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As the major hub of metabolic activity and an organelle sequestering pro-apoptogenic
intermediates, mitochondria lie at the crossroads of cellular decisions of death and
survival. Intracellular calcium is a key regulator of these outcomes with rapid,
uncontrolled uptake into mitochondria, activating pro-apoptotic cascades that trigger
cell death. Here, we show that calcium uptake and mitochondrial metabolism in murine T-
regulatory cells (Tregs) is tuned by Notch1 activity. Based on analysis of Tregs and the
HEK cell line, we present evidence that modulation of cellular calcium dynamics underpins
Notch1 regulation of mitochondrial homeostasis and consequently anti-apoptotic activity.
Targeted siRNA-mediated ablations reveal dependency on molecules controlling calcium
release from the endoplasmic reticulum (ER) and the chaperone, glucose-regulated
protein 75 (Grp75), the associated protein Voltage Dependent Anion Channel (VDAC)1
and the Mitochondrial Calcium Uniporter (MCU), which together facilitate ER calcium
transfer and uptake into the mitochondria. Endogenous Notch1 is detected in immune-
complexes with Grp75 and VDAC1. Deficits in mitochondrial oxidative and survival in
Notch1 deficient Tregs, were corrected by the expression of recombinant Notch1
intracellular domain, and in part by recombinant Grp75. Thus, the modulation of
calcium dynamics and consequently mitochondrial metabolism underlies Treg survival
in conditions of nutrient stress. This work positions a key role for Notch1 activity in
these outcomes.
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calcium uniporter; NIC1, Notch1 intracellular domain; PDH, Pyruvate dehydrogenase; pPDH, Phosphorylated pyruvate
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Voltage-dependent anion-selective channel 1.
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INTRODUCTION

Cell survival depends on the availability of nutrients in the
immediate environment and this can be a particular challenge
in the immune system, where the cells are mobile and must move
between regions of plentiful nutrients and sites where these
might be limited (1, 2). The differentiation and survival of T-
cell subsets is exquisitely dependent on cytokines, which control
nutrient uptake in these cells and are thought to regulate cellular
responses to environmental stress (3–5). Hence, the T-cell
lineage offers a rich system to interrogate molecular
mechanisms that regulate well-documented differences in
survival outcomes in T-cell subsets.

In earlier work, we showed that Notch1 activity in Foxp3+

Tregs in the mammalian immune system, protects mitochondria
from damage and promotes survival in cytokine (nutrient)-
deprived culture conditions (5). Recapitulating these
observations in mammalian cell lines, ligand-activated Notch1
intracellular (NIC)1 domain activity when enforced from the
cytoplasm, conferred protection from apoptotic stimuli,
including those targeting mitochondrial integrity (6–8). Notch
signaling is a conserved pathway, initiated by interactions with
ligand, and culminating in the release of the signaling active
intermediate – NIC1 - from its full-length membrane-tethered
precursor (9–12). While Notch signaling predominantly
activates transcription, there is increasing evidence of non-
transcriptional or non-canonical outcomes of this pathway
(13–17). In many contexts, this is linked to NIC1 activity from
different subcellular locations (13, 15, 18, 19).

Calcium is a well-known second messenger implicated in
diverse signaling processes (20–24). While mitochondrial health
is critically controlled by calcium, mitochondria reciprocally
regulate the intracellular distribution of calcium. Thus,
apoptotic signaling frequently correlates with changes in the
levels and distribution of cellular calcium pools (24–27).
Mitochondria are dynamic organelles whose shape and
function respond to different physiological conditions by
fusion, fission or biogenesis (27–30). The chaperone glucose
related protein 75(Grp75) and voltage dependent anion channel
(VDAC)1 are conduits for mitochondrial uptake of calcium,
released from the major store of cellular calcium, the
endoplasmic reticulum (ER) (31–33). VDAC1 interacts with
Inositol 1,4,5-trisphosphate receptor(IP3R)3 on the ER via
Grp75, at sites where mitochondria and ER are in close
proximity, which results in localized elevations in calcium,
facilitating uptake by mitochondria (33, 34). Mitochondria play
many roles in cellular calcium homeostasis, including, calcium
sequestration, activation of calcium dependent dehydrogenases,
or, the activation of apoptotic pathways, which are coordinated
by mitochondria, to name a few (27, 35, 36). The basal entry of
calcium into mitochondria is required for diverse metabolic
processes (37, 38). Controlled calcium uptake in mitochondria
increases ATP production by activating calcium dependent
dehydrogenases including pyruvate dehydrogenase (PDH), a-
ketoglutarate dehydrogenase (a-KGDH), and isocitrate
dehydrogenase (IDH) (39, 40). Many apoptotic stimuli cause
calcium release from the ER to activate apoptotic cascades (41).
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Rapid overloading of calcium in mitochondria from the
cytoplasm facilitates the opening of permeability transition
pore followed by a loss of mitochondrial transmembrane
potential (MTP) and release of cytochrome c and other pro-
apoptogenic intermediates, which are usually sequestered in
mitochondria (27). Bcl2 family anti-apoptotic proteins reduce
free calcium levels in the ER (42, 43). Conversely, Bcl2 may
increase uptake of calcium in mitochondria and compromised
mitochondrial membrane potential has been shown to abrogate
Bcl2 activity (44, 45).

It is increasingly appreciated that metabolic reprogramming
is key to the differentiation of T-cell subsets (46, 47). In
mammals, the functional maturation of T-cells in response to
antigen, is a defining event in the adaptive immune response
(48). The differentiation of T-cell subsets, is linked to programs
initiated during immune activation, which in turn, are dependent
on mitochondrial activity (49). Natural Tregs – where we have
demonstrated a role for Notch1 activity - depend on fatty acid
oxidation for function, although glycolysis is important in the
initial responses to antigen. Cross-talk with the Notch1 pathway
has been demonstrated with metabolic mediators and pathways
that play critical roles in specialized T-cell subsets, especially
Tregs (50–52). Here we explore the role of Notch1 in the
regulation of metabolic (mitochondrial) activity vis-à-vis
organellar calcium homeostasis, and IL-2 independent
Treg survival.
MATERIALS AND METHODS

Mice
The Notch1lox/lox (Notch1+/+) and Cd4-Cre::Notch1lox/lox

(Notch1-/-) strains were a gift from Freddy Radtke (École
Polytechnique Federale de Lausanne (EPFL), Switzerland) (53).
C57BL/6J was obtained from the Jackson Laboratory. Tregs were
isolated from spleens of 8-12 weeks old mice. Two spleens
were pooled for the isolation of 2 million Tregs. Breeding
colonies were maintained in-house in controlled temperature
and light environments, in high barrier conditions, and in
controlled systems (individually ventilated cages). Colonies were
routinely monitored for the full pathogen panel recommended by
the Federation of Laboratory Animal Science Associations. All
experimental protocols were approved by the Institutional Animal
Ethics Committee (INS-IAE-2019/07(R1)) and complied with the
norms of the Committee for the Purpose of Control and
Supervision of Experiments on Animals, Government of India.

Cells
The HEK293T (HEK) cell line was from American Type Culture
Collection (ATCC) (Manassas, VA, USA) and maintained in
DMEM-CM containing Dulbecco’s Modified Eagle’s Medium
(DMEM) (GIBCO, Life Technologies, Carlsbad, CA, USA)
supplemented with 0.1% penicillin/streptomycin and 10% heat-
inactivated fetal bovine serum (Scientific Hyclone TM, Waltham,
MA, USA) at 37°C with 5% CO2. T cells were cultured in RPMI
1640 (GIBCO, Life Technologies, Carlsbad, CA, USA)
supplemented with 0.1% penicillin/streptomycin with5% heat-
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inactivated fetal bovine serum (RPMI-complete medium) at 37°C
with 5% CO2. Mycoplasma contamination in the cultures was
routinely tested using the MycoAlertTM Mycoplasma Detection
Kit (Lonza, Basel, Switzerland).

Chemical and Antibodies
Thaps igarg in (TG, T9033) , flurorcarbonyl cyanide
phenylhydrazone (FCCP, C2920), oligomycin (75351), rotenone
(R8875), antimycin A (A8674), MKT-077 (M5549), 2-deoxy
glucose (D8375), and histopaque (10831) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). g-Secretase Inhibitor X (GSI-
X, 565771), Ru360 (557440), and puromycin (508838) were from
Calbiochem-Merck Millipore (Darmstadt, Germany).
Xestospongin C (1280) was purchased from Tocris (Abingdon,
UK). Dharmafect-1 and siRNA to scrambled control (D-0018010),
MCU (L-015519), VDAC1 (L-019764), Grp75 (L-004750), IP3R3
(L-006209) and MFN2 (L-012961) were from Dharmacon
(Lafayette, CO, USA). Antibodies to PDH (C54G1, 3205), MCU
(D2Z3B, 14997S), Vps34 (D9A5, 4263) were from Cell Signaling
Technology (MA, USA). Antibodies to Grp75 (JG1, Ab2799),
VDAC1 (20B12AF2, Ab14734), pPDH (EPR12200, Ab177461)
and Notch1 (mN1A, 128076) were from Abcam (Cambridge,
UK). Antibody to MFN2(XX-1) was from Santa Cruz (Texas,
USA). Antibody to IP3R3 was from Merck Millipore (Darmstadt,
Germany). Antibodies to Actin (ACTN05, MS-1295-P), Tubulin
(MS-581-P0), Normal mouse IgG (NC-1255-P1), and Normal
rabbit IgG (NC-100-P1) were from Neomarker (Fremont, CA,
USA). Trizol (15596026) andSYBR™GreenMasterMixwere from
Thermo Scientific (Waltham, MA, USA). PrimeScript 1st strand
cDNA Synthesis Kit (6110A) was purchased from Takara Bio
(Shiga, Japan).

Plasmids
Human Bcl-xLRFP plasmid was a gift from Richard J. Youle
(National Institutes of Health, Bethesda, MD). NFLGFP was a
gift from Freddy Radtke (École Polytechnique Federale de
Lausanne (EPFL), Switzerland). pBABE, pBABE-NIC-NLS and
pBABE-NIC-NES were kind gifts from B.A. Osborne (University
of Massachusetts/Amherst, MA, USA). D1ER and 2mtD3cpv
probe were a kind gift from Roger Y Tsien (42, 54).

NIC1-GFP was prepared by sub-cloning NIC1 gifted by J.
Aster (Harvard Medical School, Boston) into pEGFP-C1 (BD
Clontech, CA, USA). NIC1-RFP has been described earlier (5).
sJagged was obtained from Upstate Biotechnology (MA, USA).
Human Grp75 Tagged ORF Clone was obtained from Origene
(RG201397, MD, USA) and sub-cloned into pBABE vector.
Following primers were used for sub-cloning:

NIC1-GFP EcoR1 Forward: 5’-ACTGAATTCTATGCGGCGG
CAGCAT-3’

NIC1- GFP BamHI Reverse: 5’-AATGGATCCCTTGAAGGC
CTCCGG-3’

Grp75 BamHI Forward: 5’-ATAGGATCCATGATAAGTGCCA
GCCGA-3’

Grp75 Sal I Reverse: 5’-ATAGTCGACTTACTGTTTTTCCTC
CTTTTGA-3’
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Construct sequences were verified by automated Sanger
sequencing conducted in-house.

Isolation of T-Cell Subsets
CD4+CD25+ Tregs and CD4+ naïve T-cells were isolated from
murine spleens as previously described (5). For the isolation of ~2
million Tregs, single-cell suspensions from two spleens were
generated by dissociating the organs to release cells in PBS,
applying gentle but consistent pressure using the back of a syringe
plunger. Cells were centrifuged and the red blood cells were lysed by
gentle resuspension and vortexing the loosened cell pellet in 1 ml
ACK lysis buffer (150 mM NH4Cl, 10 mM KHCO3, and 0.1 mM
Na2EDTA) for 1 min. The ACK cell suspension was diluted with
excess medium and centrifuged at (500g). The cell pellets was
washed with excess medium twice to obtain RBC-free lymphocytes.
CD4+CD25+ Tregs and CD4+ naïve T-cells were isolated from the
total lymphocyte pool using the Dynabeads FlowComp Mouse
CD4+CD25+ Treg cells Kit (11463D, Invitrogen) and MagniSort
Mouse CD4 naïve T-cell enrichment Kit (8804-6824-74,
Invitrogen), respectively, following manufacturer’s instructions.
Tregs (CD4+CD25+) and CD4+naïve T-cells were activated with
20 ml of magnetic beads coated with antibodies to CD3 and CD28
for 40 h and used in experiments. Isolated CD4+CD25+ cells were
routinely immuno-stained with antibody against Foxp3 and
analyzed using Olympus IX70 wide-field fluorescence or Olympus
FV3000 confocal microscope. On an average 85-90% or more
CD4+CD25+ cells were Foxp3+ when tested by immune-staining.

Transfections
0.25x106 HEK cells were seeded in tissue culture grade 35 mm
dishes (Greiner Bio-one, Kremsmünster, Austria). Transfection
with siRNA or plasmids was performed when cultures were 50-
60% confluent (24 h post-plating). 100 nM siRNA or plasmids
were transfected using Dharmafect and Lipofectamine-2000 or
Fugene HD as per the manufacturer’s instructions when cultures
were 50–60% confluent (24 h post-plating). Cells transfected
with siRNA were incubated for 24–26 h and then harvested by
trypsinization and re-plated for transfection with plasmids.
Plasmids were transfected using Lipofectamine 2000 or Fugene
HD at the following concentrations: NIC1-GFP (2 µg), NIC1-
RFP (2 µg), pEGFP-N3 (1 µg), Bcl-xL RFP (1.5 µg), NIC1-NES
GFP (2 µg), NIC1-NLS GFP (2 µg) NFL-GFP (2 µg), s-Jagged (2
µg), or 2mtD3cpv (1 µg), pCL-Eco (1.5 µg), pBABE-Grp75 (1.5
µg), pBABE-NIC1-NES (1.5 µg). Total DNA transfected in the
different transfection groups was equalized with pcDNA3.

Retrovirus Transduction
Retrovirus transduction was performed as described (5). Briefly,
retroviruses containing the plasmid of interest were packaged in
HEK cells using the packaging vector pCL-Eco. HEK cells were
co-transfected with pCL-Eco and the plasmid containing gene of
interest using X-tremeGENE HP. Viral supernatants were
harvested two days post-transfection and concentrated by
centrifugation at 21000 g for 1.5 h at 4°C. Viral supernatants
were stored at -80°C when not used immediately for a maximum
of 14 days. Tregs were activated as described earlier for 24 h with
February 2022 | Volume 13 | Article 832159
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anti-CD3 and CD28 bound magnetic beads in 24 well plates. For
retroviral infection, 700 µl of culture medium from Tregs was
replaced with an equal volume of concentrated virus in RPMI-
CM containing 10 mM HEPES and 8 µg/ml sequabrene, and the
plate was centrifuged at 600 g for 90 min at 25°C. Post
centrifugation, 700 µl of medium was replaced with RPMI-CM
supplemented with 1 µg/ml of IL-2 and cells continued in
culture. After a further 24 h, beads were removed by magnetic
separation and cells were cultured in RPMI-CM supplemented
with IL-2 (1 µg/ml) for another 18–24 h. Cells were harvested
and continued (0.5X106/ml) in RPMI-CMcontaining IL-2 (1 µg/
ml) and the antibiotic puromycin (1 µg/ml) for 48 h to enrich
transfected cells. After 48 h, live cells were collected by
centrifugation on histopaque (1.083 g/ml density) at 300 g for
20 min at 25°C and washed twice in RPMI-CM. Cells were
cultured for another 24 h in RPMI-CM containing IL-2 (1 mg/ml)
and IL-7 (2 ng/ml) and used in functional assays or for
metabolic analysis.

Induction of Apoptosis and Assays
for Cellular Damage
Activated Tregs were washed three times with PBS and 0.3x106

cells/well were cultured in a 48 well plate for 24 h. Notch1-/-

Tregs infected with pBABE, pBABE NIC-NES and pBABE
Grp75 were analyzed as one unit, with data reported in
separate figures as indicated in the legends to figures. Cells
were harvested and stained with Hoechst 33342 (1 mg/ml), and
samples were scored for nuclear damage using fluorescent
microscope (Olympus BX-60). Samples were blinded for the
experimenter and approximately 200 cells in 5 random fields
were scored for apoptotic damage. 0.5x106 activated Tregs were
incubated with DiOC6 (40 nM) diluted in PBS for 10 min at 37°C
protected from light. After 10 min, cells were given three washes
with pre-warmed (37°C) PBS to remove excess dye and
immediately analyzed using BD FACS Fortessa flow cytometer.

RT PCR Analysis
3x106 Tregs cells were lysed in 1ml of TRIzol and RNA isolation
was performed according to the manufacturer’s instructions. 1
µg RNA was used for cDNA synthesis using PrimeScript 1st

strand cDNA Synthesis Kit (Takara Bio). cDNA was diluted in
1:5 ratio and real-time PCR was performed using Maxima™

SYBR Green qPCR Master Mix and Bio-Rad CFX96 Touch™

Real-Time PCR Detection System. Relative change in transcript
levels was calculated using 2–DDCt method using glyceraldehyde
3-phosphate dehydrogenase (GAPDH) or Actin as
reference gene.

Primers used for RT PCR against Human genes: Forward (5’–3’);
Reverse (5’–3’)

GAPDH: TGCACCACCAACTGCTTAGC; GGCATGGACTGT
GGTCATGAG

MCU: ACCGGACGGTACACCAGAG; GATAGGCTTGAGTG
TGAACTGAC

VDAC1: CTCCCACATACGCCGATCTT; GCCGTAGCCCT
TGGTGAAG
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Grp75: TGTGGCCTTTACAGCAGATG; ATCACCCGAAGC
ACATTCAG

IP3R3: CTGGTGTTCTTTGTCAGCGA; TTCTGCTCCCT
CATCAGCTT

Primers used for RT PCR against Murine gene: Forward (5’–3’);
Reverse (5’–3’)

Notch1: GGAAGCACCCTTTAGGTTGGA; AGTGGTCCA
GGGTGTGAGTGT

Actin: TGGGTCAGAAGGACTCCTATG; CAGGCAGCTCAT
AGCTCTTCT

MCU: GAGCCGCATATTGCAGTACGGT; AAACACGCC
GACTGAGTCAGAG

VDAC1: AGTGACCCAGAGCAACTTCGCA; CAGGCGAG
ATTGACAGCAGTCT

Grp75: GTTGGTATGCCAGCAAAACGGC; CAAGCATCAC
CATTGGAGGCAC

IP3R3: GCAACCACATCTGGACGCTCTT; AGAAGGCACTG
ATGGTGTCCAG
Passive Store Depletion (PSD) Assay
Measures of Ca2+ dynamics were all performed in Ca2+-free
medium. HEK cells, pre-treated with the siRNA, were transfected
with NIC1-RFP or control RFP using Fugene HD as described
above. Cells expressing RFP or NIC1-RFP were loaded with
3.5 mM of Fluo4-AM or Indo-1-AM dye, 0.002% Pluronic F-127
in DMEM-CM for 20 min in humidified 5% CO2, 37 °C
incubator in the dark. After incubation, cells were washed with
PBS and imaged in calcium free media. Time lapse images of cells
loaded with Fluo4-AM were acquired every 10 s for 6 min using
488 nm excitation and 505 nm emission on an Olympus IX70
wide field fluorescence microscope with 60X, NA 1.4 oil objective
before and after addition of 2 µM TG. Time lapse images of cells
loaded with Indo-1 dye were acquired every 10 s for 6 min using
Epifluor optics (Nikon TE 2000 inverted wide field microscope)
with 60X, NA 1.4 oil objective. Indo-1 was excited using 365/10
exciter and emission collected by D405/30 and D485/25. The
images were analyzed and quantified for the intensities using
Image J software.

Assessment of Free Calcium in ER
and Mitochondria
Analysis of free calcium in ER and mitochondria were performed
using FRET based D1ER and 2mtD3cpv probes, respectively.
0.2x106 HEK cells were plated onto the cut dishes with
microscopy grade coverslip. Next day, cells were transfected
with 2mtD3cpv or D1ER with NIC1-RFP, Bcl-xL-RFP, or RFP
using Fugene-6 HD. 36 h post transfection, the cells were imaged
using Zeiss LSM 510 Meta, Plan apochromat 63X oil, NA 1.42
with FRET module. Probes were excited with 458 nm laser and
the emission was collected by BP (470-500) for CFP and BP (510-
550) for FRET. The images were captured in time-lapse mode for
3-4 min. YFP and CFP fluorescence were quantified after
removing the background signal by the thresholding the image
using Image J software.
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Seahorse-Based Analysis
Oxygen consumption rate (OCR) and extracellular acidification
rate (ECAR) were measured using Seahorse XFe24 bioanalyzer.
Seahorse culture plate were coated with 1 mg/ml poly-D lysine in
PBS for 30 min at room temperature and then washed twice with
PBS. ~0.3x106 activated Tregs or T-effectors were plated onto the
poly-D lysine coated Seahorse culture plate in Seahorse RPMI XF
media containing 2 mM L-glutamine, 10 mM sodium pyruvate
and 10 mM glucose for OCR analysis or Seahorse RPMI XF
media containing 2 mM L-glutamine for ECAR analysis. Cells
were incubated for 45 min at 37°C in a humidified non-CO2

incubator before OCR and ECAR analysis. OCR and ECAR were
measured at baseline and in response to the following inhibitors:
1.25 µM oligomycin, 1 µM FCCP, and 1 µM rotenone and
antimycin A for OCR analysis and 10 mM glucose, 1.25 µM
oligomycin, 50 mM 2-deoxyglucose for ECAR. Four wells in each
plate containing Seahorse RPMI XF media were used as
background. Notch1-/- Tregs infected with pBABE, pBABE
NIC-NES and pBABE Grp75 were analyzed together, with data
reported in separate figures as indicated in figure legends. Basal
respiration = OCR before oligomycin addition– Last OCR after
Rotenone + AntimycinA addition. Maximum respiration=
Maximum OCR after FCCP addition – Last OCR after
Rotenone + AntimycinA addition.

Immunofluorescence Analysis
Cells were plated on poly-D-lysine coated dishes (1 mg/ml poly-
D-lysine in PBS coated for 15 min at room temperature) for 10
min and fixed with 2% paraformaldehyde (freshly reconstituted)
for 20 min in the dark at room temperature. For Grp75 and
Foxp3, cells were permeabilized using 0.2% Triton-X 100 and
0.2% NP-40, respectively, for 10 min at room temperature. Cells
were incubated with Grp75 (1:100) antibody diluted in 5% BSA
in PBS or with 5% BSA in PBS for secondary control and
incubated overnight at 4°C. The next day, cells were washed
two times with PBS and incubated with secondary fluorescence-
conjugated antibody (1:500) for 1 h in the dark at room
temperature. Cells were washed twice with PBS and stained
with Hoechst 33342 (1 mg/ml) for 10 min and ten random
fields were imaged using Olympus FV3000 as Z-stacks (1.0 µm,
3X zoom); Plan-Apochromat 63X NA 1.35 oil-immersion
objective. Images were processed to remove background based
on secondary controls.

Immunoprecipitation and Western Blotting
Activated 4x106 Tregs cells cultured for 6 h without IL-2 in
RPMI-CM, were lysed for 30 min at 4°C on a rotational cell
mixer in RIPA buffer containing 1% NP-40, 5% glycerol, 50 mM
Tris, 1 mM NaCl, and 1 mM EDTA and supplemented with
aprotinin, leupeptin, and pepstatin (2 mg/ml each), 10 mM
MG132, 1 mM PMSF, 1 mM NaF, and 1 mM Na3VO4. After
lysis, lysates were centrifuged at 1500 g for 5 min to remove cell
debris, and supernatants were incubated with antibody (6 mg) or
IgG control (6 mg) for 16-18 h at 4°C on a rotational cell mixer.
The Immune complexes were then incubated with Sepharose
G/A plus bead slurry for 3 h at 4°C on a rotational cell mixer.
Frontiers in Immunology | www.frontiersin.org 5
Beads bound to complexes were washed three times by adding
ice-cold PBS followed by centrifugation at 300 g for 2 min. Finally,
beads were boiled in SDS lysis buffer containing protease
inhibitors for 10 min and analyzed by western blot. 0.3 x 106

Tregs or 0.1x106 HEK cells were pelleted down by centrifugation
at 1000 g for 5 min at room temperature and 25 µl of SDS lysis
buffer (2% SDS, 10% glycerol, 0.002% bromophenol blue, 200
mM DTT and 50 mM Tris-Cl pH 6.8) containing a protease
inhibitor cocktail - aprotinin, leupeptin and pepstatin (2 mg/ml
each), 1 mM PMSF, 1 mM NaF, 1 mM Na3VO4 and 10 mM
MG132 was added to the pellet. The tube was vortexed for 20-30 s
and incubated at 100°C for 10 min. Cell lysates were immediately
resolved by SDS-PAGE and transferred to nitrocellulose
membrane (GE Healthcare, Chicago, USA) and blocked with
5% non-fat dried milk in Tris-buffered saline–Tween 20 (TBST),
and incubated overnight at 4°C with primary antibodies at the
following concentration: Grp75 (1:500), Notch1 (1:500), VDAC1
(1:500), Vps34 (1:500), MCU (1:500), pPDH (1:500), PDH
(1:500), Actin (1:1000) and Tubulin (1:1000) diluted in 5% non
fat dried milk in TBST. After incubation with primary antibodies,
membranes were washed three times with TBST followed by
incubation with horseradish peroxidase–conjugated secondary
antibody (1:1000 dilutions) for 1 h at room temperature. After
incubation with secondary antibody, membranes were washed
three times with TBST. Membranes were developed using Super
Signal West Dura substrate (Thermo Scientific), and images were
acquired using iBright FL1000 Invitrogen. Densitometric analysis
of western blots was performed using Image J software.

Statistical Analysis
Data are represented as mean ± standard deviation (Mean ± SD)
derived for two or three independent experiments. Statistical
significance was measured using unpaired student’s t-test and p-
values ≤0.05, ≤0.01 and ≤0.001 were considered to be statistically
significant. p-value >0.05 were considered non-significant (ns).

Ethical Approval
All experimental protocols involving mice were approved by the
Institutional Animal Ethics Committee (INS-IAE-2019/07(R1))
and complied with the norms of the Committee for the Purpose
of Control and Supervision of Experiments on Animals,
Government of India.
RESULTS

Notch1 Signaling Modulates Mitochondria
Metabolism in Tregs
Tregs constitutively express the cytokine Interleukin-2 (IL-2)
receptor, CD25, and the transcription factor Foxp3 (55, 56). We
have shown that ligand-dependent Notch1 activity in activated
Tregs, regulates their IL-2-independent survival (5). Thus, unlike
cells isolated from Notch1lox/lox Cre-ve, mice, CD4+Foxp3+CD25+

cells isolated from mice with a targeted ablation of Notch1 (Cd4-
Cre::Notch1lox/lox mice), in the mature T-cell compartment, will
undergo apoptosis if cultured without cytokine (Figures 1A, B).
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However, the recovery of viable (Cre-ve) Notch1+/+ and (Cre+ve)
Notch1-/- Tregs from activation protocol is comparable
(Figure 1C), ruling out deficits in responses to T-cell receptor
dependent activation. Nonetheless, small but consistent differences
in mitochondrial transmembrane potential between activated
Tregs of the two genotypes (Figure 1D), prompted an assessment
of metabolic profiles of Tregs. Seahorse based analysis of (Cre-ve)
Notch1+/+ and (Cre+ve) Notch1-/- Tregs revealed that as compared
to (Cre-ve) Notch1+/+ cells, oxidative phosphorylation (Oxphos),
was blunted in (Cre+ve) Notch1-/- Tregs (Figure 1E, red trace at
baseline). Notch1-/- Tregs also had reduced respiratory reserve,
indicated by the poor recovery following FCCP treatment
(Figure 1E). Notably, glycolysis was comparable, with the
Notch1-/- cells, presenting marginally elevated activity relative to
Notch1+/+ cells (Figure 1F). On the other hand, when T-effector
subsets, generated by activating CD4+ naïve T-cells in culture
(Figure 1A), from the two genotypes, were compared, metabolic
profiles of (Cre-ve) Notch1+/+ and (Cre+ve) Notch1-/- T-effectors
were comparable (Figure 1G and Supplementary Figure S1). Thus,
Notch1 regulation of mitochondrial metabolism is not a generalized
feature of the T-cell lineage.
Frontiers in Immunology | www.frontiersin.org 6
Calcium regulation of mitochondrial metabolic activity is well
established (40). Hence, we compared calcium-sensitive
phosphorylation of the enzyme Pyruvate Dehydrogenase (PDH)
in the two genotypes. Substantially higher levels of phosphorylated
(p)PDH, were detected by western blot analysis of cell lysates in
(Cre+ve) Notch1-/- Tregs (Figure 1Hi, lane 2) as compared to
(Cre-ve) Notch1+/+ (Figure 1Hi, lane 1), which suggests reduced
level of free calcium in mitochondria. Total PDH is comparable in
the cells of the two genotypes (Figure 1Hii, row 2). In order to
directly assess organelle calcium and explore underlying molecular
interactions, we used the mammalian cell line HEK, in which
Notch1 activated signaling has been previously characterized
(6–8).

NIC1 Signaling Regulates ER Calcium`
The ER lumen is the major store of free calcium (57). The passive
store depletion (PSD) assay (58) was deployed to assess the effects of
Notch1 activity, if any, on the release of calcium into the cytoplasm
in response to an ER destabilizing trigger. HEK cells expressing
processed NIC1 or a control vector were loaded with the calcium
sensitive dye Fluo-4, and assessed in the PSD assay, performed in
A B D
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FIGURE 1 | Notch1 signaling regulates mitochondrial metabolism in Tregs. (A) Experimental protocol for Tregs activation. (B) Percent apoptotic nuclei in activated
Notch1+/+ (Cre-ve; Notch1lox/lox) and Notch1-/- (Cre+ve; Cd4-Cre::Notch1lox/lox) Tregs at onset (T0), and after 24 h culture (T24) in medium without IL-2. (C) Cell
recoveries in the two genotypes at the end of the 40 h activation protocol. (D) Representative histogram overlay and mean fluorescent intensity (MFI) of DioC6 in
freshly activated Notch1+/+ (black) and Notch1-/- (red) Tregs. The dotted line indicates unstained Tregs. (E) Oxygen consumption rate (OCR) in activated Notch1+/+

(▪) and Notch1-/- (•) Tregs at baseline and following sequential addition of 1.25 mM Oligomycin, 1 mM FCCP and 1 mM Rotenone + 1 mM Antimycin A. (F)
Extracellular acidification rate (ECAR) in activated Notch1+/+ (▫) and Notch1-/- (⚬) Tregs at baseline and in response to sequential treatment with 10 mM glucose, 1.25
mM oligomycin and 50 mM 2-deoxyglucose. (G) OCR measured in CD4+ naïve T-cells isolated from Notch1+/+ (▪) or Notch1-/- (•) mice and activated as shown in A,
in response to 1.25 mM Oligomycin, 1 mM FCCP and 1 mM Rotenone + 1 mM Antimycin A. (H) Representative immunoblots of whole cell lysates from activated
Notch1+/+ and Notch1-/- Tregs. Lysates were divided into two and analyzed in parallel. Membranes were probed either for pPDH, Notch1, and Tubulin (H–I) or PDH,
Notch1, and Tubulin (H-ii). The immunoblots are representative of three independent experiments. The densitometry analysis (Mean ± SD from three independent
experiments) of pPDH and PDH relative to Tubulin are shown below the immunoblots. The same pool of activated Tregs was tested in (E, F). In (E–G), plots shown
as mean ± SD of readings in triplicate wells and are representative of two separate experiments. * and ** denote significant differences with p-value ≤ 0.05 and ≤0.01
respectively, ns: not significant, examined using the unpaired student’s t-test.
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calcium free media (Figure 2, Schematic-I). The addition of
Thapsigargin (TG), the ER calcium re-uptake inhibitor, resulted
in a rapid, characteristic rise of calcium (increase in fluorescence) in
the cytoplasm of control (RFP expressing) cells (Figure 2A, black
trace). The dissipation that follows, is a result of the release of
calcium into the extracellular medium (59, 60). However, only a
marginal increase in fluorescence - release of calcium from the ER
store - was observed in cells expressing NIC1, following the addition
of TG (Figure 2A, red trace). This can result from reduced calcium
in the ER lumen or a deficit in the machinery by which calcium is
released into the cytoplasm from the ER.

Next, an assay that provides direct readout of levels of free
calcium in the ER lumen was performed. This assay compared
cells expressing the ER localized FRET-based calcium sensor,
D1ER (42) co-transfected with NIC1-RFP or with RFP (Figure 2,
Schematic-II). At steady state, i.e. in cells held in culture with no
additional perturbation, D1ER fluorescence, indicative of free
calcium levels, was lower (***p<0.001, student’s t-test) in cells
expressing NIC1-RFP than in cells expressing RFP (Figure 2B,
compare black vs red trace). We recapitulated published data (54,
61) of reduced ER calcium levels (D1ER-fluorescence), in cells
expressing the anti-apoptotic protein Bcl-xL (Figure 2B, green
trace) relative to the control group. This observation was
consistent with the results of the PSD analysis and argued
against a major defect in calcium release from the ER.

In the experiments that follow the involvement of molecular
complexes that regulate inter-organelle movement of calciumwere
Frontiers in Immunology | www.frontiersin.org 7
examined for the modulation, if any, on Notch1. The transfer of
calcium between ER and mitochondria has been demonstrated in
many cell types and molecules such as IP3R3 (calcium release
from the ER), Grp75 and VDAC1, and MCU (mitochondrial
uptake of calcium), are implicated in this transfer (Figure 2C).
Changes if any, in levels of ER calcium were compared in cells
transfected with NIC1 or a control vector (Figure 2Di), against the
cellular background of RNAi mediated ablation of IP3R3 or
VDAC1 or MCU, or the scrambled control. In summary,
ablation of any one of these proteins, restored levels of ER
calcium in NIC1 expressing cells, to levels of the control group
(Figures 2Dii-Fii). Notably, there was no change in ER calcium in
RFP expressing cells (control) treated with different siRNA
(Figures 2D–F). The requirement of these molecules was also
confirmed using the PSD assay in cells expressing NIC1 or the
control vector (Supplementary Figure S2A–C). Collectively, these
experiments indicated that NIC1 modulates intracellular calcium
dynamics and this is dependent on molecules controlling calcium
release from the ER store (IP3R3) and uptake by mitochondria
(VDAC1 and MCU). Next, the status of free calcium in
mitochondria was assessed.

NIC1 Signaling Maintains Mitochondrial
Calcium Levels
To assess calcium levels in mitochondria the FRET-based
calcium sensor, 2mtD3cpv, which localizes to mitochondria
under the control of an addressing tag, was used (54). The
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FIGURE 2 | NIC1 signaling regulates ER calcium levels. Schematic (I) Timeline of experiments assessing changes in ER calcium levels. Schematic (II) Timeline of
experiments, in cells treated with siRNA before assessing changes in ER calcium levels. (A) Fluo4 fluorescence in HEK cells expressing NIC1-RFP (•) or RFP (▪), at
time-t (Ft) relative to onset (F0) measured in calcium free medium at baseline and in response to 2 mM TG. (B) YFP/CFP ratio in HEK cells co-transfected with D1ER
and NIC1-RFP (•) or, Bcl-xL-RFP (▴) or, RFP (▪) and cultured for 36 h before imaging. (C) Schematic (not to scale) depicting - IP3R3, Grp75, VDAC1 and MCU- in
the context of ER and mitochondria. (D–F) Ratio of YFP/CFP fluorescence in HEK cells, imaged 36 h after co-transfection with D1ER and NIC1-RFP (⚬) or RFP (▫), in
cells pre-treated with siRNA to IP3R3 (D-ii) or VDAC1 (E-ii) or MCU (F-ii) or scrambled control (D-F-i, NIC1-RFP (•) and RFP (▪). (D–F iii) Percent mRNA levels of
the genes as shown in panels, in cells treated with siRNA to IP3R3 (D, N=3) or VDAC1 (E, N=2) or MCU (F, N=3) and scrambled control. Data plotted as mean ± SD
of the indicated number of cells in 6-12 fields across three (A, D, F) or two (B, D) independent experiments. *** indicates significant difference at all time points with
p-values ≤0.001 and ns: not significant, examined using unpaired student’s t-test.
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sensor was co-transfected in cells with NIC1 or RFP (control
vector) and FRET measurements were performed (Figure 3,
Schematic I). The unexpected observation in these experiments
was that unlike the observations in the ER, mitochondrial
calcium levels were comparable in control (RFP) or NIC1-RFP
expressing cells (Figures 3Ai–Di). A control assay to show that
the probe can detect changes in calcium levels was also
performed and confirmed its function (Supplementary Figure
S3). However, the probe was not sensitive to small changes in
calcium levels, such as those triggered by the addition of TG to
cells (data not shown). Nonetheless, changes in mitochondrial
free calcium were readily apparent in NIC1 expressing cells,
following the RNAi-mediated ablation of VDAC1, or MCU or
IP3R3. The ablation of any one of these proteins, resulted in a
drop in the levels of mitochondrial free calcium (Figures 3Aii–
Cii) in cells co-expressing NIC1, indicating that Notch1 can
modulate mitochondrial calcium dynamics. We next tested the
effect of ablating Mitofusin (MFN)2, which regulates
mitochondrial homeostasis (62), and modulates NIC1-
mediated anti-apoptotic activity (7). Following the ablation of
MFN2 mitochondrial calcium levels remained comparable in
cells expressing NIC1or the control vector (Figure 3D).
Together, these results are consistent with a role for Notch1 in
modulating mitochondrial calcium uptake, via molecular
complexes that bridge ER and mitochondria. Thus, calcium
released from the ER is taken up by mitochondria (24, 38, 63–
65), with uptake of calcium inhibited if proteins such as VDAC1
and MCU are depleted. Therefore, blocking mitochondrial
Frontiers in Immunology | www.frontiersin.org 8
uptake of calcium from the cytoplasm would lower
mitochondrial calcium levels, as observed in the NIC1
expressing cells in the experiments.

Ligand-Dependent, Non-Nuclear NIC1
Signaling Regulates Calcium Levels
Notch1-mediated anti-apoptotic activity, albeit executed from
the cytoplasm, requires ligand-mediated processing (5–8). To
assess if this was also true for the regulation of calcium dynamics,
we expressed NIC1, tagged to addressing constructs that spatially
restrict the protein to the cytoplasm (NIC1 tagged to Nuclear
Export Sequence, NIC1-NES) or restricting it to the nucleus
(NIC1 tagged to Nuclear Localization Sequence, NIC1-NLS).
NIC1_NES or NIC1_NLS were expressed in HEK cells and
assessed in the PSD assay. Cells expressing NIC1-NES
(Figure 4A, blue trace) overlapped the patterns of cells
expressing NIC1 (Figure 4A, red trace), with little or no
signals of cytoplasmic calcium following exposure to TG. On
the other hand, in cells expressing NIC1-NLS, the release of
calcium was comparable to cells that expressed GFP alone
(Figure 4B, blue trace), indicating that enforced nuclear
localization restricted this aspect of NIC1 activity. NIC1-NLS
activity is confirmed in assays of transcription (66). To test
ligand-dependence of Notch1 activity the following was done.
HEK cells expressing the full-length form of the Notch1 receptor
(NFL) and those co-expressed with a soluble form of
extracellular domain of Jagged (sJagged), which functions as a
dominant negative and blocks the processing and cleavage of
A B

DC

FIGURE 3 | NIC1 signaling maintains mitochondrial calcium levels. Schematic (I) Timeline of experiments, for the assessment of mitochondrial calcium levels.
(A–D) Ratio of YFP/CFP fluorescence in HEK cells, imaged 36 h after co-transfection with 2mtD3cpv and NIC1-RFP (⚬) or RFP (▫) in cells pre-treated with siRNA
to VDAC1 (A-ii) or MCU (B-ii), IP3R3 (C-ii) or MFN2 (D-ii) or scrambled control (A-D-i, NIC1-RFP (•) and RFP (▪). (A-C iii) Percent mRNA of the genes as
shown in panels, in cells treated with siRNA to VDAC1 (A, N=2) or MCU (B, N=3) or IP3R3 (C, N=3) and scrambled control. (D-iii) Representative immunoblot of
whole cell lysates from cells treated with siRNA to MFN2 or scrambled control probed for MFN2 and Actin. Data plotted as mean ± SD of the indicated number
of cells in 6-12 fields across two (A, D) or three (B, C) experiments. *** indicates significant difference at any time point with p ≤ 0.001 and ns: not significant,
examined using the unpaired student’s t-test.
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Notch1 were tested (6). In cells expressing NFL, fluorescence is
blunted in response to TG (Figure 4C, red trace) as seen with
cells expressing NIC1 (Figure 4A). However, in cells expressing
tagged and NFL, the profile of calcium release and its dissipation
were comparable to cells expressing GFP (Figure 4C), indicating
that Notch1 processing to NIC1 was required for this function.
Together, the experiments show that NIC1 activity from the
cytoplasm modulates calcium homeostasis.

NIC1-NES-Mediated Treg Survival Is
Dependent on Calcium Signaling
With these leads from analysis in the HEK cell line, we next
assessed Notch1-mediated Treg survival for dependency on
molecules regulating inter-organelle calcium transfer. As
shown in Figure 5A, Notch1-dependent wildtype (WT) Tregs
survival (in cells cultured without IL-2), was compromised by the
inhibition of IP3R3 (Xestospongin C), or, Grp75 (MKT-077) or
MCU (Ru-360). The inhibitors were without effect on Tregs
viability, when cultured in the presence of IL-2 (Supplementary
Figure S4). The inhibitors were also tested in Cre+ve Notch1-/-

Tregs transduced with NIC1-NES (Figure 5B) or Bcl-xL
(Figure 5C), since both confer IL-2-independent survival in
these cells. The protective effect of NIC1-NES in Notch1-/-

Tregs was attenuated by the inhibitors, and was comparable to
cells transduced with the control vector pBABE (Figure 5B). In
cells expressing Bcl-xL, the inhibitors were without effect
(Figure 5C), ruling out generalized toxicity of these chemicals
and indicating specific regulation of Notch1 mediated survival.

Seahorse-based analysis of NIC-NES expressing (Cre+ve)
Notch1-/- Tregs, showed a restoration of mitochondrial oxphos
function (Figure 5D), which was comparable to (Cre-ve)
Notch1+/+ Tregs shown earlier in the study (Figure 1E). We
next tested the effects of inhibiting NIC1 activity or that of Grp75
on calcium dependent phosphorylation of PDH. To this end,
levels of phospho-PDH were compared in wildtype (WT) Tregs
cultured as such, or in the presence of g-Secretase Inhibitor (GSI)
to block Notch1 processing or MKT-077. As shown,
Frontiers in Immunology | www.frontiersin.org 9
phosphorylation of PDH is elevated in cells treated with GSI-X
or MKT-077 (Figure 5Ei, lanes 2 and lane 3), compared to
vehicle control treated groups (Figure 5Ei, lane 1). Levels of the
PDH enzyme remain unchanged (Figure 5Eii, row 2).
Expectedly, treatment with GSI-X (and not MKT-077),
resulted in a loss of processed Notch1 (Figure 5Ei, ii).

Notch1-Grp75 Interactions in Tregs
In further characterization, immunoblot analysis of Grp75,
VDAC1, and MCU proteins in (Cre-ve), Notch1+/+ and
(Cre+ve) Notch1-/- activated Tregs, revealed that the levels of
Grp75 protein were substantially reduced in Notch1-/- Tregs
(Figure 6A). Immunostaining for Grp75 in fixed cells confirmed
the difference (Figure 6B). However, there was no change in
Grp75 transcript levels in Cre+ve Notch1-/- cells relative to Cre-ve
Notch1+/+ Tregs (Figure 6C). Further, we observed that the levels
of Grp75 are restored in (Cre+ve) Notch1-/- cells expressing NIC-
NES (Figure 6D), to levels close to Tregs expressing the full
complement of Notch1, suggesting that the regulation is likely
post-transcriptional.

The overexpression of Grp75 by retroviral transfection in
(Cre+ve) Notch1-/- cells restored IL-2-independent survival
(Figure 6E), which was abrogated by chemical inhibition of IP3R3
or Grp75 or MCU (Figure 6E). In (Cre+ve) Notch1-/- Tregs,
expressing Grp75, basal and maximum levels of mitochondrial
respiration, assessed by Seahorse-based analysis, also showed
improvement, albeit not to the levels of NIC-NES expressing cells
tested in the same assay (Figure 6F). These data suggest a role for
Grp75 as an intermediate in the Notch1 activated pathway in Tregs.

Hence, we next examined if these molecules were associated in
immunecomplexes by immunoprecipitation of endogenous
proteins in wildtype Tregs. An antibody to Notch1 but not
control IgG, immunoprecipitated Grp75, and the associated
protein VDAC1 (Figure 6G, lane 3 vs lane 2). These results were
confirmed by reverse immunoprecipitation with an antibody to
Grp75, and the detection of both Notch1 and VDAC1 in the
associated complex (Figure 6H, lane 3). The specificity of these
A B C

FIGURE 4 | Ligand-dependent, non-nuclear NIC1 signaling regulates ER calcium levels. (A, B) Ratio of intracellular Indo-1 dye fluorescence at 405 nm and 485 nm
at baseline and in response to 2 µM TG in HEK cells measured in calcium-free medium, and imaged 36 h post-transfection with GFP (▪), NIC1 GFP (•) or NIC1-NES
GFP (•) (A) or NIC1-NLS GFP (⚬) (B). (C) Ratio of intracellular Indo-1 dye fluorescence at 405 nm and 485 nm wavelength at baseline and in response to 2 µM TG
addition in HEK cells measured in calcium-free medium, and imaged 36 h post-transfection with plasmids encoding for GFP (▪), NFL GFP (▴), GFP and sJagged (▫)
or NFL GFP and sJagged (▵). Data plotted as mean ± SD of the total number of cells indicated in parentheses, from three (A) and two (B, C) experiments.
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interactions was confirmed by the absence of proteins in the control
IgG IP (Figures 6G, H, lane 2) as well as the exclusion of Vps34 or
actin, from the Notch1 immunoprecipitated complex (Figures 6G,
H). In related experiments, NIC1 did not immuneprecipitate IP3R3
in immunecomplexes that include Grp75 (Supplementary Figure
S5). IP3R3 is a large molecular weight (~300kDa) protein and it was
relatively difficult to detect by immunoblotting in Tregs. Hence,
although not detected in immune-complexes in our experiments,
this does not definitively rule out the dynamic participation of
IP3R3 in immune-complexes formed by NIC1.
DISCUSSION

This study builds on earlier observations of Notch1-mediated
inhibition of apoptotic cascades coordinated by mitochondria
(5–8) to show that Notch1 (NIC1) activity tunes calcium uptake
Frontiers in Immunology | www.frontiersin.org 10
in mitochondria, with consequences for metabolism and
regulation of apoptosis in Tregs. Initial analysis in the
mammalian cell line HEK showed that NIC1 activity regulated
the distribution of cellular calcium as indicated by assays of
calcium dynamics and direct measures of free calcium in the ER,
a major store of cellular calcium. A siRNA based limited screen
for molecular interactions underlying Notch-mediated outcomes
revealed a dependence on IP3R3, VDAC1, Grp75, and MCU,
which have well-described roles in the movement of calcium
from the ER into mitochondria (31, 33, 38, 67). Building on these
observations and using a combination of chemical inhibitors and
functional assays in genetically ablated cells, we show that
crosstalk between NIC1 and these molecules regulates
mitochondrial metabolism and also confer IL-2 independent
survival in Tregs (Figure 7).

We show that Notch1-/- Tregs are characterized by deficits in
mitochondrial Oxphos activity and spare respiratory reserve and
A
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FIGURE 5 | NIC1-mediated Treg survival requires IP3Rs, Grp75 and MCU. (A) Percent apoptotic nuclei in activated WT Tregs cultured without IL-2 for 24 h with
vehicle control (UT) or, 5 mM Xestospongin C or, 10 mM MKT-077 or, 10 mM Ru360. (B, C) Percent apoptotic nuclei in Notch1-/- Tregs transduced with pBABE or
NIC1-NES (B) or pMIG or Bcl-xL(C), and cultured without IL-2 for 24 h with vehicle control, or 5 mM Xestospongin C or, 10 mM MKT-077 or, 10 mM Ru360. (D)
Basal and maximum OCR, computed as described in methods, in Notch1-/- Tregs transduced with pBABE or NIC1-NES. (E) Immunoblot of whole cell lysates
prepared from activated WT Tregs cells cultured with or without 10 mM GSI-X or 10 mM MKT-077 for 8 h and the samples run in duplicate. Membrane was probed
either for (p)PDH, Notch1 and Tubulin (E-i) or PDH, Notch1 and Tubulin (E-ii). The immunoblot is representative of two independent experiments. Data are mean ±
SD of three independent experiments (A–C) and readings in 4 wells from two independent experiments (D). ** indicates significant difference with p-value ≤0.01 and
ns, not significant, examined using unpaired student’s t-test.
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present evidence to suggest that these may be linked to Notch1
regulated Grp75 protein stability. Levels of Grp75 protein are
restored in Notch1 null Tregs expressing NIC-NES, with
immunoprecipitation analysis providing evidence of NIC in
stable association with the Grp75-VDAC1 complex in Tregs.
Consistently, enforced expression of Grp75 corrected, in part,
deficits in mitochondrial metabolism and conferred near complete
protection from apoptosis triggered by cytokine withdrawal in
Notch1-/- Tregs. Further, anti-apoptotic outcomes of expressing
NIC1-NES or Grp75 in Notch1-/- Tregs were dependent on IP3R3
and MCU activity, linked to the regulated uptake of calcium by
mitochondria. While the 2mtD3cpv probe did not detect increased
levels of free calcium in mitochondria, the NIC1 mediated calcium
dependent phosphorylation of PDH and Oxphos, serve as indirect
indicators of continuous uptake and utilization of calcium by
mitochondria (40).

Grp75 and IP3R3 are amongst the several proteins identified
as constituents of dynamic molecular complexes – referred to as
Frontiers in Immunology | www.frontiersin.org 11
Mitochondria associated membranes (MAM) – bridging the ER
and mitochondria (33, 34, 68). A core function of MAM is to
calibrate the transfer of calcium released from the ER and its
uptake into mitochondria (33, 63, 69). Perturbations of MAM
are reported to reduce mitochondrial calcium uptake and
increase cytosolic calcium (69, 70). The over-expression of
Grp75 has also been shown to increase MAM formation and
reduce resting ER calcium levels (33). In this context, a possibility
arising from our studies that remain to be addressed is that
Notch1 activity modulates MAM-mediated contacts. While
initial efforts have not revealed measurable differences resulting
from NIC1 activity in the cell line system, efforts to make reliable
measurements in Tregs, which have a crowded mitochondrial
organization are ongoing.

While reduced Oxphos has been shown to suppress activation
of Bcl-2 family pro-apoptotic proteins Bax and Bak (71–73), the
anti-apoptotic proteins Bcl-xL and Bcl2 are also reported to
stimulate Oxphos and promote cell survival (74–79). Further,
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FIGURE 6 | Notch1 activity regulates Grp75 protein levels. (A) Immunoblots of whole cell lysates prepared from activated Notch1+/+ (Cre-ve) and Notch1-/- (Cre+ve;
Cd4-Cre::Notch1lox/lox) Tregs, run in duplicate. Membranes were sequentially probed for Grp75, VADC1 (*VDAC1 band), and Actin (A-i) or Notch1, MCU and Actin
(A-ii). Mean ± SD values below are the densitometry analysis of Grp75, VDAC1 and MCU relative to Actin. (B) Representative Z-projected confocal images of
Notch1+/+ and Notch1-/- Tregs immune-stained with an antibody to Grp75 (green). scale bar: 5 mm. Images are representative of 106 Notch1+/+ Tregs and 82
Notch1-/- Tregs. (C) Relative transcript levels of indicated genes in Notch1+/+ and Notch1-/- activated Tregs. (D) Immunoblots of cell lysates from Notch1-/-Tregs
transduced with pBABE or NIC1-NES probed for Notch1, Grp75 and Actin. Mean ± SD values below are the densitometry analysis of Grp75 relative to Actin.
(E) Percent apoptotic nuclei in Notch1-/- Tregs transduced with pBABE or Grp75, cultured without IL-2 for 24 h with 5mM Xestospongin C or, 10 mM MKT-077 or,
10 mM Ru360. (F) Basal and maximum OCR in Notch1-/- Tregs transduced with pBABE or Grp75. Control (pBABE) condition in panels E and F are common
Figures 5B, D as these were tested in the same experiment, as described in methods. (G, H) Cell lysates of WT activated Tregs cultured for 6 h without IL-2 were
subject to immunoprecipitation using an antibody to Notch1 (G) or Grp75 (H) or, IgG (Isotype control), and associated proteins analyzed by western blotting for
Grp75, VDAC1 (*shows VDAC1), Notch1, Vps34, Actin and IgG (Isotype control). Immunoblots are representative of three independent experiments (A) or, two
independent experiments (D, G, H). Data show the mean ± SD of three independent experiments (C, E) and readings in 4 wells from two independent experiments
(F). * and ** indicates significant difference with p-value ≤0.05 and ≤0.01 respectively, and ns: not significant, examined using unpaired student’s t-test.
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other evidence in the literature indicate that Oxphos promotes
cellular adaptation and survival to several stresses including
hypoxia, low glucose, and proteotoxic stress (80–83). An
essential role for Oxphos in Treg survival in different
physiological contexts including the tumor microenvironment
has also been reported (84–88).

Cell survival in complex and changing environments associated
with inflammation is an important component determining
immune cell function. Hence, dependency on cytokine cues alone,
especially for survival, may well become bottlenecks for effective
function of the T-cell lineage, wherein cell-autonomous decisions of
cell death and survival control immune homeostasis (89–91).
Metabolic reprogramming is increasingly appreciated as a key
determinant in cell fate transitions (92–96). Unsurprisingly, NIC1
activity in Tregs is revealed by IL-2 withdrawal, mimicking nutrient
deprivation cues (5). Although we did not directly assess the role of
ligands here, the expression of Notch ligands in activated Tregs has
been reported in earlier work from our laboratory and others (5, 97).
Further, ablation of the ligand Delta-like 1 is implicated in Notch1
mediated survival of activated Tregs in IL-2 depleted medium (5).
We posit that while IL-2 is critical for Treg development, ligand-
dependent Notch1 activity is a key adaptive response for stressors
encountered in the micro-environments Tregs function in.
Dependence on ligand remains an important regulatory step
controlling pathway activation in these cells (5). However, Notch1
activity in Tregs may be critical in specific contexts and non-
essential in others (98).

In summary, we demonstrate that cross-talk between Notch1
and components regulating cellular calcium homeostasis are
important for survival and mitochondrial function in Tregs.
Notch1 is implicated in instructive fate choices, including
commitment to the T-cell lineage, as well as the regulation of
mature T-cell function (12, 99–103). Intracellular calcium signaling
is a key factor in cell signaling and physiology, controlling outcomes
as diverse as proliferation, differentiation and apoptosis. Likewise,
Notch signaling is a key regulator of cell fate decisions in metazoans
and we speculate that the consequences to mitochondrial
Frontiers in Immunology | www.frontiersin.org 12
metabolism reported here, may be more widely prevalent and
tune cell-fate decisions governed by the Notch receptor in other
cell types.
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