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Abstract Background/purpose: Revascularization procedures are used over apexification to
treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing pro-
liferation, migration, matrix deposition, and differentiation of stem cells from apical papilla
(SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone
morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/
odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.
Materials and methods: SCAPs were exposed to BMP-4 with or without signal transduction in-
hibitors. Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide assay. mRNA levels were quantified using real-time PCR. Protein
expression in SCAPs was analyzed through immunofluorescent staining or western blotting.
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Cellular protein production was measured with enzyme-linked immunosorbent assay.
Results: BMP-4 induced suppressor of mother against decapentaplegic (Smad)1/5/8 and
Smad2/3 phosphorylation and activation. It also promoted higher expression of osteogenic
and odontogenic markers, including Osterix, N-cadherin, and secreted protein acidic and rich
in cysteine (SPARC), in SCAPs. Additionally, BMP-4 stimulated connective tissue growth factor
(CTGF), plasminogen activator inhibitor-1 (PAI-1), and urokinase plasminogen activator recep-
tor (uPAR) expression, but inhibited uPA expression and production in SCAPs, indicating its role
in matrix remodeling and cell migration. Inhibition of Smad2/3 with SB431542 and Smad1/5/8
with LDN193189 attenuated the BMP-4-induced expression Osx, N-cadherin, CTGF, SPARC,
uPAR and PAI-1.
Conclusion: These results indicate that BMP-4 stimulates the osteogenic and odontogenic dif-
ferentiation of SCAPs by regulating matrix turnover and mineralization-related proteins.
Furthermore, these processes are associated with the induction of Smad2/3 and Smad1/5/8
of SCAPs by BMP-4.
ª 2025 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Infection, inflammation, and early pulp necrosis in young
permanent teeth with incomplete root formation are
commonly reported in the teeth of patients with dens
evaginatus, dental trauma, or dental caries.1 Historically,
apexification procedures, such as root canal debridement
to control infection, induction of apical root dentin barrier
formation by Ca(OH)2 or mineralized trioxide aggregate,
and root canal obturation, have been the preferred
methods.1 However, apexification is time-consuming and
the affected teeth are prone to crown or root fractures due
to the weakened remaining tooth structures and a reduced
crown-to-root ratio.1

Recently, pulp regeneration using revascularization
procedures has been successfully developed to induce
apexogenesis in the necrotic pulp of immature permanent
teeth with periapical abscesses.2e4 The procedures include
an initial root canal disinfection, inflammation control,
induced bleeding, and blood clot formation in the pulp
chamber and root canal, with or without scaffolds such as
platelet-rich fibrin, collagen plugs, or platelet-rich
plasma.5 The proliferation and migration of stem cells
from apical papilla (SCAPs) into the root canals, their
generation of extracellular matrix, and differentiation into
odontoblasts or other mineralized tissue-like cells are
considered crucial for clinical success and regenerative
endodontics.6 Various factors, including root development
stages, the genetic background of donors, and dental
inflammation, can affect the function of SCAPs. Multiple
factors, including extracellular matrix, basic fibroblast
growth factor (bFGF), insulin-like growth factor, and
transforming growthfactor beta (TGF-b) superfamily are
known to regulate SCAPs.7,8 Additionally, various extracel-
lular matrix components play a significant role in the dif-
ferentiation of the mineralized tissue-forming cells such as
periodontal ligament and dental pulp stem cells.9,10 How-
ever, more studies are necessary to understand the effect
of bone morphogenetic proteins (BMPs) on SCAPs in pulp
and root regeneration.
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The apical papilla is the soft tissue around the apical
region of an incompletely formed root. Studies on the
developing tooth germs of mini-pigs have shown that the
removal of the apical papilla from halted root formation,
even when the pulp tissue was preserved.11 Sonoyama et al.
isolated SCAPs and demonstrated their mesenchymal stem
cell characteristics, suggesting that SCAPs are the dental
mesenchymal cells responsible for root generation.12

Compared to dental pulp stem cells, SCAPs exhibit better
cell migration, quicker population doubling, and more Stro-
1-positive cells.11,13 Clinically, stem cells residing in the
apical papilla are crucial for the success of pulp regenera-
tion procedures. Similar to dental pulp stem cells, SCAPs
express odontogenic and osteogenic markers, such as
alkaline phosphatase, dentin sialophosphoprotein, and
bone sialoprotein, but with better dentinogenic poten-
tial.13 SCAPs are thereby useful for dentin repair, pulpal
and root regeneration, and even bioroot tissue engineering
when combined with scaffolds and different growth
factors.14,15

BMPs, part of the TGF-b superfamily proteins, play
pivotal roles in embryogenesis, adult tissue replacement,
and wound repair.16,17 In the early stage of tooth devel-
opment, BMP-4 is the signaling molecule driving the tran-
sition from the bud stage to the cap stage.18 During root
formation, BMP-4 is expressed in the mesenchyme sur-
rounding Hertwig’s epithelial root sheath, whereas other
BMPs are barely detectable.19 A recent study further
demonstrated that BMP-4 is expressed in ameloblasts,
odontoblasts, osteoblasts and preodontoblasts around the
developing root.20 These findings suggest that BMP-4 is
crucial for root development through cellular differentia-
tion induction. In induced pluripotent stem cell-derived
neural crest-like cells, exogenous BMP-4 enhanced the
gene expression of msh homeobox 1, dentin matrix protein
1, and dentin sialophosphoprotein, implicating an induction
of odontoblast differentiation.21 Furthermore, treatment
by BMP-4 enhanced the osteogenic differentiation of SCAPs,
which may result from up-regulation of Distal-less homeo-
box 2, osterix (Osx, Sp7), and Meis homeobox 2
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expression.22,23 To our knowledge, the effects of BMP-4 on
matrix turnover and the odontogenic differentiation of
SCAPs have not yet been investigated. Compared to other
growth factors, BMP-4 is known to be a critical regulator of
crown and root development.18e20 The interaction between
BMP-4 and SCAPs is an emerging area of research that could
significantly impact pulp regeneration therapy.

BMPs primarily form heteromeric receptor complexes
with transmembrane type I and II receptors, which then
phosphorylate and activate the kinase activities of type I
receptors, initiating subsequent signal transduction path-
ways.16,17,24 BMP-4 has been shown to bind favorably to
activin receptor-like kinase 3 (ALK3) and ALK6, but not
ALK2.25 The formation of the BMP-4-receptor complex ac-
tivates the downstream signaling effectors through both
non-canonical Smad-independent and canonical Smad-
dependent pathways. Suppressor of mother against
decapentaplegic (Smad)1, 5 and 8 (also known as Smad9)
are considered receptor-regulated Smads that mediate the
Smad-dependent pathway for BMPs. BMPs are part of the
TGF-b superfamily, comprising over 30 members, and
exhibit considerable ligand-receptor signaling promiscuity
via 7 type I and 5 type II receptors.25 While BMPs stimulate
mainly canonical ALK3 or ALK6 and Smad1, 5, 8 signaling
pathways, they also activate non-canonical pathways
including ALK5, Smad2/3 and mitogen-activated protein
kinases such as ERK, JNK, p38 and PI3K/Akt to regulate the
proliferation and differentiation in different kind of dental
mesenchymal stem cells.24e28 The effective concentrations
of BMPs are about 1e100 ng/ml in granulosa cells, tropho-
blasts or other cells.27,28 However, the effects of BMP-4 on
ALK5 and Smad2/3 signaling in SCAPs remain poorly un-
derstood. More studies are warranted to investigate the
potential application of BMP-4 in combination with SCAPs
for pulpal regeneration.

BMP-4 is essential for human tooth development and
plays a critical role in root formation.18e20 SCAPs are
thought to be precursors of root odontoblasts and potent
cell sources for dental tissue regeneration.13,29e31 During
clinical revascularization procedures, BMPs can be found
in blood clots or serum (3.2e44 pg/ml),32 released from
the dentin matrix of the root canal,33 or added exoge-
nously such as 1.5 mg/ml in collagen sponge or others for
tissue engineering.33,34 We hypothesized that BMP-4 might
potentially influence the turnover of the extracellular
matrix and the differentiation of osteoblast and odonto-
blast from SCAPs, thereby contributing to the pulpal
revascularization and regeneration. Therefore, the cur-
rent study aims to further explore the influence of BMP-4
on the differentiation (Osx, N-cadherin, secreted protein
acidic and rich in cysteine [SPARC, osteonectin] and
others), connective tissue growth factor (CTGF) and
plasminogen activation system molecules (urokinase
plasminogen activator [uPA], urokinase plasminogen acti-
vator receptor [uPAR], and plasminogen activator
inhibitor-1 [PAI-1]) that are crucial for matrix metabolism
and turnover. Additionally, the involvement of Smad-
dependent signaling in BMP-4-induced events will be
explored. The findings of this study can help us understand
these processes and develop effective methods to in-
crease the success of clinical revascularization and pulpal
regeneration procedures.
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Materials and methods

Materials

Recombinant BMP-4 was obtained from PeproTech
(PeproTech Inc. Rocky Hill, NJ, USA). NucleoSpin RNA II
and RNA isolation kits were obtained from Macherey-Nagle
(Macherey-Nagle Inc, Easton, PA, USA). Cell culture re-
agents, including glutamine, Dulbecco’s modified Eagle
medium (DMEM), penicillin, streptomycin, and fetal
bovine serum (FBS) were obtained from Life Technologies
(Thermo Fisher Scientific Ltd., Waltham, MA, USA). The 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) was obtained from SigmaeAldrich Company
(St. Louis, MO, USA). Primers for real-time PCR were syn-
thesized by Genemed (Genemed Biotechnologies, Inc.,
San Francisco, CA, USA). Western blotting luminal re-
agents and mouse-anti-human-glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) antibodies were ob-
tained from Santa Cruz Biotechnology Inc. (Santa Cruz,
CA, USA). Other antibodies used in western blotting
(Smad2/3, Smad1/5/8, p-Smad2, p-Smad3, p-Smad1/5/8,
Osx, N-cadherin, CTGF, SPARC) were obtained from Cell
Signaling Technology (Danvers, MA, USA) or Genetex
Biotechnology. The 4-(5-benzol[1,3]dioxol-5-yl-4-pyfldin-
s-yl-1h-imidazole-2-yl-)-benzamide hydrate (SB431542)
(an ALK5/Smad2/3 inhibitor) and 4-[6-[4-(1-Piperazinyl)
phenyl] pyrazolo[1,5-a]pyrimidin-3-yl]quinoline dihydro-
chloride (LDN193189) (a Smad1/5/8 inhibitor) were ob-
tained from Tocris Bioscience Company (St. Louis, MO,
USA). The enzyme-linked immunosorbent assay (ELISA)
kits for uPA, soluble uPAR (suPAR) and PAI-1 were obtained
from R & D Systems (Minneapolis, MN, USA).

Culture and characterization of SCAPs

Ethics approval was obtained from the Ethics Committee of
National Taiwan University Hospital. Informed consent was
obtained from all participants. The SCAPs used in this study
were obtained due to orthodontic demand or tooth
impaction. Phosphate-buffered saline was used to wash the
teeth, and the apical papilla tissue was separated from the
root apex with a scalpel blade and minced into small
pieces. The tissue explant method, which has been previ-
ously described, was used to culture SCAPs.35e37 Briefly,
these tissues were cultivated with DMEM comprising 10 %
FBS, 1 % glutamate, 100 ug/ml streptomycin, and 1 %
penicillin in a humidified atmosphere with 95 % air and 5 %
CO2 at 37 �C. When the outgrowing cells reached conflu-
ence, SCAPS were subcultured at a ratio of 1:3. The 3rd to
8th cell passages were utilized for this investigation.22 Flow
cytometric analysis confirmed that our cultured SCAPs
expressed mesenchymal stem cell markers such as CD105,
CD90 and CD73 as before.35e37

Effect of BMP-4 on the viability of SCAPs

The effect of BMP-4 on SCAP viability was investigated as
follows: SCAPs were seeded into 24-well culture plates
(1 � 104 or 1 � 105 cells/well) for 24 h to achieve non-
confluent and near-confluent cultures. Then, the culture



Figure 1 Effect of BMP-4 on the viability of SCAPs. (A) not confluent SCAPs (1 � 104 cells/well) were exposed to BMP-4 for 5 days.
(B) Near confluent SCAPs (1 � 105 cells/well) were exposed to BMP-4 for 5 days. Cell viability was estimated by MTT assay. Results
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Figure 2 Effect of BMP-4 on the protein expression of various differentiation markers as analyzed by western blotting or
immunofluorescent staining. (A) Osterix protein expression, (B) N-cadherin protein expression, (C) CTGF protein expression, and
(D) SPARC protein expression as analyzed by western blotting. Immunofluoresent staining for analysis of the protein expression of
(E) Osterix, N-cadherin, CTGF, and SPARC, respectively, by solvent control, and 50, 100 and 200 ng/ml BMP-4. One representative
western blotting and immunofluorescent staining (400x, original magnification) picture was shown. BMP-4: bone morphogenetic
protein-4; connective tissue growth factor; SPARC: secreted protein acidic and rich in cysteine.
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medium was aspirated and replenished by fresh DMEM
containing 10 % FBS with various concentrations of BMP-4
(0, 10, 25, 50, 100, 200 ng/ml) for five days. We collected
the cultured medium to measure various marker proteins
were expressed as % of control (as 100 %). *denotes statistically sig
(C) Morphology of SCAPs in cultured medium for 5 days, (D) Morph
One representative picture was shown. Effect of BMP-4 on the mRN
realtime PCR. (E) Osterix expression, (F) N-cadherin expression, (G
expressed as fold of control (as 1). *denotes statistically signifi
morphogenetic protein-4; SCAP: stem cells from apical papilla; M
mide; CTGF: connective tissue growth factor; SPARC: secreted pro
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using ELISA. Finally, cells were rinsed and then incubated in
a medium comprising MTT (0.5 mg/ml) for 2 h. Viable cells
converted T into formazan, which was dissolved in dimethyl
sulfoxide and quantified at an optical density of OD540 using
nificant difference when compared with solvent control group.
ology of SCAPs after exposure to BMP-4 (200 ng/ml) for 5 days.
A expression of various differentiation markers as analyzed by
) CTGF expression, (H) SPARC expression in SCAPs. Results were
cant difference when compared with control. BMP-4: bone
TT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
tein acidic and rich in cysteine.
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a Dynatech Microwell plate reader (Dynatech Labs. Inc.,
Chantilly, VA, USA).35,38e40
Effect of BMP-4 on Osx, N-cadherin, CTGF and
SPARC mRNA expression in SCAPs

To investigate the effect of BMP-4 on the expression of
various regulatory molecules related to differentiation and
mineralization, such as Osx, N-cadherin, CTGF, and SPARC,
confluent SCAPs were used. SCAPs (1.5 � 106 cells/10-cm
dishes or 6-well plates) were exposed to BMP-4 at concen-
trations ranging from 0 to 200 ng/ml for 24 h. The
MachereyeNagel NucleoSpin RNA II isolation kits were used
for RNA isolation. The isolated RNA was subjected to RNA
quantification and reverse transcription. The produced
cDNA was then subjected to real-time polymerase chain
reaction (PCR) amplification and quantification.41,42 The
PCR reaction mixtures contained a SYBR master mix, spe-
cific primer pairs, cDNA, and diethylpyrocarbonate water.
The PCR conditions were as follows: Stage 1, 95 �C for 30 s
Figure 3 Effect of BMP-4 on uPA, uPAR, and PAI-1 mRNA expressi
SCAPs to BMP-4 decreased cellular uPA mRNA expression, (B) BMP-4
PAI-1 mRNA expression, *denotes statistically significant differenc
time PCR. (D) BMP-4 also inhibited uPA protein expression, (E) B
stimulated PAI-1 protein expression in SCAPs. One representative
production of SCAPs, (H) Effect of BMP-4 on suPAR production of SCA
by enzyme-linked immunosorbant assay. Results were expressed as
when compared with control (P < 0.05). BMP-4: bone morphoge
urokinase plasminogen activator receptor; PAI-1: plasminogen act
soluble urokinase plasminogen activator receptor.
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(1 cycle); Stage 2, 95 �C for 10 s and 60 �C for 30 s for 40
cycles. The following specific primers were used: Osx
(GCCAGAAGCTGTGAAACCTC and GCTGCAAGCTCTCCA-
TAACC),43 N-cadherin (GATGTTGAGGTA CAGAATCGT and
GGTCGGTCTGGATGGCGA);44 CTGF (TTCCAGAG CAGCTG-
CAAGTA and TGGAGATTTTGGGAGTACGG),45 SPARC (AAGA
TCCATGAGAATGAGAAG and AAAAGCGGGTGG TGCAATG),46

b-actin (AAGAGAGGCATCCTCACCCT and TACATGGCTGG
GGTGTTGAA). To quantify PCR results, the delta/delta
cycle threshold values (DCt Z mean DCt [treated] - mean
delta (D) Ct [control]) were used to calculate the alter-
ations in gene expression. Changes in the study groups
relative to the control (solvent) group were measured via
the 2-DDCtmethod and used for data presentation. In all
PCR experiments, the b-actin mRNA expression was used as
the internal control.

In some experiments, SCAPs were pretreated for 1 h
with LDN193189 or SB431542 prior to co-incubation with
BMP-4 for 24 h. Following this, RNA was isolated to verify
the signaling pathways mediated by BMP-4-induced
events.
on, protein expression and production in SCAPs. (A) Exposure of
stimulated uPAR mRNA expression of SCAPs, (C) BMP-4 induced
e when compared with control (P < 0.05) as analyzed by real-
MP-4 stimulated uPAR protein expression in SCAPs, (F) BMP-4
Western blot picture was shown. (G) Effect of BMP-4 on uPA
Ps, (I) Effect of BMP-4 on PAI-1 production of SCAPs as analyzed
Mean � SE (pg/ml). *indicates statistically significant difference
netic protein-4; uPA: urokinase plasminogen activator; uPAR:
ivator inhibitor-1; SCAP: stem cells from apical papilla; suPAR:



Figure 4 The involvement of Smad2/3 and smad1/5/8 in
BMP-4 signaling. (A) Effect of BMP-4 on Smad1/5/8, p-Smad1/
5/8 and GAPDH protein expression of SCAPs,. (B) Effect of BMP-
4 on Smad2/3, p-Smad2, p-Smad 3 and GAPDH protein
expression of SCAPs. One representative Western blot picture
were shown. BMP-4: bone morphogenetic protein-4; SCAP:
stem cells from apical papilla; GAPDH: glyceraldehyde 3-
phosphate dehydrogenase.
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Effect of BMP-4 on the protein expression of Osx,
N-cadherin, CTGF, and SPARC in SCAPs

Western blotting
SCAPs (1.5 � 106 cells/10-cm dishes or 6-well culture plates)
were treated with BMP-4 for 24 h. Western blot was then
performed to analyze the expression of various matrix and
differentiation markers (Osx, N-cadherin, CTGF, SPARC).41,47

Cell lysates were prepared, and protein concentrations were
quantified using Bio-Rad protein assay kits. Equal amounts of
protein were subjected to 12 % sodium dodecyl sulfate-
polyacrylamide gel electrophoresis. The protein bands
were transferred to the polyvinylidene difluoride (PVDF)
membrane, blocked for 30 min, and then incubated for 2 h
with anti-human GAPDH, Osx, N-cadherin, CTGF, and SPARC
antibodies. After washing three times with Tris-buffered
saline with 0.1 % Tween-20 (10 mM Tris, pH 7.5; 0.1 %
Tween-20, 100 mM NaCl), the membranes were incubated
with secondary antibodies and then rinsed. The protein band
images were visualized on Fuji X-ray films by Amersham-
enhanced chemiluminescence reagents. In some experi-
ments, SCAPs were pretreated with SB431542 or LDN193189
for 1 h before the addition of BMP-4. Cells were then co-
incubated for 24 h before protein isolation to verify the
mediated signaling pathways for BMP-4-induced events.

Immunofluorescent staining
To visualize the effect of BMP-4 on protein expression in
SCAPs, cells (1 � 105 cells) were inoculated into a 24-well
plate with coverslips, and incubated in a control solvent or
numerous concentrations of BMP-4 for 24 h. Immunofluo-
rescent staining was conducted as described previously,37 by
using various antibodies including Osx, N-cadherin, CTGF,
and SPARC etc., and isotype control. Cell samples were then
subjected to 1-h staining in secondary antibodies conjugated
with tetramethylrhodamine (red fluorescence) or fluorescein
isothiocyanate (green fluorescence) for 30 min, and coun-
terstained with 1:1000 (v/v) of 4’,6-diamidino-2-
phenylindole for nucleus staining. The cellular immunofluo-
rescent staining pictures were photographed with an
Olympus IX71 microscope assisted by the DP Controller/
Manager software (Olympus Corporation, Tokyo, Japan).

Effect of BMP-4 on PAI-1, uPA, and uPAR mRNA
expression in SCAPs

SCAPs (1.5 � 106 cells/10 cm dishes) were inoculated and
treated with different concentrations of BMP-4. We isolated
the total RNA for reverse transcription and real-time PCR
analysis.36,37 The specific primer nucleotide sequences
were as follows: uPA (GCCCTCCTCTCCTCCAGAAGAA and
GTAGACGATGTAGTCCTCCTTC); uPAR (ATGGATGCTCCTCT-
GAAGAG and CACAGTCT GGCAGTCATTAG); and PAI-1
(ATGGGATTCAAGATTGATGA and TCAGTATAGTTGAACTTG
TT).36,37,48

Effect of BMP-4 on the protein expression and
production of uPA, uPAR, and PAI-1 in SCAPs

A total of 1.5 � 106 SCAPs were seeded into 10-cm culture
dishes. After cell adhesion for 24 h, cells were treated with
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various concentrations of BMP-4 (0e200 ng/ml). Western
blotting was performed as mentioned above,41,47 but the
PVDF membranes were blotted first with anti-human uPA,
PAI-1, uPAR, and GAPDH primary antibodies for 2 h. Mem-
branes were thereby hybridized in horseradish peroxidase-
conjugated secondary antibodies (Jackson ImmunoR-
esearch Laboratories, West Grove, PA, USA) for 1 h, and
images were developed and photographed by a LAS-4000
Image Reader (Fujifilm, Tokyo, Japan).

For measurement of uPA, suPAR, and PAI-1 production,
SCAPs were prepared and treated as described above. In
addition, a culture medium was collected to quantify uPA,
suPAR, and PAI-1 concentrations using ELISA.

Effect of BMP-4 on various signal transduction
pathway molecules in SCAPs

SCAPs (1.5 � 106 cells) were treated with different con-
centrations of BMP-4 for 24 h, and changes in protein
expression of different signal transduction molecules (p-
Smad2, p-Smad3, and p-Smad1/5/8) were evaluated using
western blotting, as described before.36



Figure 5 Effect of LDN193189 and SB431542 on BMP-4-induced Osx, N-cadherin, CTGF and SPARC expression in SCAPs. (A) Effect
of LDN193189 on BMP-4-induced Osx mRNA expression, (B) Effect of SB431542 on BMP-4-induced Osx mRNA expression, (C) Effect of
LDN193189 on BMP-4-induced Osx protein expression, (D) Effect of SB431542 on BMP-4-induced Osx protein expression. (E) Effect of
LDN193189 on BMP-4-induced N-cadherin mRNA expression, (F) Effect of SB431542 on BMP-4-induced N-cadherin mRNA expression,
(G) Effect of LDN193189 on BMP-4-induced CTGF mRNA expression, (H) Effect of SB431542 on BMP-4-induced CTGF mRNA
expression, (I) Effect of LDN193189 on BMP-4-induced CTGF protein expression, (J) Effect of SB431542 on BMP-4-induced CTGF
protein expression, (K) Effect of LDN193189 on BMP-4-induced SPARC mRNA expression, (L) Effect of SB431542 on BMP-4-induced
SPARC mRNA expression. For western blotting, one representative result was shown. For real-time PCR, mRNA expression results
were expressed as fold of control. *denotes statistically significant difference when compared with control. #denotes statistically
significant difference when compared with BMP-4-treated group. BMP-4: bone morphogenetic protein-4; osx: osterix; connective
tissue growth factor; SPARC: secreted protein acidic and rich in cysteine; SCAP: stem cells from apical papilla.
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Inhibition of signal transduction on BMP-4-induced
events in SCAPs

To evaluate whether BMP-4-induced events on SCAPs were
mediated by Smad2/3 or Smad1/58 signaling pathways,
SCAPs were pretreated with LDN193189 or SB431542 for 1 h
before the addition of the solvent (control) or BMP-4 (100 or
200 ng/ml). Culture medium was collected for uPA, suPAR,
and PAI-1 analysis. The cell layer was collected to isolate
RNA and proteins for real-time PCR or Western blotting
analysis of Osx, N-cadherin, CTGF, SPARC or PAI-1, uPAR
expression, as described above.

Statistical analysis

More than three independent experiments were executed.
Quantified data were examined by paired Student’s t-test.
A P-value <0.05 was considered a statistically significant
difference between the two groups.

Results

Effect of BMP-4 on the viability of SCAPs

BMP-4 had no marked influence on SCAP cell viability at
non-confluent conditions as indicated by MTT results
(P > 0.05) (Fig. 1A). BMP-4 also exhibited little stimulatory
or inhibitory effect on the viability of SCAPs at a confluent
state (Fig. 1B). Accordingly BMP-4 showed no marked ef-
fect on cell viability of SCAPs with and without SB431542
or LDN193189 (Supplement Fig. 1A and B) and BMP-4
showed little effect on cell viability even in serum-free
conditions (Supplement Fig. 1C and D). No obvious dif-
ferences in cell morphology of SCAPs was noted between
control (solvent-treated) and BMP-4 (200 ng/ml)-treated
cells (Fig. 1C and D).

Effect of BMP-4 on Osx, N-cadherin, SPARC and
CTGF mRNA expression of SCAPs

We investigated whether BMP-4 stimulates the osteoblastic
and odontoblastic differentiation of SCAPs. Our results
showed that BMP-4 at concentrations over 25 ng/ml
induced Osx mRNA expression of SCAPs (Fig. 1E). Addi-
tionally, BMP-4 at concentrations over 10 ng/ml promoted
the mRNA expression of N-cadherin (Fig. 1F), as indicated
by the result of real-time PCR. BMP-4 also stimulated CTGF
mRNA expression at concentrations greater than 25 ng/ml
(Fig. 1G). Furthermore, BMP-4 at concentrations over
10 ng/ml stimulated SPARC mRNA expression of SCAPs
(Fig. 1H).

Effect of BMP-4 on protein expression of Osx, N-
cadherin, CTGF, and SPARC in SCAPs

We also found that BMP-4 had a stimulatory effect at con-
centrations over 50 ng/ml on Osx and N-cadherin protein
expression in SCAPs, as revealed by western blotting results
(Fig. 2A and B). The results also found the stimulatory ef-
fect of BMP-4 on CTGF and SPARC protein expression in
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SCAPs (Fig. 2C and D). Similarly, immunofluorescent stain-
ing results indicated that BMP-4 increased Osx expression
(red fluorescence) in the nucleus (arrowheads) (Fig. 2E).
The protein expression of N-cadherin, as well as the CTGF
(red fluorescence) and SPARC (green fluorescence) protein
expression in the cytosol, also increased in SCAPs after
exposure to BMP-4 (Fig. 2E).
Effect of BMP-4 on expression and production of
PAI-1, uPA, and uPAR in SCAPs

Exposure to BMP-4 decreased cellular uPA mRNA expres-
sion of SCAPs (Fig. 3A). However, BMP-4 stimulated uPAR
and PAI-1 mRNA expression of SCAPs at concentrations
greater than 50 ng/ml and 25 ng/ml, respectively (Fig. 3B
and C). Accordingly, BMP-4 also inhibited uPA protein
expression (Fig. 3D), but the stimulatory effect of BMP-4
on uPAR and PAI-1 protein expression was noted in SCAPs
(Fig. 3E and F). Similarly, BMP-4 at concentrations over
10 ng/ml decreased the uPA production of SCAPs during
the five days of exposure (Fig. 3G). BMP-4 also separately
stimulated the production of both suPAR and PAI-1 in
SCAPs at concentrations above both 25 ng/ml and 50 ng/
ml (Fig. 3H and I).
Effect of BMP-4 on signaling of Smad2/3, and
Smad1/5/8 in SCAPs

BMP-4 stimulated Smad1/5/8 phosphorylation and activa-
tion at concentrations higher than 50 ng/ml (Fig. 4A).
Similarly, BMP-4 also induced Smad2 and Smad3 phosphor-
ylation of SCAPs (Fig. 4B). Both LDN193189 (1 & 5 mM) and
SB431542 effectively suppressed the BMP-4-induced phos-
phorylation of Smad1/5/8 (Supplement Fig. 2A and B).
Furthermore, LDN193189 also attenuated the BMP-4-
induced p-Smad2 and p-Smad3 protein expression in
SCAPs (Supplement Fig. 2C and D).
Effect of LDN and SB431542 on BMP-4-induced
events in SCAPs

Moreover, LDN193189 (a Smad1/5/8 inhibitor) effectively
attenuated the BMP-4-induced Osx mRNA expression of
SCAPs (Fig. 5A). SB431542 (a Smad2/3 inhibitor) also
prevented the Osx mRNA expression of SCAPs (Fig. 5B).
The BMP-4-induced Osx protein expression was also
decreased by co-treatment with LDN193189 and SB431542
(Fig. 5C and D).

LDN and SB431542 also suppressed the BMP-4-induced N-
cadherin mRNA expression of SCAPs (Fig. 5E and F).
LDN193189 & SB431542 further prevented the BMP-4-induced
CTGF mRNA expression of SCAPs (Fig. 5G and H). LDN193189
and SB431542 also attenuated the BMP-4-induced CTGF
protein expression of SCAPs (Fig. 5I and J). Accordingly,
LDN193189 and SB431542 also prevented the BMP-4-induced
SPARC mRNA expression of SCAPs (Fig. 5K and L).
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Effect of LDN193189 and SB431542 on BMP-4-
induced mRNA, protein expression, and production
of plasminogen activation-associated molecules

LDN193189 partly reversed the BMP-4-induced decrease of
uPA production in SCAPs (Fig. 6A). In contrast, LDN193189
prevented the BMP-4-induced production of suPAR and PAI-
1 in SCAPs (Fig. 6B and C). SB431542 by itself stimulated the
uPA production of SCAPs. It also attenuated the BMP-4-
induced decline of uPA production (Fig. 6D). Similar to
LDN193189, SB431542 also suppressed the BMP-4-induced
suPAR and PAI-1 production in SCAPs (Fig. 6E and F).
Western blotting results also showed that LDN193189
inhibited the BMP-4-induced uPAR and PAI-1 protein
expression (Fig. 6G). Accordingly, SB431542 further atten-
uated the BMP-4-induced uPAR and PAI-1 protein expression
in SCAPs (Fig. 6H).

Discussion

Clinical observations and animal studies strongly suggest
that stem cells residing in the apical papilla play a strong
role in root formation. Inducing the proliferation and
ingrowth of SCAPs into the root canal and pulp chamber
through the apical foramen, with subsequent extracellular
matrix protein deposition and differentiation of SCAPs, is
considered to be a key factor for pulp regeneration,
apexogenesis, and clinical success.4,49 Growth factors like
PDGF, bFGF, TGF-b, and BMPs in the blood clot, whether
released from dentin (by acidogenic bacteria, acid etching
or Ca(OH)2 treatment, and others) or added exogenously,
may potentially influence the biological activities of
SCAPs, promote the differentiation of underlying stem
cells, increase dentinogenesis, osteogenesis and cemen-
togenesis, and improve the clinical success of
apexogenesis.

While BMP-4 might induce cellular differentiation, it
showed little influence on the growth of SCAPs in the present
study. Accordingly, transfection of vascular endothelial
growth factor (VEGF) increased cell proliferation, whereas
transfection of both VEGF and BMP-2 decreased the cell
proliferation of SCAPs.50 Transfection of the BMP-2 expres-
sion vector into SCAPs showed no marked effect on cell
proliferation relative to SCAPs transfected with the control
vector.51 However, BMP4 even promotes the self-renewal of
some embryonic and somatic stem cells, as demonstrated by
Cheng et al. (2022).52 BMP-4 also stimulated the growth
(viability) of HDPCs (near confluent, 10 % FBS) at 3 and 5 days
of exposure, but not at 1, 2, and 7 days. BMP-4 also induced
the differentiation of HDPCs.53 The effect of BMP-4 on pro-
liferation and differentiation may be affected by cell den-
sity, confluent status, cell type (SCAPs, muscle stem cells,
dental pulp cells or tumor cells), BMP-4 and serum concen-
tration, exposure time, and more. This point can be
addressed in future studies.

In this study, we discovered that BMP-4 may induce the
expression of CTGF and variable osteogenic and odontogenic
differentiation markers, such as N-cadherin, Osx, and SPARC
in SCAPs. CTGF is a cysteine-rich extracellular matrix protein
involved in the control of various cellular functions and
biological processes, such as chondrogenesis, osteogenesis,
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and angiogenesis, which are crucial for skeletal repair and
regeneration.54 CTGF expression is higher in odontoblast-like
cells near dental caries and is involved in the reparative
dentinogenesis of dental pulp via stimulation of mineraliza-
tion.55 Exogenous BMP-1 was found to be internalized in
dental pulp cells to stimulate CTGF expression.56 We noticed
increased CTGF expression in SCAPs by BMP-4, suggesting
that BMP-4 and CTGF contributed to revascularization,
repair, and reparative dentinogenesis.

However, cadherins are known as important cellecell
adhesion molecules for stem cell differentiation. Moreover,
cadherins may function as both ligands and receptors.
Cadherin-mediated signaling plays important roles during
cellular proliferation, development, differentiation,
apoptosis and pathogenesis.57 There are a wide variety of
cadherins. Among these, N-cadherin plays a role during tooth
development in humans. It is essential for odontoblast dif-
ferentiation and function, both developmentally and path-
ologically.58 Re-expression of N-cadherin has been shown to
occur in cultured primary pulp cells, which differentiate into
odontoblast-like cells. In this study, the enhancement of N-
cadherin expression may suggest that BMP-4 assists odonto-
blastic and osteogenic differentiation and benefits the
dental repair and regeneration activities of SCAPs.

Osx is an essential transcription factor for osteoblast and
odontoblast differentiation.59 In Runt-related transcription
factor 2 (Runx2)-presented mesenchymal cells, Osx expres-
sion stimulates cellular differentiation into osteoblasts and
subsequently induces bone formation.60,61 Osx generally
operates downstream of Runx2, which is also vital for
osteogenesis and odontogenesis. Osx overexpression in bone
marrow-derived stem cells accelerates osseointegration
after implantation,62 SPARC, as a non-collagenous protein
rich in mineralized tissues, may regulate extracellular matrix
assembly and cross-linking. It is involved in osteoblast and
odontoblast differentiation of mineralized tissues, such as
periodontal ligament, dental pulp and bone.63,64 Cannabidiol
stimulates the osteogenic differentiation of SCAPs with the
induction of SPARC.65 The induction of Osx, CTGF, N-cad-
herin, and SPARC expression in SCAPs suggests a stimulatory
effect of BMP-4 on osteogenesis and odontogenesis. The
results indicate that BMP-4 may enhance the osteogenic and
odontoblastic differentiation of SCAPs.

Collagen is the most profound extracellular protein and
an essential component of the dentinal matrix. Plasmin, a
protease activated from plasminogen, is involved in collagen
remodeling. In addition, PAI-1 was found to accelerate
odontoblastic differentiation of SCAPs,66 and provoke
cementoblast differentiation of human periodontal ligament
stem cells.67 PAI-1 has also been observed to increase the
expression of Runx2, Osx, and Smad4 during odontogenesis,
with functions essential for extracellular matrix turnover
and bone remodeling.66 In the present research, BMP-4
decreased uPA expression and production in SCAPs. In
contrast, BMP-4 increased uPAR and PAI-1 expression and
production in SCAPs. Moreover, recombinant PAI-1 was
recently found to accelerate the odontoblast differentiation
of SCAPs,66 and uPAR was found to induce the migration and
differentiation of mesenchymal cells.68 These results indi-
cate the possible influence of BMP-4 on migration and matrix
accumulation, possibly contributing to osteogenic and
odontogenic differentiation of SCAPs.



Figure 6 Effect of LDN193189 and SB431542 on BMP-4-induced uPA, PAI-1, and uPAR expression and production in SCAPs. (A)

Effect of LDN193189 on BMP-4-induced decline of uPA production, (B) Effect of LDN193189 on BMP-4-induced suPAR production, (C)
Effect of LDN193189 on BMP-4-induced PAI-1 production, (D) Effect of SB431542 on BMP-4-induced decline of uPA production, (E)
Effect of SB431542 on BMP-4-induced suPAR production, (F) Effect of SB431542 on BMP-4-induced PAI-1 production. Results were
expressed as pg/ml (Mean � SE). *denotes statistically significant difference when compared with control. #denotes statistically
significant difference when compared with BMP-4-treated group. (G) Effect of LDN on BMP-4-induced uPAR and PAI-1 protein
expression of SCAPs as analyzed by western blotting. (H) Effect of SB431542 on BMP-4-induced uPAR and PAI-1 protein expression of
SCAPs. One representative western blotting result was shown. BMP-4: bone morphogenetic protein-4; uPA: urokinase plasminogen
activator; uPAR: urokinase plasminogen activator receptor; PAI-1: plasminogen activator inhibitor-1; SCAP: stem cells from apical
papilla; suPAR: soluble urokinase plasminogen activator receptor.
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Figure 7 Proposed mechanism of BMP-4-induced changes of
SCAP and their regulation by Smad signaling. Apical papilla is
present in the apical region of necrotic dental pulp with
infected root canals. After control of pulpal/root canal infec-
tion, induction of blood clot formation into the root canal may
serve as a scaffold for migration/proliferation of SCAP into the
root canal space. BMP-4 in the blood clot, released from dentin
or added exogenously, may stimulate both Smad1/5/8 and
Smad2/3 signaling, thereby affect the matrix accumulation,
migration or odontoblast/osteoblast differentiation via induc-
tion of Osterix, N-cadherin, CTGF, SPARC, PAI-1 and uPAR
expression/production in SCAP. BMP-4: bone morphogenetic
protein-4; SCAP: stem cells from apical papilla; connective
tissue growth factor; SPARC: secreted protein acidic and rich in
cysteine; uPAR: urokinase plasminogen activator receptor; PAI-
1: plasminogen activator inhibitor-1.
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Recently, we discovered that SCAPs express ALK1, ALK3,
ALK5, betaglycan, TGF-b-RII, and endoglin mRNA.35 It is well
known that the TGF-b superfamily of intracellular signaling
advances through non-canonical Smad-independent and ca-
nonical Smad-dependent pathways. The Smad1, Smad5 and
Smad8 (also known as Smad9) are the main signaling mole-
cules for the Smad-dependent pathway of BMPs. Intriguingly
we found BMP-4 induced canonical Smad1/5/8 and also
Smad2/3 signaling activation. Moreover, LDN193189 inhibi-
ted the BMP-4-induced p-Smad2/3 expression, and SB431542
attenuated the BMP-4-induced p-Smad1/5/8 expression,
implicating the obvious cross-talk between both signaling
mechanisms. Similarly, BMP-4 is also shown to provoke the
activation and phosphorylation of both Smad2/3 and Smad1/
5/8 in human granulosa cells.69 These results indicate that
both Smad2/3 and Smad1/5/8 pathways are important for
BMP-4-induced events.

We consistently found that SB431542 (the ALK5/Smad2/
3 inhibitor) pre-treatment and co-incubation prevented the
BMP-4-induced Osx, N-cadherin, CTGF, SPARC, PAI-1 and
uPAR expression or production. LDN193189, a Smad1/5/8
inhibitor, also attenuated the BMP-4-induced Osx, N-cad-
herin, CTGF, SPARC, uPAR and PAI-1 expression and secre-
tion in SCAPs. These results suggest that both signaling
pathways are crucial for BMP-4-induced activities in SCAPs.
SB431542 can inhibit TGF-b signaling via ALK4, ALK5, ALK7,
which contain similar kinase domains. However, it showed
no marked effects on BMP signaling via other BMP-binding
ALKs, such as ALK2, 3, 6.70 CTGF is shown to antagonize
BMP-4 and enhance TGF-b signaling.71 BMP-4 and TGF-b are
also shown to exert antagonistic effects in pulmonary ar-
tery smooth muscle cells in Smad-dependent or indepen-
dent manners.72 Accordingly, BMP-4 increased both Smad1/
5/8 and Smad2/3 signaling in granulosa cells.69 More studies
are necessary to further delineate the cross-talk of Smad1/
5/8 and Smad2/3 in BMP-4 signaling.

In conclusion, these results indicate that BMP-4 might
enhance the osteogenic and odontogenic differentiation of
SCAPs, and contribute to revascularization, repair, and
reparative dentinogenesis. For clinical pulpal regeneration
and apexogenesis, following the control of pulpal and root
canal infections, inducing blood clot formation within the
root canal can provide a scaffold for the migration and
proliferation of SCAPs into the root canal space. BMP-4
present in the blood clot, released from dentin or added
exogenously during the revascularization procedures in
combination with other scaffolds such as collagen sponge
and others, may stimulate both ALK3/6-Smad1/5/8 and
ALK5-Smad2/3 signaling. This activation influences matrix
accumulation and migration, and the differentiation of
odontoblast and osteoblast by inducing the expression and
production of Osx, N-cadherin, CTGF, SPARC, PAI-1 and uPAR
(Fig. 7). These processes are important for the success of
clinical revascularization procedures, contributing to the
calcification of root canal walls and new root formation
(apexogenesis).
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