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A B S T R A C T

Malarial and other haemosporidian parasites are widespread; however, their temporal dynamics are ill-under-
stood. Longitudinal sampling of a threatened riparian bird revealed a consistently very low prevalence over 13
years (∼5%) despite infections persisting and prevalence increasing with age. In contrast, three key species
within this tropical community were highly infected (∼20–75% prevalence) and these differences were stable.
Although we found novel lineages and phylogenetic structure at the local level, there was little geographic
structuring within Australasia. This study suggests that malarial parasite susceptibility is determined by host
factors and that species can maintain low levels despite high community prevalence.

1. Introduction

The haemosporidian parasites that may cause the signs of malarial
disease (Apicomplexa; Order Haemosporida; Plasmodium, Haemoproteus
and Leucocytozoon spp.) can be highly prevalent in wildlife and have
been implicated in several mass mortality events (van Riper et al., 1986;
Valkiūnas, 2005). Because malarial parasites can reduce host condition
(Merino et al., 2000; Marzal et al., 2008), reproduction and lifespan,
they subsequently affect host fitness (Lachish et al., 2011b; Asghar
et al., 2015). Hence, investigating the ecological relationships between
hosts and parasites over time can yield insights into host-parasite co-
evolution. While malarial parasite prevalence is known to be dynamic
(e.g. Knowles et al., 2011), the consistency and drivers of such variation
– in particular how prevalence varies over time within individuals,
within populations and between host species in a community – are not
well understood. This is despite the general acceptance that individual
competence, population demographic factors, community interactions
and temporal factors are all contributors in explaining malarial disease
outbreaks (Valkiūnas, 2005). Furthermore, knowledge about phyloge-
netic diversity patterns of malaria parasites and prevalence are limited,
because some regions are under-represented in the literature, notably
the Australasian region, which is spatially and taxonomically isolated

(Beadell et al., 2004; Clark et al., 2014).
The factors explaining individual variation in malarial parasite in-

fection can often be attributed to individual state, like poor body con-
dition, poor nutritional status or elevated stress levels (Crommenacker
et al., 2011; Cornet et al., 2014), which can reduce host defences and
increase the likelihood of being infected (Valkiūnas, 2005). In addition,
infection may also be related to host genetics (Westerdahl et al., 2005;
Bonneaud et al., 2006; Loiseau et al., 2011; Radwan et al., 2012) or
demographic factors such as sex or age, e.g. older individuals tend to
have a higher infection risk which is due to the increased chance of
exposure over time or potentially immunosenescence (Wood et al.,
2007). At the host species level, infection is also heterogeneous; for
example, haemosporidian parasites have caused extinction (van Riper
et al., 1986; Valkiūnas, 2005) and can be highly prevalent but see-
mingly benign in other host species (Bensch et al., 2007). In contrast,
some species appear to have a very low prevalence, possibly related to a
lack of vectors, life-history or population demographic factors
(Kleindorfer et al., 2006; Balasubramaniam et al., 2013). Importantly,
abiotic factors can explain a large proportion of the variation in pre-
valence both within and between species, because infection levels are
often correlated with factors that affect the distribution and abundance
of vectors (e.g. elevation, temperature, rainfall and water availability)
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and therefore parasite exposure (Wood et al., 2007; Laurance et al.,
2013; Lalubin et al., 2013, Pulgarín-R et al., 2017). Host bird species vs.
parasite co-evolutionary history (i.e. phylogeny), may influence pre-
valence as species may have different resistance or tolerance mechan-
isms against haemosporidians (Sorci, 2013). Alternatively, certain
lineages may be more or less virulent between species (Schmid-Hempel,
2011). It is evident that many of the above factors involved in malarial
parasite prevalence are temporally variable which suggests that pre-
valence should be dynamic. However, our knowledge about malarial
parasite dynamics in wild animals is limited. Collecting longitudinal
data within and between populations is advantageous because it can
detect both transient and long-term parasite effects on populations and
co-evolution.

We investigated malarial parasite dynamics over a 2–13 year period
in four similarly sized (10–30 g) songbirds in the monsoonal tropics of
northern Western Australia (Higgins and Peter, 2001, 2002). Three
species [Purple-crowned fairy-wrens (Malurus coronatus, PCFW,
n=1387 samples; 815 individuals, 2005–2017), Buff-sided robins
(Poecilodryas cerviniventris, BSR, n=66 samples/individuals,
2007–2010) and White-gaped honey-eaters (Lichenostomus unicolor,
WGH, n=25 samples/individuals, 2007–2009)] are confined to the
riparian habitat with dense vegetation and year-round free-standing
water, enabling a permanent presence of potential vectors and a high
force-of-infection (i.e. have a higher rate at which susceptible in-
dividuals are exposed and become infected). The fourth species [Red-
backed fairy-wrens (Malurus melanocephalus cruentatus, RBFW, n=78
samples/individuals, 2007–2008)] a congener of PCFW, inhabits the
adjacent open savannah grasslands that lack water during the dry
season and therefore experiences seasonal variation in the force-of-in-
fection (Murphy et al., 2010). The focal species of this study, PCFW, are
socially and genetically monogamous (Kingma et al., 2009; Hidalgo-
Aranzamendi et al., 2016). They are cooperative breeders and nest
year-round with distinct peaks in breeding activity associated with
rainfall. Dominant PCFWs form stable territories with 1–6 subordinate
individuals which are often retained offspring (Teunissen et al., 2018).
We quantified (1) prevalence in four species, predicting high levels of
infection in the three riparian specialists, in order to determine (2)
whether individuals continue to harbour haemosporidian parasites
after becoming infected and (3) evidence for within-species predictors
of infection (age and sex) and temporal changes in infection (seasonal
and annual). Finally, we investigated (4) lineage diversity at the local
study site and at the Australasian region to determine whether there
were any associations with host species or prevalence. Parasite lineage
patterns associated with host species may indicate host-parasite co-
adaptation or potential parasite-driven differences in species prevalence
in an understudied region of the globe (Beadell et al., 2004; Clark et al.,
2014). In addition, assessing lineage temporal stability or turnover rates
over a long period of time is essential for understanding host species
susceptibility and may provide insight into prevalence cycles (Fallon
et al., 2004). Our aim was to determine the ecological predictors of the
spread of infection over time and thus contribute to our understanding
of host-parasite co-evolution.

2. Materials and methods

Longitudinal sampling was conducted at the Australian Wildlife
Conservancy's Mornington Wildlife Sanctuary (Fig. 1: 17°31′S, 126°6’E)
along a 15 km stretch of the Adcock river and Annie Creek (Fan et al.,
2017). As part of a long-term study investigating a broad range of
ecological and evolutionary questions, this population has been mon-
itored for 13 years. All birds were caught using mist nets, blood sam-
pled [10–70 μl of blood stored in Longmire's lysis buffer (2005–2010) or
ethanol (2011–2017)] and were marked with a metal identification ring
(ABBBS) and unique colour bands (PCFW and RBFW). PCFWs are
classified as endangered (Threatened Species Scientific Committee,
2015) and whilst the other species are not classified as threatened, the

RBFW population has been reported to be declining (Murphy et al.,
2010). PCFWs were sampled at multiple time periods over their lives
[n=105 nestlings 7 days old, free-flying birds ranging from age 1–139
months (1st year, n=516; 2nd year, n=134; 3rd year, n=68;> 4th
year, n=91)]. Sex was identified by plumage characteristics or mole-
cular based techniques (Griffiths et al., 1998, Fan et al., 2018).

DNA was extracted from blood samples (Eastwood et al., 2018). To
detect haemosporidian parasites we used a conventional PCR protocol
which is described in the supplementary material. To assess the validity
of the initial malaria detection PCR, we analysed blood smears from
n=138 PCFW individuals. To prepare smears, a small drop of blood
was smeared onto a glass microscope slide and air dried in the field
(Campbell, 2015). Once in the lab, the smear was immersed in 50%
May-Grünwald and 10% Giemsa stain for 15min each and then in
distilled water for 5min. The slides were then air dried and viewed
under 1000×magnification along the feathered edge as described in
Campbell (2015). 22 samples were found to be positive using the ma-
laria detection PCR, only one of which was found to be positive when
screening blood smears. The other 116 samples were negative using
both PCR and blood smears. The comparison suggests that there is
agreement between the two methods (85% agreement, kappa±
SE=0.074 ± 0.07) but strongly suggests that the PCR method is more
sensitive at detecting malaria than blood smears (as previously shown,
e.g. Waldenström et al., 2004). In addition to these tests, we thoroughly
searched 4 blood smears with the knowledge they had tested positive
using PCR. In all instances, they were found to also be positive in the
smears with very low parasitaemia. Importantly, all positive blood
smears were also positive in the PCR.

To prepare samples for sequencing, we used a nested PCR protocol
which amplifies a 580bp region of the Cytochrome b gene and which
amplifies Haemoproteus, Plasmodium and Leucocytozoon. Positive sam-
ples were then sent to Micromon (Monash University, Australia) for
sequencing. All analyses conducted on the nucleotide sequence data
were conducted using MEGA 7.0.26 (Kumar et al., 2016), trees were
constructed using maximum likelihood approach. Sequences from the
Australasian region were obtained from the MalAvi database (Bensch
et al., 2009).

Statistical analyses were conducted using SPSS 23 (IBM). In brief,
we compared species prevalence using a binary logistic regression
model with infection status (presence/absence) as the dependent vari-
able, year as a random effect with species and season (“wet” or “dry”
denoting high and low rainfall periods respectively) included as fixed
effects. From the PCFW dataset we selected a random sample from each
individual that had been sampled multiple times to avoid pseudo-re-
plication and excluded nestlings (n=731 PCFW samples included out
of n=1387). Two WGH samples in 2010 and two RBFW samples in
2006 were excluded due to the low sample sizes. Age (in months), sex
and year differences were tested using Chi square tests or Fisher's exact
when expected values were less than five. See supplementary material
for detailed materials and methods regarding the DNA extraction, PCR
detection, statistical and phylogenetic analyses.

3. Results and discussion

Overall haemosporidian prevalence varied significantly between
bird species while controlling for year (Table S1) with BSR having the
highest prevalence, followed by RBFW, WGH, and PCFW (Fig. 2A). The
high prevalence in BSR consisted solely of Haemoproteus, while WGH
were only infected by Plasmodium and fairy-wrens had both (Fig. S1).
Bird species differences in overall infection rates were largely consistent
across years (Fig. 2A) but were not qualitatively related to ecology or
phylogeny: three species co-occurring within a narrow (10–30m wide)
riparian zone (BSR, WGH and PCFW) had highest and lowest pre-
valence, while the two congeneric fairy-wrens had lowest and second-
highest prevalence. Although reduced sample sizes in all species except
PCFW imply increased estimate error, particularly across years, the
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logistic regression and 95% confidence intervals show that the species
effect is strong (Table S1). The differences between birds in prevalence
imply that high force-of-infection resulting from proximity to year-
round free-standing water with associated greater vector burden
(Lachish et al., 2011a) cannot explain host species-level variability in
prevalence in this system. Our findings, are in agreement with other
studies which show that within the same geographic area hosts differ in
prevalence (Fallon et al., 2003; Beadell et al., 2004, Pulgarín-R et al.,
2017). Furthermore, we found no evidence to suggest that the annual
wet and dry season influenced prevalence (Table S1), nor was there
evidence for an interaction between host species and season. These
results suggest that vector exposure is not the primary factor driving
prevalence differences within or between host species.

Intra-specific patterns of prevalence were evident in PCFWs, where

age affected likelihood of infection. No nestlings were infected which
confirms findings in other passerine species (Cosgrove et al., 2006),
although 5 out of 215 fledglings (1–2 months of age) were positive,
showing that early infection is possible. Longitudinal sampling of in-
dividual PCFWs showed that individuals can also acquire infections any
time in adult life (Fig. 2B; mean age= 44, range 5–117 months,
n= 12) but do not subsequently lose the infection. Consequently, de-
spite low prevalence overall (∼5%), increasing age was associated with
greater infection, with individuals greater than four years, the oldest
age class, having the highest prevalence (∼13%; Fig. 2C), which is
consistent with other bird species (Wood et al., 2007; Knowles et al.,
2011). Additionally, this pattern suggests that the consistently low
prevalence in PCFW is not due to a prevailing ability to (rapidly) clear
existing infections.

Fig. 1. Map of Australia and the Kimberly region. Sampling was conducted at the Australian Wildlife Conservancy's Mornington Wildlife Sanctuary (17°31′S,
126°6’E). Star indicates the location of the field site where samples were collected.

Fig. 2. (A) Malarial parasite prevalence across years in four bird species, buff-sided robin (BSR, n=66), purple-crowned fairy-wren (PCFW, n=731), red-backed
fairy-wren (RBFW, n=78), white-gaped honeyeater (WGH, n=25). Fisher's exact P-values test for annual differences in infection within each bird species. (B)
Longitudinal sampling of infected PCFW adults (individuals presented were sampled more than twice and were identified as infected with Haemoproteus or
Plasmodium). Dotted lines indicate uncertainty in years when no sample was available. Each individual was infected with a single lineage. (C) Percentage of
individual PCFW infected within each age category. (D) Local phylogenetic relationship between parasite lineages, colours refer to host species as for (A). Maximum
likelihood tree was inferred using GTR+ G+ I with 1000 bootstrap replicates; novel lineages are indicated by *. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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Low prevalence, when not explained by reduced vector exposure,
may arise when co-adapted parasites are absent (Schmid-Hempel,
2011). Although the study population of PCFWs has doubled since
2010, the PCFWs previously underwent a decline in this population and
across its range due to habitat degradation (Skroblin and Legge, 2012).
Thus, we might speculate that fragmentation and isolation resulted in
the loss of host-specific parasites in PCFWs, leaving this population

exposed to less host-specific spill-over infections. This is consistent with
the lack of unique and persistent Haemoproteus infections (one infected
individual shared a lineage with RBFW Fig. 2B). However, although
Plasmodiidae were not prevalent, individual infections were persistent
long-term (up to> 8.5 years; Fig. 2B). Unlike Haemoproteus, Plasmo-
dium infections were not cleared, and individuals remained infected
with a single lineage, which may be evidence for parasite co-

Fig. 3. Maximum likelihood phylogenetic inference
of (A) Haemoproteus and (B) Plasmodium from the
Australasian region. Sequences were included if they
were at least 479 nucleotides in length and were
found to be unique from a pairwise distance analysis
(see methods). Bootstrap support values are shown if
greater than 50. Dots indicate the 14 lineages that
were detected in this study and their colour denotes
the bird species they occurred within
[Purple=PCFW (M. c. coronatus), Red=RBFW (M.
melanocephalus), Yellow=BSR (P. cerviniventris),
Grey=WGH (L. unicolor)]. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the Web version of this article.)
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adaptation. This may be evidence to support long term chronic infec-
tions of Plasmodium in PCFWs, however information on parasitaemia is
needed to properly determine disease stage (Asghar et al., 2012). The
Haemoproteus infection may have been incidental. Therefore, the
overall low and consistent prevalence in PCFW is also not easily ex-
plained by loss of adapted parasites, and other explanations, e.g. first-
line immune defences, vector avoidance strategies, or bird species
preference by vectors need to be considered (Cornet et al., 2013; De
Moraes et al., 2014; Clark et al., 2016).

In addition to host factors, parasite lineages may have a role in
determining prevalence, although within this parasite-rich community
the phylogenetic patterns were complex. We identified 14 parasite
lineages, 7 each of Plasmodium and Haemoproteus spp., 10 of which
were novel (Fig. 2D). All individuals were infected with a single lineage
throughout infection (Fig. 2B). Local phylogenetic patterns (Fig. 2D)
were evident within the Haemoproteus clade, with two main groups: one
consisting solely of lineages from BSR and the other shared between the
two fairy-wrens (PCFW and RBFW). There was little support for struc-
ture within the Plasmodium clade as branch support was low and
lineages were shared between host species. While we cannot completely
rule out lineage diversity accounting for prevalence variability between
birds, it is unlikely because lineages infect multiple hosts, particularly
in Plasmodium spp. (e.g. between RBFW, PCFW and WGH; Fig. 2D).
Parasite nucleotide diversity and lineage diversity varied between host
species (Fig. 3A and B): WGH (mean p-distance d=0.060, Simpson's
index I= 1.00) had the highest followed by RBFW (d=0.047,
I= 0.73) and PCFW (d= 0.041, I= 0.59). BSR had the lowest di-
versity (d=0.028, I= 0.59) and the highest prevalence (Fig. 2A)
which may reflect a recent outbreak or tight host-parasite co-adaption.
Compared with malaria lineages across Australasia, there is no evidence
that lineages from our study site are spatially unique or host specific
(Haemoproteus, Fig. 3A; Plasmodium, Fig. 3B), indicating host species
generalists and/or frequent host spill-over (Ricklefs et al., 2004; Ewen
et al., 2012). In addition, parasite lineages from PCFW, RBFW and WGH
were found previously in different bird species and across a large
geographic area (Table S2). More regional structure was present in the
Haemoproteus phylogeny as previously observed (e.g. Beadell et al.,
2004). Why patterns emerge at the local but not regional levels may be
a consequence of not accounting for co-adaptation to vectors, detecting
spill-over into non-competent hosts rather than co-adapted lineages or
evolutionary associations across time and space, all of which would
introduce error. While this study adds to the overall phylogenetic pic-
ture of avian malaria phylogeography, more sampling in under-re-
presented regions is needed, notably the Australasian region in order to
understand the high level of diversity observed (Beadell et al., 2004;
Clark et al., 2014).

This study found extreme and consistent variation in avian malaria
prevalence between sympatric, ecologically similar, birds, however the
explanation as to why this is the case is complex. In this tropical
community, we assume that vector abundance is typically high year-
round, due to the year-round presence of water, and should correlate
with malarial parasite exposure. We expected that bird species within
the riparian zone would have similar and higher prevalence compared
to the grassland bird species but instead found a high degree of varia-
bility, with both the least and highest infected occurring within the
riparian zone. Furthermore, we expected to observe that PCFWs, be-
cause they inhabit a wetter environment (associated vector exposure),
would have a higher prevalence compared to RBFWs, despite their close
phylogenetic relationship. However, we found that the opposite was
true with a higher prevalence in RBFWs. Notably, habitat (with free-
standing water or mostly dry) and season (wet or dry) seemed to have
little impact on prevalence, contrary to what other studies have shown
(Cosgrove et al., 2008; Hernández-Lara et al., 2017), and may suggest
that vector exposure is consistent (Valkiūnas, 2005). The observed
prevalence differences between bird species are mostly consistent and it
is unlikely that parasite lineages explain this prevalence variability

because parasite lineages can infect multiple birds. Overall, our results
suggest that while within-species variation is determined by ecological
(e.g. annual differences) or individual (e.g. age) factors, between-spe-
cies prevalence is determined not by ecology but by vector preferences
(Pulgarín-R et al., 2017) or by unknown host factors such as behaviour
(Beadell et al., 2004, Pulgarín-R et al., 2017). PCFWs are long-lived;
occur at high density; live within a year-round parasite-rich community
with year-round presence of vectors; are susceptible to a diversity of
lineages and can maintain infections for very long periods. Why then
PCFWs have such a low prevalence, despite combining so many attri-
butes conducive to infection, is an interesting puzzle for future studies.
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