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ABSTRACT Kroppenstedtia eburnea DSM 45196T and Kroppenstedtia pulmonis W9323T

are aerobic, Gram-positive, filamentous, chemoorganotrophic thermoactinomycetes.
Here, we report on the complete and circular genome assemblies generated using
Illumina MiSeq and Oxford Nanopore Technologies MinION reads. Putative gene clus-
ters predicted to be involved in the production of secondary metabolites were also
identified.

Isolates within the Kroppenstedtia genus are characterized as Gram-positive, nonmo-
tile, aerobic, filamentous chemotrophs capable of producing heat-resistant endo-

spores (1–3). The four species of the genus include Kroppenstedtia eburnea (1),
Kroppenstedtia guangzhouensis (2), Kroppenstedtia pulmonis (3), and Kroppenstedtia
sanguinis (3). K. eburnea DSM 45196T was isolated from a plastic surface in Germany;
subsequently, clinical isolates of the same species were identified in the United
States (1, 4). K. pulmonis W9323T was isolated from a lung biopsy sample from a 78-
year-old male patient from the United States (3). The genomes for Kroppenstedtia
eburnea DSM 45196T and Kroppenstedtia pulmonis W9323T described here were
sequenced because of their potential sources of genes encoding secondary metabo-
lites, as well as adaptation of an environmental thermoactinomycete isolated from
soil to clinical sources.

Kroppenstedtia eburnea DSM 45196T was purchased from the German Collection of
Microorganisms and Cell Cultures (catalogue number DSM45196), and Kroppenstedtia
pulmonis W9323T was obtained from the Special Bacteriology Reference Laboratory,
Centers for Disease Control and Prevention (CDC) (Atlanta, GA) (3). Cells were grown in
Trypticase soy broth from single colonies, and genomic DNA used for both libraries
was purified using the MasterPure DNA purification kit (Epicentre, Madison, WI) accord-
ing to the manufacturer’s protocol (5). MinION libraries were made with the rapid bar-
coding kit (Oxford Nanopore Technologies), and sequences were generated with
R9.4.1 flow cells and Guppy v3.2.8þbd97289. The numbers of raw reads for K. eburnea
from the MiSeq and MinION instruments were 13,310,694 and 148,000, respectively,
and those for K. pulmonis from the MiSeq and MinION instruments were 2,248,184 and
404,000, respectively. The MinION sequence N50 values were 5,681 bp and 5,607 bp for
K. eburnea and K. pulmonis, respectively. Default parameters were used for all software
unless otherwise specified. Flye v2.6 with the setting “-g 4m” formed initial assemblies
(6). Three sequential rounds of assembly corrections were performed with minimap
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v2.17-r941, using the setting “-x map-ont,” and racon v1.3.2 (7, 8). A final long-read cor-
rection was accomplished with medaka v0.11.1, with 131� and 362� coverages for K.
eburnea and K. pulmonis, respectively. Illumina MiSeq sequences (2� 250 bp) that had
been filtered with Trimmomatic v0.35 to scores of $Q30 were used with the Unicycler
v0.4.8 polishing function, which used Bowtie v2.3.4.3, SAMtools v1.3.1, and Pilon v1.23
(9–13), with 642� and 89� coverages for K. eburnea and K. pulmonis, respectively.
Polishing continued until the assembly likelihood scores no longer improved according
to ALE v20180904 (four rounds for K. eburnea fixed 20,779 variants, and two rounds for
K. pulmonis fixed 22,201 variants) (14). The 3,564,999-bp (54% GC content) and
3,345,811-bp (46% GC content) circular chromosomes for K. eburnea and K. pulmonis,
respectively, were reoriented to start with dnaA, which was located with BLAST 2.9.0þ
(15) using locus tag D1G38_003660 in Kroppenstedtia sanguinis (5). Pseudogenes were
inferred by comparing proteins aligned with DIAMOND v0.9.22 to the UniProtKB/
TrEMBL database v2019_10 (16–20). The numbers of best-match (based on bit scores)
alignments with .10% deviation in length were 88 in K. eburnea and 298 in K. pulmo-
nis. CheckM v1.0.13 estimated both assemblies as 100.00% complete (21). The genome
assemblies were annotated using PGAP v4.11, which predicted 4 and 6 CRISPR sequen-
ces in K. eburnea and K. pulmonis, respectively (22). AntiSMASH v5.1.0 and Prism v4.4.3
predicted ectoine biosynthesis capability in both genomes (23, 24). AntiSMASH found
10 additional putative biosynthetic gene clusters (BGCs) of interest (5 nonribosomal
peptide synthetases [NRPSs] and putative genes associated with siderophore produc-
tion, which may enhance pathogenicity [25]) for K. pulmonis and 6 additional BGCs
of interest (2 NRPSs) for K. eburnea. Thermonucleases can serve as virulence factors
(26, 27); 2 were predicted for K. eburnea (protein accession numbers QKI81670.1
and QKI83414.1) and 1 was predicted for K. pulmonis (protein accession number
QKG85853.1). These complete type strain genomes will be valuable for taxonomic
assignments and will aid in biosynthesis and natural product research.

Data availability. The whole-genome sequences of Kroppenstedtia eburnea DSM
45196T and Kroppenstedtia pulmonis W9323T have been deposited in DDBJ/ENA/GenBank
under the accession numbers CP048103 and CP048104, respectively. The BioProject acces-
sion number for Kroppenstedtia eburnea DSM 45196T and Kroppenstedtia pulmonis W9323T

is PRJNA602730, and the associated BioSample accession numbers are SAMN13905711
and SAMN13905715, respectively. The Kroppenstedtia eburnea DSM 45196T Illumina MiSeq
reads and Nanopore reads are available in the NCBI Sequence Read Archive (SRA) under
the accession numbers SRX7624950 and SRX7624951, respectively. The Kroppenstedtia pul-
monis W9323T Illumina MiSeq reads and Nanopore reads are available in the NCBI SRA
under the accession numbers SRX7624960 and SRX7624961, respectively.
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