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Abstract

One of the main challenges in modern medicine is to stratify different patient groups in terms of underlying disease
molecular mechanisms as to develop more personalized approach to therapy. Here we propose novel method for disease
subtyping based on analysis of activated expression regulators on a sample-by-sample basis. Our approach relies on Sub-
Network Enrichment Analysis algorithm (SNEA) which identifies gene subnetworks with significant concordant changes in
expression between two conditions. Subnetwork consists of central regulator and downstream genes connected by
relations extracted from global literature-extracted regulation database. Regulators found in each patient separately are
clustered together and assigned activity scores which are used for final patients grouping. We show that our approach
performs well compared to other related methods and at the same time provides researchers with complementary level of
understanding of pathway-level biology behind a disease by identification of significant expression regulators. We have
observed the reasonable grouping of neuromuscular disorders (triggered by structural damage vs triggered by unknown
mechanisms), that was not revealed using standard expression profile clustering. For another experiment we were able to
suggest the clusters of regulators, responsible for colorectal carcinoma vs adenoma discrimination and identify frequently
genetically changed regulators that could be of specific importance for the individual characteristics of cancer development.
Proposed approach can be regarded as biologically meaningful feature selection, reducing tens of thousands of genes
down to dozens of clusters of regulators. Obtained clusters of regulators make possible to generate valuable biological
hypotheses about molecular mechanisms related to a clinical outcome for individual patient.

Citation: Pyatnitskiy M, Mazo I, Shkrob M, Schwartz E, Kotelnikova E (2014) Clustering Gene Expression Regulators: New Approach to Disease Subtyping. PLoS
ONE 9(1): e84955. doi:10.1371/journal.pone.0084955

Editor: Nanette H. Bishopric, University of Miami School of Medicine, United States of America

Received August 22, 2013; Accepted November 20, 2013; Published January 9, 2014

Copyright: � 2014 Pyatnitskiy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partly supported by the Russian Ministry of Education and Science, contract #14.512.11.0042. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.

Competing Interests: Mikhail Pyatnitskiy, Ilya Mazo, Elena Schwartz and Ekaterina Kotelnikova are employed by Ariadne Diagnostics LLC, 9430 Key West
Avenue, Suite 115 Rockville, Maryland 20850, USA. Maria Shkrob is employed by Elsevier Inc, 9430 Key West Avenue, Suite 113, Rockville, Maryland, 20850, USA.
This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: mpyat@bioinformatics.ru

Introduction

Patient stratification or personalized approach to therapy is one

of the most perspective fields in the modern medicine. Finding

different biological patterns within the group of patients with the

same diagnosis could lead to more precise and effective

prescriptions. To address this issue it is necessary to reveal

different mechanisms within the same disease, find novel

biomarkers and develop new diagnostic tests that would accurately

classify patients into homogeneous diagnostic or prognostic

subgroups. Gene expression studies stimulated the great progress

in this field.

In the past decade numerous papers were published claiming

successful application of gene expression analysis to patients

subtyping and prediction of survival. A typical study includes the

application of statistical techniques based on supervised learning

or cluster analysis to group samples based on their expression

profiles.

However, an observation made by many researchers is that

there is little overlap in gene signatures and lists of potential

biomarkers between studies [1,2,3]. For example Michiels et al [2]

reanalyzed seven studies that have attempted to predict prognosis

of cancer patients based on expression profiles and reported that

lists of predictor genes were highly unstable and strongly depended

on the selection of samples in the training sets. Gene signatures

constructed in three separate studies of colorectal cancer shared

only one common gene [4]. Venet et al [5] has shown that in breast

cancer any set of more than 100 randomly selected genes has a

90% chance to be significantly associated with outcome.

There are many reasons for observed lack of overlap between

signatures. Technical factors include usage of different platforms

for analysis of gene expression and different normalization

methods. Statistical analysis is complicated by the fact that in

typical expression study number of features greatly exceeds

number of samples (‘‘curse of dimensionality’’) which often leads

to overfitting and poor performance of feature selection methods.

Although a lot of work has been done in this area (for reviews see

[6,7]), problem of selecting variables in high dimensional

classification is an ongoing research.

Several biological factors also contribute to discrepancy between

lists of prognostic genes. One of them is intra- and inter-individual

variance in clinical studies [8]. Another factor is high level of

expression correlation between genes which cooperate together to

execute their function. Since the strength of correlation varies
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between training sets this results in unstable rank order of

discriminating genes in the prognostic signatures [9].

Finally standard statistical methods for patients’ classification

ignore existing well-established biological relationships between

genes. This limits interpretation of generated signatures and results

in poor progress for the translation of gene expression signatures in

clinical practice [10].

One possible way to address these problems is to interpret the

expression data at the level of functional groups of genes such as

signaling and metabolic pathways. Genes are mapped onto

predefined gene sets (usually taken from KEGG pathways or

Gene Ontology categories) and activity scores of gene sets describe

patient profile. Matrix of gene set activities is further used in

cluster analysis or supervised learning to perform disease

subtyping. For example in PathOlogist method [11] expression

data are normalized in a special way [12] and further used to

characterize set of pathways with activity and consistency scores.

The set of scores for each pathway allows performing several types

of analysis including binary classification (e.g. cancer vs normal),

correlation (e.g. response to treatment) and survival prediction.

Molecular analysis at the pathway level gives more reproducible

results and there is much more overlap between studies at the level

of pathways [13,14]. Another benefit is biological interpretability:

genes in gene sets are already grouped according to their cellular

role.

In one of early studies [15] Breslin et al utilized signal

transduction pathways from TRANSPATH/TRANSFAC data-

bases to assess signaling pathway activity. Pathway activity was

calculated as a sum of normalized expression values for all

downstream target genes of the pathway. Although Breslin et al did

not use supervised or unsupervised learning techniques they’ve

shown association between sample-wise pathway activity and

clinical classification, thus confirming relevance of pathways for

understanding biology of disease subtypes.

Two types of approaches have been proposed to describe the

activity of a given pathway based on expression of the constituent

genes. First group of methods does not require sample class

assignment and use unsupervised measures such as mean or

median of all genes within a set [16,17] or first principal

component of a gene expression profile [18]. However, the main

limitation of these methods is that some genes from a pathway may

have expression which is not correlated with phenotype of interest.

Such genes will increase overall noise in the data and reduce

classification accuracy. To address this problem second group of

methods utilize supervised approaches such as naı̈ve Bayes model

[14] and condition-responsive genes (CORGs) [13]. However

CORG-method is not sensitive to small but coordinated changes

in expression and Bayes approach relies on accurate estimation of

probability density function for each class requiring relatively large

sample size. While the supervised approach seems to be more

accurate, the between-samples dependencies complicate applica-

tion of these methods on a single-patient basis.

To facilitate biological interpretation of observed changes in

expression gene set enrichment methods have been introduced.

Widely used gene set enrichment analysis (GSEA) [19] determines

which of a priori defined sets of genes exhibit significant co-

operative changes in expression between two conditions. There

are several attempts to modify gene set enrichment methods in

order to apply them for disease subtyping [13,20]. For example

authors of recently introduced GSVA, Gene Set Variation

Analysis [21] calculate sample-wise rank-based enrichment scores,

thus transforming coordinate system for expression data from

genes to gene sets. Authors demonstrate usage of GSVA score

matrix for differential pathway activity identification and survival

prediction.

One way to extend gene set enrichment methods is to take into

account information about pathway topology. One of the

examples of such methods is SPIA [22] where for each KEGG

pathway two types of evidences are combined: over-representation

of differentially expressed genes and pathway perturbation

measured as propagation of changes in gene expression through

the graph topology. In PWEA method [23] topological influence

factor for each gene is calculated to weight the Kolmogorov-

Smirnov statistic used in enrichment analysis. Another approach

to extension of GSEA with network context was proposed by

Alexeyenko et al [24]. For their method, Network Enrichment

Analysis, authors compiled global network with more than

1,400,000 functional links. Using this background network

algorithm identifies functional gene sets with significant number

of links connecting this gene set with differentially expressed genes

in each patient.

One disadvantage of enrichment methods is their dependence

from a priori defined gene sets. Most of methods use sets of

functionally related genes derived from Kyoto Encyclopedia of

Genes and Genomes (KEGG) [25], Gene Ontology (GO) [26] or

MSigDB [27]. However this approach cannot identify novel

interesting gene sets (e.g. activated signaling and regulatory

cascades) which may give clues about individual aspects of disease

development. Predefined gene sets also seem biased, for example

KEGG database is more oriented to metabolic pathways, while

accurate GO enrichment is complicated by entangled structure of

ontology.

Some methods were developed which explore the idea of

finding upstream network regulators using expression data. For

example Kel et al [28] suggested analysis of promoters of

differentially expressed genes in order to find transcription factors

responsible for observed changes in expression. Separate tool

identifies upstream signaling molecules (master regulators) which

activate/inhibit found transcription factors thus providing causal

interpretation of gene expression and ‘reverse engineering’ the

signal transduction network involved in disease development.

However Kel’s approach includes definition of differentially

expressed genes and thus may miss small but coordinated changes

in gene expression which can be found by enrichment-based

methods.

Here we propose an approach to disease subtyping which

heavily relates on Sub-Network Enrichment Analysis algorithm

(SNEA) [29]. SNEA, an extension of GSEA, given transcriptomics

data identifies gene sets with significant concordant changes in

expression between two conditions, for example disease and

control samples. While most GSEA-based methods utilize

predefined gene sets, distinctive feature of SNEA is the construc-

tion of gene sets ‘‘on the fly’’ using global network of protein

regulation. Each gene set (subnetwork) consists of central entity

(‘‘seed’’) and downstream genes known to be affected at the

expression level by the ‘‘seed’’. The biological idea behind SNEA

is that if the downstream expression targets of the ‘‘seed’’ contain

more differentially expressed genes than expected by chance, then

the ‘‘seed’’ is one of the activated regulators of the differential

expression profile. Regulator often is a transcription factor, but

also can be another type of entity which does not even need to be

measured in experiment – complex, functional class, small

molecule. Information about regulations is automatically derived

from scientific literature using text-mining tool MedScan [30,31]

and stored in a database.

Comparing SNEA and GSEA we note that both approaches are

very similar, since SNEA is simply GSEA with genesets
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constructed from global network of interaction, promoter-binding

and other events underlying cellular machinery. One advantage of

SNEA comes from limitations of available gene sets. There is no

comprehensive and universally acknowledged collection of path-

ways and it is difficult to unambiguously draw the borders between

pathways because of cross-talk phenomenon. In addition it is not

clear how the pathways change in a disease. Another advantage of

SNEA is related to the approach of preparing genesets (subnet-

works in SNEA terminology). Selecting genes known to be

downstream of a regulator allows for detecting proteins (e.g

transcription factors) whose activation (by phosphorylation or

translocation) rather than gene expression per se contributes to the

condition. Finally identified subnetworks represent more than a

simple gene set, they pinpoint the transcriptional regulators

underlying biological mechanisms thus suggesting an explanation

to the observed expression data.

We consecutively apply SNEA for each differential expression

profile, identifying regulators responsible for driving sets of genes

showing co-operative patterns of expression. In order to reduce

noise influence and increase biological interpretability we group

together expression regulators found in all analyzed samples with

similar sets of downregulated genes, forming clusters of regulators.

Each cluster of regulators is characterized with an activity value,

describing expression of downstream genes. Obtained matrix of

cluster of regulators activities is used to perform cluster analysis of

patients for disease subtyping.

We demonstrate utility of the proposed approach using two

transcriptome studies. Dataset GSE4183 [32] describes gene

expression in colon biopsy specimens with precancerous adenoma,

colorectal carcinoma and inflammatory bowel diseases. Our

method groups together patients with similar clinical subtypes

outperforming PAM clustering of gene expression data and GSVA

method. We also show an example of biological interpretation of

obtained results, suggesting regulators involved in colorectal

adenoma-carcinoma sequence. Another expression dataset

GSE3307 [33] contains comparative profiling of 12 neuromuscu-

lar diseases and we demonstrate how our method can be used to

group together diseases with similar patterns of expression

regulation rather than patients. Disease clusters are evaluated

based on biological expertise and we show that proposed method

gives more meaningful results compared with traditional expres-

sion-based Ward’s clustering.

Overall we propose a novel unsupervised approach for patients

subtyping based on activity of significant gene expression

regulators. Developed technique can be viewed as a biology-

driven feature selection method since from tens of thousands of

genes we move to hundreds of regulators and further to dozens of

regulator clusters. Analysis of clusters of regulators suggests

biological interpretation of molecular mechanisms activated in

specific conditions. This also enables rational selection of

biomarkers specifically downstream from the identified activated

regulators.

Materials and Methods

Datasets
Two expression datasets (GSE4183 and GSE3307) were

obtained from public repository — NCBI Gene Expression

Omnibus database, http://www.ncbi.nlm.nih.gov/geo/. Samples

in NCBI GEO are labeled with unique digit identifier without

referring to the patient’s name, so the data were analyzed

anonymously. Datasets GSE4183 [34] and GSE3307 [33] were

approved by the ethical committee of the Semmelweis University

and IRB ‘Candidate gene and protein studies in neuromuscular

disease’ correspondingly.

The main requirement for the selection was that dataset should

contain control group and at least two other groups of patients

corresponding either to different diseases or disease subtypes. Also

each group should have included at least five samples. Intensity

values were log-transformed and normalized to zero mean and

unit variance. For synonymous probesets corresponding to the

same gene, the only probeset with maximum intensity was

selected.

Sub-Network Enrichment Analysis
We used SNEA implementation in Pathway Studio 9.0 from

Elsevier [35]. Method identifies subnetworks containing central

regulator (including but not limited to transcription factors) and

downstream target genes which have significantly co-operatively

changed their expression. Algorithm starts with selecting the

central "seed" from one of relevant entities (protein, complex, or

set of proteins, ‘‘functional class’’) in the database. Database (called

Resnet) stores literature-extracted biomedical entities and their

relations. At the moment of our study Resnet contained 112097

proteins, 407 complexes and 2977 functional classes. SNEA

creates a subnetwork by retrieving all entities interacting with the

selected seed. We used two types of interactions – Expression

(300465 relations in Resnet) and PromoterBinding (18153

relations in Resnet). Next algorithm uses Mann-Whitney U-test

to calculate the p-value for difference between distribution of

expression values of regulator’s downstream genes and back-

ground distribution of all expression values for the selected sample

in the experiment. During distribution calculation, the expression

value for each entity connected to a seed is accounted for as many

times as the connectivity of that entity in ResNet in order to

correct for the bias introduced by hubs. Finally subnetworks are

ranked according to p-values and top 100 subnetworks with p-

value smaller than 0.05 are returned by default.

We modeled one normal ‘‘patient’’ by averaging each gene

across all samples from the control group and calculated

corresponding log-ratios for each sample outside the control

group. SNEA was run on these log-ratios, resulting in list of top

100 significant regulators for each sample from the disease class.

Regulators clustering
Similarity between pair of regulators was defined as percentage

of common downstream expression targets, which is equivalent to

Jaccard distance between two gene sets. We calculated distance

matrix for all identified regulators and clustered them using

Ward’s method. To obtain reasonable number of regulator

clusters we used method of maximizing average silhouette [36]

implemented in R library hopach [37]. This approach for

determining optimal number of clusters can be also used with

any other clustering algorithm or distance metric.

Activity of regulatory clusters
We took the following approach to measure activity of a

subnetwork. Let’s denote ri - vector of log-ratios of all genes

downstream from i-th regulator. For each regulator we computed

median of log-ratios of downstream genes multiplied by the total

number of downstream genes, Ki = median(ri)6{ri}. Value Ki

reflects contribution of i-th regulator into global pattern of

differential gene expression. In order to get contribution for entire

j-th cluster of regulators we summed corresponding K-values for all

Nj regulators belonging to the cluster, Cj~
PNi

i~1 Ki. Hence, each
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sample can be characterized by specifying vector of Cj values for all

clusters of regulators.

Sample clustering (unsupervised analysis)
In order to group patients with similar activity profiles of

regulator clusters Ward’s clustering was utilized. For comparison

with other methods we chose PAM method [36], since it is was

found showing consistently good results for microarray data [38]

and recently introduced GSVA method [21] with default settings.

For both types of cluster analysis Pearson correlation was used as a

distance measure.

Adjusted Rand index was used for quantitative comparison of

different approaches for patients subtyping: proposed method

based on SNEA, traditional methodology based on PAM

clustering of gene expression data and GSVA algorithm. In order

to assess the reproducibility of clustering we performed 1000

bootstrap runs, each time taking 90% of all available samples from

original dataset and calculating Rand index. Thus for each

method we obtained distribution of Rand indexes and estimated

95%-confidence intervals for means.

Feature selection (supervised analysis)
We used Fisher’s discriminant criterion to measure the

discriminatory power of i-th cluster of regulators between classes

a and b having means mi,a, mi,b and variances s2
i,a, s2

i,b,

Ji~
mi,a{mi,bð Þ2
s2

i,a
zs2

i,b

. The cluster of regulators was considered as

significantly correlated with class if p-value for permutation test

(1000 permutations of sample labels) was smaller than 0.05 in

more than 90 out of 100 runs of 10-fold sampling without

replacement. We also calculated the area under ROC-curve

(AUC) for final evaluation of significant features.

Software
We used Pathway Studio 9.0 from Elsevier [35] to run SNEA.

The post-processing of SNEA results was implemented as a set of

R scripts (R Development Core Team, www.r-project.org). We

also developed simple application that serves as a graphical user

interface to scripts, allowing user-friendly specification of algo-

rithm parameters. Scripts generate a number of plots and tables

which contain the detailed description of the obtained clustering of

regulators and samples. Developed software is intended to work

only with Pathway Studio-generated SNEA results and is available

at www.sourceforge.net/projects/bsnea.

Results

The overall pipeline of the study is provided on Figure 1.

Analysis starts from expression dataset which should contain

control group of samples and samples from patients suffering from

a disease. The ultimate goal of the analysis is to find molecular

subtypes of studied disease which result in different patterns of

changed gene expression and regulation and correlate with clinical

outcomes.

Data from control group are averaged to create a standardized

control sample. Disease samples are compared with this average

control sample and log-ratios for each gene are calculated.

Obtained log-ratios are used to run SNEA procedure, which

results in the lists of significant regulators. For each disease sample

we retain top 100 regulators with p-value smaller than 0.05.

The next step of the approach is to group regulators in clusters.

There are several reasons to do this. We found that due to

biological variability in different samples SNEA often identifies

different regulators although belonging to the same pathway. For

example let SMAD3 to be found as a significant regulator in one

sample, while in another sample SMAD4 is identified. Both

regulators are related to the same pathway - TGFb signaling - and

it would be more reasonable to say that in both samples TGFb
pathway is activated. Thus we propose clustering of regulators

having similar sets of downregulated genes. This also makes

biological sense, since transcription factors (which constitute the

majority of regulators) are known to be redundant - one family

member can buffer the loss of another [39]. Clustering of

regulators can be viewed as another step in biological-driven

feature selection since from thousands of genes we move to

hundreds of regulators and further to dozens of clusters of

regulators. We also found that overall accuracy of disease

subtyping increases when using clusters of regulators instead of

regulators themselves.

Regulators identified in all samples are grouped together using

Ward’s clustering and similarity between two regulators is defined

as fraction of common-regulated downstream genes. Optimal

number of clusters is estimated using maximum average silhouette

method [36].

Each cluster of regulators is assigned a value describing cluster’s

activity in given sample based on expression of the constituent

genes. For each regulator we calculate median expression of

downstream genes multiplied by the number of such genes. Then,

to define signature for cluster of regulators, we sum corresponding

values for each regulator in cluster. Thus initial matrix N6m,

where N is number of genes and m – number of patients is

transformed into matrix r6m, where r is number of clusters of

regulators, and r,,N. Finally obtained matrix of clusters of

regulators activities is used to group patients in order to find

disease subtypes. Again Ward’s clustering is applied and Pearson

correlation is used as a similarity measure.

There can be two types of evaluation and interpretation of

obtained results. First we can compare correspondence between

predicted clusters of samples and true sample labels (if available).

For this purpose we utilize Rand index, which gives the measure of

coincidence between two partitions. We’ve used extensive cross-

validation of the whole workflow, and performed 100 runs of 10-

fold cross-validation calculating Rand index for each run. This

makes possible statistical evaluation of the difference between

several approaches to disease subtyping by comparing the

distributions of Rand indexes.

Secondly we are interested in understanding the biological

meaning of clusters of regulators which are significantly deregu-

lated between groups of patients. This includes closer inspection of

specific regulators from the discriminating clusters including their

genetic alterations and expression changes. We propose that

identified clusters of regulators discriminating between groups can

be used to discover molecular mechanisms responsible to a specific

condition. Below we show the application of the described

approach.

Case study 1: expression analysis of colon biopsies
We used GEO dataset GSE4183 [32] which describes gene

expression in colonic biopsies of 15 patients with colorectal

carcinoma, 15 with precancerous adenoma, 15 with inflammatory

bowel diseases and 8 healthy normal controls. For each gene we

calculated the expression variance for controls and for combined

disease samples. We found that for 81.3% of all genes the within-

group variance was lower than between-group variance, thus

providing support for averaging of expression values of genes in

healthy samples.

SNEA analysis revealed total 1214 expression regulators which

were grouped in 28 clusters (Table S1, Figure S1). Activity scores
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(k-values) from 28 clusters of regulators were used to subdivide

samples into 3 groups (see Figure 2).

We found that proposed regulator activity-based patient

clustering outperformed both PAM and GSVA method: the

average Rand index for 100 runs of 10-fold cross-validation for

our method was 0.37060.014, while the same value for PAM

clustering was 0.32060.009 and for GSVA corresponding mean

Rand index was 0.34960.015.

Next we turned to determination of clusters of regulators which

discriminate between conditions: carcinoma, adenoma and

inflammatory bowel diseases since this may help find molecular

disease-specific mechanisms. Fisher discriminant criterion was

utilized to measure the discriminatory power of each cluster of

regulators and the significance was determined using permutation

test. We also calculated the area under ROC-curve (AUC) for

significantly discriminating clusters of regulators.

The resulting table (Table 1) shows that there is one

discriminating cluster (#10) of regulators, significant for all pair-

wise condition comparisons. Another observation is that in terms

of regulation a lot of clusters can discriminate inflammatory

disease from both carcinoma and adenoma (#10, #17, #15,

#27, #13, #3, #4, #28, #1) or adenoma alone (#7, #9, #24,

#21, #11, #6, #2, #5), whereas only two of them (#10 and #7)

can help in discrimination of carcinoma vs adenoma. It also can be

seen, that carcinoma has more ‘‘inflammatory’’ features (has closer

profile to inflammation) than adenoma.

Among the clusters that could help to differentiate carcinoma

from adenoma there are clusters #10 and #7. Cluster #10

contains 6 TFs out of 52 regulators: NFATC2 (nuclear factor of

activated T-cells, cytoplasmic, calcineurin-dependent 2), FOXP3

(forkhead box P3), RELB (v-rel reticuloendotheliosis viral onco-

gene homolog B), TBX21 (T-box 21), IRF4 (interferon regulatory

factor 4), T (T, brachyury homolog (mouse)), and all of them,

along with numerous interleukins and T cell-surface proteins from

this cluster are related to the T-cell activation, cytokine production

and immune response. Indeed, in the agreement with analyzed

data (see Figure 2), T-cell activation is obviously implicated in

inflammatory disease [40], as well as in colorectal carcinoma [41].

Moreover, it is shown elsewhere that some of the T-helpers are

highly activated throughout the colorectal adenoma-carcinoma

sequence [42]. Despite the fact that inflammatory response can be

secondary effect of the cancer development, activation of this

cluster could be further evaluated as a prognostic factor of the

disease progression as well as a potential predictor for the

suggested pharmacological intervention in corresponding patients.

To support the last statement one could take into account that, for

example, antagonists of the NFAT family of transcription factors

are known to exhibit strong antineoplastic promoting activity (for

review see [43]), and anti-CCR4 mAb selectively depletes effector-

type FoxP3+CD4+ regulatory T cells, evoking anti-tumor immune

responses in humans [44].

Taking a closer look at the specific regulators from the

discriminating cluster may provide a valuable hypothesis about

possible sample-specific disease mechanisms and drug targets in

the context of the corresponding cell processes. Hence we have

searched for frequent known genetic alterations in these regulators

using cBioPortal [45]. The most frequently affected regulator from

cluster #10 is NFATC2 that was altered by either gene

amplification or mRNA upregulation in 33% of reported cases

[46]. It was also reported [47] on experimental model of colitis-

associated colorectal carcinoma, that NFATC2-deficient mice

were protected from tumor development and show significantly

reduced levels of the downstream critical proinflammatory

cytokines interleukin IL21 and IL6. In studied experiment,

GSE4183, NFATC2 was found as significant regulator of

downregulated genes in only two cases GSM95508, GSM95509,

Figure 1. Overall pipeline of the proposed approach for disease subtyping. See corresponding section for detailed description.
doi:10.1371/journal.pone.0084955.g001
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and for both of them expression of IL6 and IL21 is either

downregulated or changed insignificantly compared to the normal

samples and both of them are classified as ‘‘carcinoma’’, that looks

to be counter-intuitive. However, looking at unsupervised cluster-

ing (Figure 2), one can see that these two samples clearly belong to

the ‘‘precancerous adenoma’’ cluster of samples. This is confirmed

by results of 1000 bootstrap runs each time taking 90% of all

available samples from original dataset - we found that

GSM95508 and GSM95509 were classified as belonging to

‘‘adenoma cluster’’ in 70.8% and 98.2% of all runs respectively.

We can speculate that more ‘‘adenoma-like’’ and not ‘‘carcinoma-

like’’ molecular profile of these samples could be due to the

reduced activity of NFATC2. This example may be taken as a use-

case for personalized approach to generating hypotheses about

activated molecular mechanisms behind the disease progression.

Cluster #7 (differentiating inflammation from adenoma and

carcinoma from adenoma) contains 3 TFs out of 54 regulators:

EPAS1 (endothelial PAS domain protein 1), ETV4 (ets variant 4),

CITED2 (Cbp/p300-interacting transactivator, with Glu/Asp-

rich carboxy-terminal domain, 2), and different factors, ECM and

membrane proteins, like CYR61, matrix metallopeptidases,

different PDGFs, PDGFRs, etc. The processes related to the

activity of these regulators are vascularization, cell survival and cell

migration. One can hypothesize here that the activation of this

cluster is associated with angiogenesis and in the case of carcinoma

with metastasis and invasion. This observation is in agreement

with the paper [48] where authors have shown that the expression

of the "angiogenesis" gene set is significantly increased in CRCs

compared to adenomas and that the increased mRNA expression

levels of PDGFRB (changed in 8.7% of adenocarcinoma cases

[46] according to cBioPortal) can be used as a tumor biomarker.

Among the other regulators from cluster #7 found as frequently

changed according to cBioPortal, there is, for example, frequently

mutated or upregulated TNC (changed in 12.8% of adenocarci-

noma cases), tenascin C, that promotes the expression of matrix

metallopeptidases and was proposed as prognostic biomarker of

Figure 2. Heatmap of activity scores (k-values) for clusters of regulators identified in GSE4183 dataset. Samples are in columns, clusters
of regulators are in rows. Horizontal side bar color encodes true class labels.
doi:10.1371/journal.pone.0084955.g002
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CRC in many studies [49,50]. Another example is transcriptional

factor, responsible for the activation of VEGF and angiogenesis,

EPAS1 (hypoxia inducible factor 2a, changed in 8.2% of cases),

that is once expressed in stroma is associated with a poorer

prognosis in colorectal cancer [51].

Overall, both clusters, taken as an example, correspond to the

known to be significant cancer-related processes, and the

regulators, found within these clusters are frequently proposed as

colorectal cancer biomarkers. Moreover, taking into account

genetic alterations of these regulators, we speculate that it may be

possible to propose the single-patient hypothesis, based on the

combination of his mutational status and the expression patterns.

Case study 2: clustering of 12 human neuromuscular
diseases

We also demonstrate proposed approach for clustering of

regulators using a larger number of diseases. Here the task is to

group together diseases with similar patterns of expression

regulation rather than patients. In this case we cannot make use

of Rand index to assess the overall performance, since the correct

answer is not known. Instead we evaluate resulting disease clusters

based on biological expertise and compare our approach with

traditional expression-based clustering.

We used GEO dataset GSE3307 [33] which contains compar-

ative profiling of total 121 samples of human skeletal muscle in 13

patient groups. Known diagnostic groups included 18 samples of

normal human skeletal muscle, 5 patients with acute quadriplegic

myopathy (AQM), 21 patients with juvenile dermatomyositis

(JDM), 9 patients with amyotophic lateral sclerosis (ALS), 4

patients with hereditary spastic paraplegia (HSP), 8 patients with

Emery-Dreifuss muscular dystrophy (EDMD, 4 samples of X

linked recessive emerin form and 4 samples of autosomal

dominant lamin A/C form), 7 patients with dystroglycanopathy

caused by mutation in FKRP protein, 5 patients with Becker

muscular dystrophy (BMD), 10 patients with Duchenne muscular

dystrophy (DMD), 10 patients with calpain 3 deficiency, 10

patients with dysferlin 3 deficiency and 14 patients with

fascioscapulohumeral muscular dystrophy.

We calculated mean expression for each gene within every

group to obtain ‘‘average’’ patient representing the whole disease

and run the pipeline on these data. Thus we compared

neuromuscular diseases between each other rather than patients.

Total 714 expression regulators were identified which were

subsequently grouped in 34 clusters. We performed Ward’s

clustering for 12634 matrix of activity scores for clusters of

regulators (k-values). For the reference the same type of cluster

analysis was performed for data matrix of gene expression values.

In both cases Pearson correlation was used as a distance measure.

Obtained dendrograms for both approaches to finding similar

diseases are shown on Figure 3. Overall results of our analysis

(Figure 3, A) suggest that human muscle-related pathologies can be

clustered in two large groups. Cluster 1 includes mostly

dystrophic myopathies, inherited single gene disorders causing

degeneration of muscle fibers: DMD, BMD, FKRP, calpain 3 and

dysferlin deficiencies. It can be viewed as cluster of diseases which

are triggered by structural damage caused by mutation in a single

gene. Cluster 2 includes non-muscular diseases (amyotrophic

lateral sclerosis, death of motor neurons mainly due to the

unknown reasons but with some familial (i.e. SOD1 or C9orf72-

mutant) cases [52]; juvenile dermatomyositis, an autoimmune

disease of unknown cause [53]) or diseases with primarily

unknown mechanisms that may be related to functional disorders

in the organism or complex genetic events (acute quadriplegic

myopathy, preferential loss of myosin and myosin-associated thick

filament proteins [54]; fascioscapulohumeral muscular dystrophy -

progressive weakness of the upper body muscles due to deletions of

the D4Z4 repeat located in the terminal region of chromosome 4

[55]).

Furthermore, close inspection of cluster’s fine structure also

reveals biologically meaningful patterns. For example two nuclear

envelope defects caused by mutations in LMNA and emerin gene

Table 1. Identified significant clusters of regulators discriminating between adenoma, carcinoma and inflammation.

Cluster of regulators
Number of regulators
in cluster Inflammation vs adenoma, AUC

Carcinoma vs adenoma,
AUC Inflammation vs carcinoma, AUC

cluster #10 52 0.991 0.742 0.707

cluster #17 32 0.991 – 0.947

cluster #15 57 0.938 – 0.787

cluster #27 13 0.893 – 0.778

cluster #13 86 0.947 – 0.707

cluster #7 54 0.884 0.760 –

cluster #3 82 0.991 – 0.556

cluster #4 29 0.769 – 0.689

cluster #28 16 0.796 – 0.636

cluster #1 181 0.769 – 0.340

cluster #9 39 0.876 – –

cluster #24 28 0.867 – –

cluster #21 37 0.813 – –

cluster #11 45 0.813 – –

cluster #6 111 0.742 – –

cluster #2 32 0.662 – –

cluster #5 23 0.422 – –

doi:10.1371/journal.pone.0084955.t001
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are close to each other on the dendrogram and hence are

predicted to be disorders having much in common in terms of

activated signaling cascades and molecular mechanisms. Indeed

both mutations lead to Emery–Dreifuss muscular dystrophy

phenotype. This is supported by results previously reported in

[33] where the authors took completely different approach for

gene expression analysis based on decision trees. Another

prediction suggests interconnectivity between two diseases caused

by calpain 3 and dysferlin deficiencies. Indeed, mutations in both

genes lead to limb-girdle muscular dystrophy, 2A and 2B

respectively. It was shown by co-immunoprecipitation experiments

that calpain 3 is in complex with dysferlin [56]. However some

predictions are hard to interpret, for example, the similarity of

hereditary spastic paraplegia caused by mutation in SPG4 gene

and dystroglycanopathy caused by mutation in FKRP protein,

involved in glycosylation of dystroglycan.

On the contrary, inspection of cluster composition obtained

using expression data (Figure 3b) shows that these results are much

less biologically reasonable. For example pathogenetically similar

DMD and BMD (which both result from a mutation in the

dystrophin gene) are in different clusters. The same is true for

different forms of Emery–Dreifuss muscular dystrophy (EDMD-X

and EDMD-A).

Finally we conclude that proposed approach gives biologically

meaningful grouping of diseases and in this sense outperforms

traditional method based on gene expression clustering.

Discussion

In this paper we have proposed novel approach to disease

subtyping based on Subnetwork Enrichment Analysis. We use

pathway activity inferred in each sample separately to cluster

patients together thus performing clinical classification. We

emphasize that our method is not related to establishing pathways

from expression data [57]. Instead expression of thousands of

genes is used to infer activity of much fewer significant regulators

using global network of literature-extracted protein regulation

relations.

Analysis at the level of expression regulators facilitates

interpretation of transcriptomics data giving biological explanation

to observed changes in expression of hundreds of genes. Although

regulators themself are rarely differentially expressed they are the

driving force behind real molecular processes in the cells. In many

cases mutations in regulators are the key reasons for the

development of the diseases (an obvious example is the connection

between mutations in p53 and cancer progression). Also regulators

being the hubs in protein-protein interaction networks often serve

as a drug targets. Thus inferring regulators from transcriptomics

data gives another layer of biological information complementary

to gene expression.

Finally we’d like to summarize distinctive features of the

proposed method for disease subtyping which combines advan-

tages of gene set enrichment methods with information about

topology of global literature-extracted protein regulation network.

At first, there’s no need for a priori defined functional gene sets

or pathway collections which are almost inevitably biased to more

studied diseases/conditions. Using SNEA for gene expression data

allows quick identification of the regulators and exploratory

biomarkers [58]. Deregulated subnetworks consisting of regulator

and downstream genes are identified for each patient separately.

This provides basis for personalized treatment since each regulator

may be a marker of activated molecular mechanism behind a

disease progression in individual.

At the same time clustering of regulators identified in all samples

reduces effects of variability and noise in the data. Obtained

clusters of regulators suggest rational biological interpretation of

observed changes in gene expression. In addition pool of possible

regulators is not limited to transcription factors and can include

entities (functional classes, complexes, etc) which are not measured

directly in the experiment. Clusters of regulators affecting mainly

the same set of genes can be interpreted as a first approximation to

bottom-up automatic reconstruction of pathways.

Algorithm performance heavily depends on Resnet [30,59,

60,61], global literature-derived network of over 1,500,000

relations which were extracted by automatic analysis of more

than 22 million PubMed abstracts and 880,000 full-text articles.

Many relations between entities stored in Resnet database are

indirect (for example, expression links between non-transcription

Figure 3. Comparison of clustering of 12 diseases of human muscle. A) Dendrogram obtained using proposed approach based on analysis of
regulators activity. B) Dendrogram obtained using Ward’s method for clustering gene expression data.
doi:10.1371/journal.pone.0084955.g003
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factors and downstream genes) and can be obtained only from

literature-based analysis and not from experimental data.

A distinctive feature of our approach is that it utilizes cluster

analysis, being an unsupervised technique. While the method

needs information whether each sample belongs to ‘‘normal’’ or

‘‘disease’’ group, there’s no need to specify different subgroups

within a ‘‘disease’’ class or use a training set. We believe that the

main field of use for proposed approach is to predict and

characterize phenotypes in clinical outcome studies: predict

responders and non-responders to specific treatment, survival

time, perform a differential diagnosis, etc. For example we applied

our approach for identification of molecular mechanisms activated

in nonresponders to cetuximab treatment (data not shown).

We note that proposed method is not limited to microarray as

an experimental technique to quantify gene expression. The whole

pipeline can be run using RPKM values from RNASeq data as

input. However to our knowledge there are no publicly available

RNASeq datasets that satisfy our criteria: more than two classes

and relatively large number of samples with clinical annotations.

Application of our approach to this type of data remains area for

future research.

In concluding, we propose novel unsupervised method for

disease subtyping based on analysis of activated gene expression

regulators on a sample-by-sample basis. We show that our

approach for patient stratification performs well compared with

traditional expression-based clustering. However the main benefit

of method is that identified clusters of expression regulators

provide valuable insight into pathway-level understanding of

biology related to a clinical outcome for individual patient.
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