNA level using qPCR and observed an upregulation of tran-
scripts for GRP78 as well as the spliced form of XBP1, key markers of the
UPR [26,27]. A 1.3-fold increase (p < 0.05) after 2 h in both genes and a
3.5-fold (p < 0.01) and 53.4-fold (p < 0.001) increase at 6 h post-
treatment of GRP78 and spliced XBP1 mRNA respectively was observed
(Fig. 2A). To quantitatively and dynamically evaluate the UPR after UAE1
inhibition, we utilized a reporter construct that detects inositol-requiring
enzyme 1 (IRE1)-alpha mediated splicing of X-box binding protein 1
(XBP1) [28] (Fig. 2B). Treatment of MiaPaCa-2 cells with TAK-243
(100 nM) led to a significant increase in GFP expression beginning 3 h (2-
fold increase) and became saturated at approximately 16 h (4-fold increase)
(Fig. 2C, D), whereas in Panc-1 cells, activation of IRE-1 became apparent at
approximately 4 h (2-fold increase) and stabilized at 15 h (5.5-fold in-
crease) upon TAK-243 treatment (Fig. 2C, E). We further confirmed these
findings at the protein level wherein a robust, dose and time dependent ac-
cumulation of UPR responsive proteins: BiP, ATF4 and CHOPwas observed
after TAK-243 treatment in each of the PDAC cell lines tested (Fig. 2F–H).
Activating transcription factor 4 (ATF4), an ER stress-induced transcription
factor which mediates the expression of stress adaptive genes, was most
readily detected as a differentially expressed protein upon TAK-243 treat-
ment, even at doses that did not significantly induce apoptosis. However,
under conditions of persistent (>12 h) ER stress or at high doses of the
agent (>100 nM, Fig. 2F, G and H), a robust increase in ATF4 levels corre-
lated with a large increase in caspase 3/7 activation (Fig. 1C). This is con-
sistent with the duality of functions ascribed to ATF4 in cell adaptation
and survival, while promoting cell death under persistent stress conditions
[29].

N-glycosylation and N-glycan trimming ensures that newly synthesized
glycopolypeptides undergo proper folding, export and translocation within
the ER [30]. Hence agents such as tunicamycin, which inhibit N-linked gly-
cosylation, circumvent protein folding leading to activation of the UPR.
Tunicamycin, an inhibitor of dolichyl-phosphate N-acetylglucosamine-
phospho-transferase and a canonical activator of the UPR, when used as
control in each of these studies, demonstrated an increase in BiP, ATF4
and CHOP protein levels (Fig. 2F–H), and led to the activation of caspase ac-
tivity (Fig. 1D and E) although to a lesser extent compared to TAK-243, sug-
gesting that these two compounds may activate the UPR in a distinct
manner. As seen in Fig. 2F, and G, tunicamycin treatment elicited a UPR
which was exemplified by an induction of BiP expression, a minor induc-
tion of ATF4 was observed in MiaPaCa-2 cells, however, this increase was
dwarfed compared to what was observed in response to TAK-243.
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Fig. 2. TAK-243 activates the unfolded protein response. (A) MiaPaCa-2 cells were treated with 300 nM TAK-243 for 1, 2, 4 and 6 h and total RNAwas extracted for qRT-PCR
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Conversely, the induction of BiP observed in response to tunicamycin treat-
ment was greater compared to that observed in response to TAK-243. This
differential response to ER stress was further investigated using the IRE-1α
reporter, which demonstrated that activation of IRE-1α mediated RNA
splicing peaked at 6 fold over background in response to TAK-243 at 35 h
post-treatment. In contrast, using the same cell line, tunicamycin treatment
resulted in peak activation at 20 h of 2.5 fold (Fig. 2H). To further corrob-
orate this observation, we utilized a small molecule, NGI-1, which targets
the oligosaccharyltransferase complex within the ER [31,32] and thereby
inhibits the glycosylation machinery. NG-1 treatment resulted in a modest
(1.8 fold) activation of the IRE1α reporter at 18 h post-treatment in
MiaPaCa-2 cells. We next evaluated activation of the UPR in response to in-
hibition of protein disulfide isomerase (PDI)mediated protein folding activ-
ity, utilizing a small molecule inhibitor (BAP2) [11], as well as siRNA
knockdown [13]. BAP2 mediated inhibition of PDI activity resulted in a ro-
bust (4 fold) activation of the reporter in both cell lines, while knockdown
of PDI transcripts resulted in a 2.5-fold increase in the IRE1 reporter activity
at 36 and 18 h, respectively in MiaPaCa-2 cells (Supplementary Fig. 1).
These findings demonstrate that TAK-243mediated UPR activation was ro-
bust and distinct from the canonical ER stress inducer tunicamycin in
regards to downstream signaling effects.

TAK-243 treatment leads to double strand breaks and a G2/M arrest

Cell cycle progression is strictly controlled by ubiquitin-mediated prote-
olysis of the key regulators including cyclins which are required for cyclin-
dependent kinase activity [33]. We hence evaluated the consequence of
UAE1 inhibition by TAK-243 on progression through the cell cycle, and
identified an accumulation of cells in S and G2/M phases beginning at
6 h post-treatment, which eventually led to a predominantly G2/M arrest
at 24 h (Fig. 3A), consistent with previous findings [18,19]. In comparison,
induction of the UPR upon tunicamycin treatment led to a G1 arrest
(Fig. 3A), further supporting our hypothesis that although TAK-243 and
tunicamycin both activate the UPR, their impact on the cell cycle is distinct
and could be attributed to a mechanism other than the activation of the
UPR. Since the immediate cell cycle response of cells to TAK-243 was a
delay in the S phase followed by a G2/M arrest, we reasoned that TAK-
243 may alter DNA repair capacity, since ubiquitylation is required for
the local enrichment of various protein complexes at sites of DNA damage
to promote DNA repair [34]. Indeed, the COMET assay revealed persistent
DNA damage upon TAK-243 treatment as early as 8 h after treatment,
6

resulting in a 50% increase in tail moment at 24 h (Fig. 3B and C), consis-
tent with previous findings [17,19,35].

To leverage the observation that UAE1 inhibition leads to activation of
the UPR, DNA damage, cell cycle arrest and apoptosis, we evaluated the
therapeutic potential of TAK-243. As shown in Fig. 3D, mouse model stud-
ies to evaluate the safety and efficacy of TAK-243 (12.5 mg/kg, twice a
week) demonstrated a significant delay in tumor growth of MiaPaCa-2
flank xenografts. This delay in tumor growth could be attributed to activa-
tion of the UPR (increase in ATF4, Fig. 3E) as well as activation of caspase 3
(Fig. 3F). Quantitative analysis of immunohistochemistry sections from
multiple animals confirmed this finding (Fig. 3G). In addition, hematoxylin
and eosin staining demonstrated elevated necrotic area after UAE inhibi-
tion (Fig. 3H), confirming that TAK-243 triggers ER stress and apoptosis, in-
dicating the effectiveness of TAK-243 and hence its potential as a single
agent for the treatment of PDAC.

Combination therapy for TAK-243

Although the above findings demonstrated safety and efficacy of TAK-
243 in PDAC and at the same time provided in vivo confirmation for the
mechanistic basis for drugs activity, we wanted to investigate if combina-
tion therapy with currently approved modalities may enhance the efficacy
of the agent. We reasoned that the ability of TAK-243 to induce DNA dam-
age could be leveraged to enhance the efficacy of DNA damage inducing
modalities including radiation therapy [36,37], hence we evaluated the
ability of TAK-243 to sensitize PDAC cells to radiation using clonogenic sur-
vival assays. However, these studies revealed that combination therapy
using TAK-243 and ionizing radiation did not result in an enhanced cell kill-
ing at 100, 200 or 300 nM drug using MiaPaCa-2 or Panc-1(Fig. 4B and C).
In contrast, inhibition of PDI, which also mediates ER stress and activation
of the UPR [13], led to a potent radiosensitizing effect inMiaPaCa-2 cells as
well as Panc-1 cells (enhancement ratios of 1.82 and 2.3 respectively,
Fig. 4D and E). Enhancement of radiation sensitivity upon PDI inhibition
has also been observed in glioblastoma cells previously [13] hence the
lack of radiation sensitization upon TAK-243, a potent activator of the
UPR, was surprising.

Since gemcitabine has been used for the management of patients with
PDAC, we wanted to evaluate the efficacy of combination therapy using
TAK-243 and gemcitabine. Using our caspase reporter, we observed that al-
though TAK-243 as single agent mediated a potent dose dependent activa-
tion of apoptosis (Supplementary Fig. 2), inclusion of gemcitabine at 50 nM
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Fig. 3. TAK-243 induces cell cycle arrest, DNA damage and leads to a tumor growth delay. (A) FACS analysis of DNA content in MiaPaCa-2 cells at 4, 6, 16, 24 h after DMSO,
TAK-243 and tunicamycin treatment. (B) Representative images of comet assay from MiaPaCa-2 cells at indicated time points following 300 nM TAK-243 treatment.
(C) Quantification of percentage of tail moment in MiaPaCa-2 cells after TAK-243 treatment, values are expressed as mean ± SEM for at least 100 counts from each
condition. (D) MiaPaCa-2 tumor progression in control/DMSO, gemcitabine, TAK-243 and combination group, graph is plotted as mean ± SEM from at least 4 mouse.
Representative images of immunohistochemistry on (E) ATF-4 and (F) Caspase-3 in tumors and their quantifications. Error bars represent S.E.M. *p < 0.05, **p < 0.005,
***p < 0.0005, ****p < 0.00005, ns: non-significant. (G) Quantification of ATF-4 and Caspase-3 expression and (H) Hematoxylin and eosin staining.
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only modestly enhanced the induction of apoptosis in human (MiaPaCa-2
and Panc-1) and mouse (KPC2) PDAC models. Combination therapy com-
pared to TAK-243 or gemcitabine alone, not only gave a small but signifi-
cant increase in reporter activity, but also caused the peak activation to
occur at earlier time points (Supplementary Fig. 2A) in the combination set-
ting. Since these results suggested a superior potency of combining TAK-
243 and gemcitabine, we then examined whether this could be recapitu-
lated in vivo using MiaPaCa-2 cells in the flanks of nude mice. The combi-
nation therapy failed to show significant synergy in the mouse model
(Supplementary Fig. 2B) confirming our observations using the caspase 3
reporter, that TAK-243 as a single agent exhibited efficacy, however, a
lack of synergy between the TAK-243 and gemcitabine was demonstrated
by a similar delay in tumor progression, although without additional sys-
temic toxicity (Fig. 3D).

TAK-243 inhibits RAD51 ubiquitination and degradation

The consensus of current literature is that ER stress mediated activa-
tion of the UPR triggers activation of the ER-associated degradation
pathway (ERAD) [38]. We and others have previously reported
ubiquitination and proteasome mediated degradation of RAD51 in re-
sponse to UPR activation [13,39,40], a key component of the
9

homologous recombination mediated DNA repair machinery. However,
we reasoned that inhibition of UAE1 by TAK-243 would abrogate ERAD,
due to inability to ubiquitinate ERAD target proteins like RAD51. As
shown in Fig. 5A, although TAK-243 led to a 15-fold increase in ATF4
levels, a 2-fold increase in RAD51 levels was observed in treated cells
(Fig. 5A). In contrast, up-regulation of ATF4 and BiP protein levels in re-
sponse to inhibition of protein glycosylation using tunicamycin or NGI-1
(Fig. 5B and C, respectively), as well as PDI inhibition (Fig. 5D), resulted
in a 50% decrease in RAD51 levels. Restoration of the decreased RAD51
levels in these studies in the presence of the proteasome inhibitor
MG132, recapitulated our previous work in glioblastoma, which dem-
onstrate that activation of ERAD upon ER stress, leads to RAD51 degra-
dation. In contrast, TAK-243 treated cells demonstrate elevated Rad51
levels, despite a robust activation of the UPR. The notion that RAD51
is ubiquitinated in response to activation of the UPR and ERAD was fur-
ther elucidated using immunoprecipitation studies. As shown in Fig. 5E,
treatment of cells with tunicamycin resulted in an increase in protein
ubiquitination (in the presence or absence of MG132) as detected in
whole cell extracts (input). Additionally, immunoprecipitation of
RAD51 followed by Western blot analysis of the precipitate using a
ubiquitin-specific antibody revealed that, compared to control cells or
MG132 treated cells, RAD51 precipitated from tunicamycin treated
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cells (undergoing ERAD) demonstrated an increase in the ubiquitination
form. MG132 treatment of tunicamycin treated cells further enhanced
the ubiquitination of RAD51, presumably due to the inhibition of
proteasomal degradation of the ubiquitinated RAD51 (Fig. 5E). Cells
having activated UPR in response to PDI-inhibition also demonstrated
an increase in global ubiquitination (Fig. 5F). In contrast, treatment of
cells with TAK-243 (Fig. 5G) completely inhibited ubiquitination of
total cellular proteins, even when MG132 was present. Immunoprecipi-
tation of RAD51 from these samples confirmed that upon TAK-243 treat-
ment, inhibition of UAE1 activity prevented the ubiquitination of
RAD51 (Fig. 5G) despite a robust activation of the UPR.

Discussion

Post-translational covalent attachment of the ubiquitin polypeptide
(Ub) to specific protein substrates is required for efficient function of pro-
teins as well as for protein turnover through the 26S proteasome.
Ubiquitin-modification can lead to transcriptional or enzymatic activation,
subcellular relocalization, intracellular trafficking, or degradation.
Ubiquitination as well as additional ubiquitin-like post-translational modi-
fications provide a regulatory node that maintains cellular homeostasis in
normal development and in response to environmental insults. It is increas-
ingly being appreciated that dysregulated ubiquitination contributes to the
oncogenic phenotype bymediating abnormal cell proliferation and survival
[41]. This post-translation modification of lysine residues on target sub-
strate proteins involves activation, conjugation, and ligation by E1, E2,
10
and E3 enzymes respectively. Although the E2 and E3 enzyme family is
comprised of a large number of members (38 and >600, respectively),
only two E1 family members exist in humans (UAE1 and UBA6). Of the
two E1s, UAE1 charges a majority of cellular E2 ubiquitin conjugating en-
zymes [42].

The endoplasmic reticulum (ER) requires stringent protein homeostasis
and contains elaborate signaling complexes to identify, ubiquitinate, and
degrademisfolded proteins. ER proteostasis is critical for cell survival as ex-
emplified by the endoplasmic reticulum associated degradation pathway
(ERAD), wherein misfolded and unfolded proteins within the ER are de-
graded through the 26S proteasome upon ubiquitination. Perturbation of
protein homeostasis within the ER leads to a rapid compensatory cellular
response, through the UPR (unfolded protein response), to restore protein
homeostasis. The tumor microenvironment perturbs protein homeostasis
within cancer cells due to nutrient deprivation, hypoxia, and oxidative
stress. Hence cancer cells experience chronic ER stress [12], which makes
them vulnerable to additional proteostatic imbalance. The activation of on-
cogenes and the high proliferation rate also increases the demand on the
protein synthesis machinery as well as the ER protein folding and quality
control machinery, further contributing to increased ER stress in cancer
cells compared to their normal counterparts [12]. Based on this rationale,
many drugs have been developed that accentuate ER stress in cancer cells
by targeting various processes within the UPR and ERAD [15]. Bortezomib,
a first-in-class proteasome inhibitor, perturbs ER proteostasis, leading to
cancer cell death, and has been approved for the treatment of specific
cancers.
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UAE1, a key ubiquitin activator required for ERAD, therefore provides a
unique opportunity for the therapeutic intervention in cancer with the ex-
pectation that it would accentuate tumor cell ER stress. TAK-243, a first-
in-class small molecule inhibitor of UAE1 [19], for which initial clinical
safety studies are imminent (NCT02045095), has not been rigorously eval-
uated for efficacy in PDAC. Thefindings presented here provide compelling
evidence for the potential for TAK-243 as a therapeutic in PDAC. Multiple
human (MiaPaca-2 and Panc-1) as well as a mouse PDAC cell lines exhibit
exquisite sensitivity to the agent, such that at doses that mediate an accu-
mulation of unfolded proteins and activation of the UPR, lead to a robust in-
duction of apoptosis. Administration of TAK-243 tomouse models of PDAC
at doses that recapitulate the biological effects (activation of the UPR and
apoptosis) observed in cultured cells, led to a tumor growth delay but did
not exhibit any obvious normal tissue toxicity. This is in agreement with
similar studies in AML [43], myeloma [35], B-cell lymphoma [18], squa-
mous cell carcinoma, among others [44]. In agreement with the reported
cellular response to TAK-243 in each of the above disease sites, our findings
demonstrate that inhibition of protein ubiquitination leads to a dramatic in-
duction of ER stress and activation of the UPR signaling pathway. At each
dose tested, peak IRE1α (as determined using a non-invasive reporter),
was observed prior to the induction of caspase activation (also evaluated
using a live cell reporter). This is consistent with the observed peak in ex-
pression of ATF4, an important mediator of UPR-induced apoptosis [29].
In normal cells, translational upregulation of the ATF4 transcription factor
in response to ER stress promotes the expression of adaptive genes, includ-
ing those involved in amino acid transport andmetabolism, protection from
oxidative stress [45], as well as protein chaperones [46]. Distinct from its
role in ER stress, ATF4 also regulates awide range of genes including during
osteogenesis [47], however, during long-term ER stress, an increase in
ATF4 results in transcription of CCAAT-enhancer-binding protein homolo-
gous protein (CHOP), which is responsible for activating a transcriptional
program that leads to initiation of the apoptotic cascade [48]. Under condi-
tions of chronic ER stress (as experienced by cancer cells), accentuation of
ER stress (e.g. in response to UAE1 inhibition) induces a change in the tran-
scriptional program such that the ATF4-CHOP axis, leads to downregula-
tion of the anti-apoptotic proteins like BCL2 and upregulation of pro-
apoptotic proteins such as BIM, NOXA, and PUMA [29]. The differential re-
sponse to ER stress of tumor cells compared to normal cells may be the basis
for the therapeutic index of TAK-243 in mouse models.

Combination chemotherapy is standard adjuvant treatment for patients
with resected pancreatic cancer, because single-agent therapies have not
impacted outcomes dramatically. Often, additional chemotherapy is given
to these patients once recurrence occurs [4,24]. This prompted us to inves-
tigate the potential of combining TAK-243 with gemcitabine or radiation.
The justification for these studies was based on the finding that TAK-243
treated cells exhibit an increase in DNA double strand breaks.
Ubiquitylation not only facilitates the local enrichment of various protein
complexes to sites of strand breaks to promote DNA repair, it also has im-
portant roles in determining which pathway is used to repair individual
breaks. Hence it is not unexpected that TAK-243, despite abrogating
Rad51 degradation, leads to unrepaired DNA damage [34]. Combination
therapy including TAK-243 with DNA damage-inducing agents such as
gemcitabine and radiation [36,49], should lead to synergistic cell killing,
however, our in vitro studies failed to show any synergy, which was con-
firmed in mouse xenografts wherein TAK-243 was administered as single
agent or in combination with gemcitabine. Since previous work from our
laboratory as well as others [13,39,40] has shown synergy when ER stress
Fig. 5. TAK-243 mediated UPR is decoupled from ERAD. MiaPaCa-2 cells were treated w
without MG132 (10 μM) for 16, 12 and 6 h respectively, the cells were also transfected w
collected for immunoblotting for BIP, ATF4, RAD51, PDI and β-actin, and protein level w
2 cells were treatedwith (E) tunicamycin (5 μg/mL)with orwithoutMG132 (10 μM) for 8
were immunoblotted with RAD51 and ubiquitin. (F) Cells were transfected with PDI siR
with ubiquitin and RAD51. (G) MiaPaCa-2 cells were treated with TAK-243 (300 nM)
described above. Error bars represent S.E.M. *p < 0.05, **p < 0.005, ***p < 0.0005,
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inducing agents are combined with DNA damage inducing modalities,
this result was unexpected. In an effort to explain these findings, we lever-
aged published work that associated ubiquitination and ERAD mediated
degradation of RAD51 as an often observed phenomenon. Activation of
the UPR in response to tunicamycin or PDI inhibition resulted in a decrease
in RAD51 protein levels, which could be rescued in the presence of MG132,
suggesting its ubiquitin-mediated proteasomal targeting. Indeed, analysis
of ubiquitination of RAD51 immunoprecipitated from cells treated with
each of these UPR activating insults, confirmed that an increase in
ubiquitination of total cellular proteins and specifically Rad51 was de-
tected, especially in the presence of MG132. In contrast, treatment with
TAK-243, although led to a robust activation of the UPR as evidenced by
IRE1α and ATF4 increase (but not BiP), resulted in an accumulation of
RAD51 levels and a complete loss of ubiquitination of total cellular proteins
as well as RAD51 itself. We hence propose ubiquitination and degradation
of DNA repair proteins which includes RAD51 as a prototype, is critical for
sensitization of cells to DNA damage inducing therapies when combined
with agents that mediate ER stress, activation of the UPR and ERAD.

Targeting of pathways that maintain cellular protein homeostasis is
now appreciated as a viable anti-cancer approach. Examples include
Carfilzomib which is approved for clinical use, and MLN4924
(Pevonedistat, TAK-924) which is also undergoing clinical trials as combi-
nation therapy for many liquid and solid tumors. MLN4924 functions as a
potent and selective inhibitor of NEDD8-activating enzyme (NAE). Within
the neddylation pathway, NAE is a functional analog of the UAE1 (Ubiqui-
tin-activating enzyme). MLN4924 is efficacious at doses that are safe and is
being evaluated for use in combination with DNA damage inducing thera-
pies such as radiation [50–53]. Our in vivo findings clearly demonstrate
that TAK-243 is able to activate the UPR pathway (as evidenced by ATF4
expression) in a tumor specific manner at doses that are safe. In addition,
at these doses, a robust activation of caspase 3 was observed in response
to UPR activation, which likely contributes to the tumor growth delay ob-
served in mouse models. Inhibition of UAE1 by TAK-243 may lead to cellu-
lar responses that are independent of the UPR, and a result of perturbation
of a different cellular process dependent on UAE1 activity. To address this
possibility we perturbed cellular proteostasis through four distinct mecha-
nisms (Tunicamycin, PDI-inhibition, NG-1 and TAK-243), thus providing
some confidence that the observed phenotypes are related to the UPR. Clin-
ical translation of the agent will require additional dose and schedule opti-
mization studies as well as optimal combination therapy strategies. Our
current findings of combining TAK-243 with DNA damaging agents includ-
ing ionizing radiation and gemcitabine suggest that alternate strategies for
combination therapy will need to be evaluated. Our current findings pro-
vide a detailed understanding of the cellular response to TAK-243 and pro-
vide potential biomarkers of drug-target engagement and efficacy using
imaging and biochemical readouts, which will be invaluable for future
translational studies for optimization of dose, schedule and combination
therapies.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.tranon.2020.100834.
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