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Abstract

Background: In the competing endogenous RNA (ceRNA) hypothesis, different transcripts communicate through a
competition for their common targeting microRNAs (miRNAs). Individual examples have clearly shown the functional
importance of ceRNA in gene regulation and cancer biology. It remains unclear to what extent gene expression levels
are regulated by ceRNA in general. One major hurdle to studying this problem is the intertwined connections in
miRNA-target networks, which makes it difficult to isolate the effects of individual miRNAs.

Results: Here we propose computational methods for decomposing a complex miRNA-target network into largely
autonomous modules called microRNA-target biclusters (MTBs). Each MTB contains a relatively small number of
densely connected miRNAs and mRNAs with few connections to other miRNAs and mRNAs. Each MTB can thus be
individually analyzed with minimal crosstalk with other MTBs. Our approach differs from previous methods for finding
modules in miRNA-target networks by not making any pre-assumptions about expression patterns, thereby providing
objective information for testing the ceRNA hypothesis. We show that the expression levels of miRNAs and mRNAs in
an MTB are significantly more anti-correlated than randommiRNA-mRNA pairs and other validated and predicted
miRNA-target pairs, demonstrating the biological relevance of MTBs. We further show that there is widespread
correlation of expression between mRNAs in same MTBs under a wide variety of parameter settings, and the
correlation remains even when co-regulatory effects are controlled for, which suggests potential widespread
expression buffering between these mRNAs, which is consistent with the ceRNA hypothesis. Lastly, we also propose a
potential use of MTBs in functional annotation of miRNAs.

Conclusions: MTBs can be used to help identify autonomous miRNA-target modules for testing the generality of the
ceRNA hypothesis experimentally. The identified modules can also be used to test other properties of miRNA-target
networks in general.
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Background
MicroRNAs (miRNAs) are short endogenous RNAs that
bind specific sites of messenger RNA (mRNA) targets
called miRNA response elements (MREs) with partial or
full sequence complementarity. The protein levels of the
targets are regulated by the miRNAs through the promo-
tion of RNA degradation or translational repression [1-4].
Based on the distribution of MREs on different mRNAs,
one miRNA could target multiple mRNAs, and multi-
ple miRNAs could target the same mRNA, leading to a
complex network of miRNA-mRNA interactions [5,6].
While conventionally miRNAs are considered to reg-

ulate their mRNA targets, in theory mRNAs could also
back-regulate their targeting miRNAs by affecting their
availability in binding other mRNAs [7,8]. If the expres-
sion level of an mRNA is increased, more copies of its
targeting miRNAs will bind to it and become less avail-
able for binding other targets. These other targets will
be de-repressed and their expression levels will increase.
Similarly, if the expression level of an mRNA is decreased,
more copies of its targeting miRNAs will become avail-
able. They will bind more to other targets and will
decrease their expression levels. As a result, different tar-
gets of a miRNA can buffer each other [9,10] and display
a positive correlation of their expression levels [8]. In gen-
eral, different transcripts (mRNAs and other non-coding
RNAs) with MREs of the same miRNA may compete
for the finite copies of the miRNA in a cell. This back-
regulation mechanism and its in vivo functional roles have
been coined the competing endogenous RNA (ceRNA)
hypothesis [8].
One interesting example that supports the ceRNA

hypothesis was found between the tumor suppressor gene
PTEN and its pseudogene PTENP1 [11]. The MREs of
some miRNAs that target PTEN, including miR-19b and
miR-20a, are preserved in the truncated 3’ end of the
PTENP1 transcript, which allow it to act as a miRNA tar-
get decoy for PTEN. Indeed, the expression of both PTEN
and PTENP1 was repressed by miR-19b and miR-20a in
DU145 prostate cancer cells, and their expression levels
exhibited a positive correlation across a large number of
normal human tissues and prostate tumor samples. Func-
tionally, PTENP1 was found to have tumor suppressive
activity and was selectively lost in human cancer, which
suggest a potential role of this pseudogene in the normal
functioning of PTEN in tumor suppression. Additional
evidence of the functional roles of ceRNA in human can-
cer was reported in the same study and a series of other
studies [11-15]. Regulatory interactions between mRNAs
that share common MREs had also been discovered in
plants, a phenomenon known as “target mimicry” [7,16].
At a more global scale, the idea that miRNA targets

buffer each other has been used by a number of meth-
ods to study miRNA-target interactions. Some methods

identify the subset of computationally predicted miRNA
targets with a positive correlation of expression as the
more reliable targets [17-19]. Some methods identify
“sponge”modulators ofmiRNA-target interactions, which
are RNAs whose expression is associated with changes in
the mutual information between miRNAs and their tar-
gets [14]. All these methods assume a certain degree of
generality of the ceRNA hypothesis, and require some
high-throughput expression data as input.
In contrast, a transcriptome-wide systematic test of

the ceRNA hypothesis has been lacking. It has not been
certain whether the buffering between miRNA targets
is sufficiently strong to be reflected by their expression
levels in general. Conceptually, this can be tested by a
two-step procedure, namely (1) gathering a list of miRNA-
target pairs obtained by a method not considering their
expression patterns, and (2) evaluating whether mRNAs
targeted by same miRNAs are significantly more cor-
related in expression than other mRNAs (with proper
control for effects due to co-regulation, as discussed in
detail below).While conceptually simple, there are a num-
ber of issues that make this kind of analysis practically
difficult:

1. Noisy miRNA-target networks: Current
computational methods for miRNA target prediction
have limited accuracy and consistency [20], while the
number of experimentally validated miRNA-target
pairs is small [21]. False positives and false negatives
in the miRNA target predictions would make it
difficult to identify mRNAs with common targeting
miRNAs.

2. Unshared targeting miRNAs: mRNAs targeted by a
common miRNA may individually be targeted by
other unshared miRNAs, which could affect their
expression levels separately and lower their
correlation.

3. Unshared mRNA targets: miRNAs that target a
common set of mRNAs may individually have
additional unshared targets, which could dilute the
buffering effect of their common set of mRNA
targets.

4. Partial effects at transcriptional level: The functional
effects of miRNAs on their targets are only partially
reflected by mRNA levels, while data about protein
abundance are not as widely available.

5. Other gene regulatory mechanisms: Gene expression
is regulated by a complex system that involves many
other components. Even if two mRNAs are
competing for their common targeting miRNAs,
their expression levels may not appear correlated if
they are individually affected by some other
regulatory mechanisms. In addition, a miRNA may
affect the expression level of a gene indirectly
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through its targets that directly or indirectly regulate
the gene, leading to expression patterns more
difficult to analyze.

In this study, we propose computational methods for
studying noisy miRNA-target networks that can over-
come the first three issues and tolerate the last two. The
main idea is to identify small modules in the networks,
which we call microRNA-target biclusters (MTBs), with-
out using any expression data as input. It is a novel concept
inspired by the related work on biclustering in the liter-
ature of gene expression data analysis [22]. Each MTB
consists of a set of miRNAs and a set of mRNAs, where
(1) the miRNAs target most of the mRNAs in the MTB
but few other mRNAs and (2) the mRNAs are targeted by
most of the miRNAs in the MTB but few other miRNAs.
Each MTB represents a network module that potentially
maintains a largely autonomous regulation sub-system.
By tuning the level of interactions linking members of
an MTB to non-members, and the level of missing intra-
MTB interactions allowed, the impacts of false positives
and false negatives in the interaction networks on the
MTBs (issue 1) and the degree of independence of each
MTB (issues 2 and 3) can be controlled.
To show the biological relevance of MTBs, we ana-

lyzed the expression patterns of the miRNAs and mRNAs
in our MTBs using RNA-seq data from matched cell
lines produced by the ENCODE consortium [23,24]. We
show that the MTBs identified by our methods con-
tain miRNAs more anti-correlated in expression with the
mRNAs in the same MTBs than both their other tar-
gets and random mRNA sets. As proposed in a series
of previous studies, this strong anti-correlation observed
indicates that the mRNAs in our MTBs are likely true
targets of the miRNAs in the same MTBs [25-32]. By
using formal validation procedures and considering many
different experimental settings, we show that our results
are statistically significant and robust. These results sug-
gest that despite the incomplete reflection of the effects
of miRNAs at the transcription level (issue 4) and the
presence of other transcriptional regulatory mechanisms
(issue 5), it is still possible to systematically analyze
the effects of miRNAs on their targets using RNA-seq
data.
Correspondingly, we observed stronger expression cor-

relations among mRNAs in the same MTBs even if subtle
effects due to co-regulation are controlled for. We also
found that mRNAs and miRNAs in the same MTBs have
related biological functions. Overall, our results suggest
widespread expression buffering between mRNAs com-
monly targeted by the same miRNAs, which is in line with
the ceRNA hypothesis.
In the literature of computational analysis of miRNAs,

the two main focuses have long been on identifying

miRNA-encoding regions from genomes [33-36] and on
predicting the targets of individual miRNAs [37,38]. In
line with the latest trend of studying the inter-related
miRNA-target interactions from a network perspec-
tive [27,39-44], our work introduces a new way to study
these miRNA-target networks by decomposing complex
networks into simple modules that can be more easily
analyzed.

Results and discussion
Defining MTBs and identifying them frommiRNA-target
networks
We collected computationally predicted human miRNA
targets from 5 prediction methods. We combined these
predictions to form a high-confidence set and a high-
coverage set of miRNA-target predicted interactions,
which consist of pairs predicted by at least one prediction
method with high and moderate confidence, respectively.
We also collected experimentally validated miRNA tar-
gets in human from a recent release of TarBase [21]. To
study the effects of having validated interactions in these
networks on our analyses, for both the high-confidence
and high-coverage networks, we further considered either
having only the computational predictions, or both the
computational predictions and experimentally validated
pairs combined, resulting in 4 integrated miRNA-target
networks in total (Table 1).
Each of these networks can be represented either by a

binary matrix or a bipartite graph (Figure 1). In the matrix
representation, each row corresponds to an mRNA and
each column corresponds to a miRNA. An element has
value 1 if the miRNA represented by the column targets
the mRNA represented by the row in the network, and 0
otherwise. In the graphical representation, each node in
the first part represents an mRNA and each node in the
second part represents a miRNA. There is an edge con-
necting a miRNA node and an mRNA node if the miRNA
targets the mRNA.
An idealized definition of an MTB is a set of miRNAs

and mRNAs in which each of these miRNAs targets all
thesemRNAs but not any othermRNAs, and each of these
mRNAs are targeted by all these miRNAs not any other
miRNAs (Figure 1, type R). In the matrix representation,
it corresponds to a submatrix (i.e., a subset of rows and
columns not necessarily adjacent to each other) contain-
ing only 1’s, with all other elements on these rows and
columns having value 0. In the graphical representation,
it is a biclique (fully-connected bipartite subgraph) with
no extra edges incident on these nodes. If the miRNA-
target network was free of false positive and false negative
errors, MTBs of this type would be perfect cases for test-
ing the ceRNA hypothesis since they represent totally
autonomous modules isolated from the other parts of the
network.
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Table 1 Summary statistics of the different datasets used in our study

High confidence High coverage

Dataset Type miRNAs mRNAs Interactions miRNAs mRNAs Interactions

TarBase [21] Validated 202 2,315 9,569 202 2,315 9,569

miRanda [6] Predicted 409 567 1,000 856 2,633 5,000

miRGen [68] Predicted 503 37 1,041 828 103 5,230

PicTar [69] Predicted 91 438 1,000 164 1,541 5,000

PITA [70] Predicted 290 760 1,000 582 2,708 5,000

TargetScan [71] Predicted 29 214 1,000 40 948 5,000

Union (without TarBase) Integrated 926 1,818 4,983 1,505 6,063 24,553

Expressed union (without TarBase) Integrated 163 448 701 240 2,034 4,337

Union (with TarBase) Integrated 1,063 3,711 14,548 1,631 7,208 34,111

Expressed union (with TarBase) Integrated 181 605 1,020 256 2,188 4,653

The integrated datasets involve data from all the prediction sets with or without the experimentally validated miRNA-target pairs. Among them, the expressed union
sets were formed by considering only the expressed miRNAs and mRNAs in the corresponding union sets. We used these four expressed union sets (with or without
TarBase, high confidence or high coverage) in our analyses.

In practice, however, such ideal modules rarely exist in
miRNA-target networks. Even if they do exist, they may
not be observed in our integrated networks due to possi-
ble false positives and false negatives in the networks. We
thus defined a number of other MTB types with less strin-
gent requirements, by allowing some missing 1’s in the
submatrix and/or extra 1’s in other elements on the defin-
ing rows and columns. We first defined three other types
that retain the restrictive (R) requirement that the subma-
trix should contain all 1’s (i.e., the miRNAs in an MTB
should target all mRNAs in the MTB), but either only the
defining columns are not allowed to have extra 1’s (i.e.,
only the miRNAs (mi) are restricted from having extra
interactions), or only the defining rows are not allowed to
have extra 1’s (i.e., only themRNAs (m) are restricted from
have extra interactions), or the general case (gen) that both
are allowed. The corresponding MTB types are denoted
as Rmi, Rm and Rgen, respectively. Analogously, we also
defined four loose (L) types that allow 0’s in the submatrix
(i.e., the miRNAs in an MTB are not required to target all
mRNAs in theMTB), resulting in the L, Lmi, Lm and Lgen
types (Figure 1). Having different types of MTB enabled
us to control the impacts of false positives and false neg-
atives in the input network, and the amount of crosstalk
between MTBs.
The different MTB types have drastically different num-

bers of possible occurrences in a network (Figure 1). For
some types, there is at most a linear number of MTBs
with respect to the number of mRNAs and miRNAs in the
network (types R and L). For some other types, the max-
imum number of MTBs is exponential, but the number
of maximal MTBs, i.e., MTBs not being submatrices of
other MTBs, is linear (types Rmi, Rm, Lmi and Lm). Type
Rgen could give an exponential number of maximalMTBs

in theory, but in practice a tractable number is usually
observed. Finally, type Lgen has an exponential number
of MTBs, both in theory and in practice. Consequently,
we developed a variety of algorithms to identify MTBs
of the different types, from simple graph searching algo-
rithms that can efficiently identify all MTBs of a certain
type, to algorithms that only return a subset of MTBs
with the highest scores based on the intra-MTB density of
interactions.

Expression of miRNAs andmRNAs in the sameMTBs are
significantly more anti-correlated than general
miRNA-target pairs
As a way to check whether the MTBs we identified repre-
sent modules with biological relevance, we examined the
expression levels of the miRNAs and mRNAs in human
cell lines obtained from RNA-seq experiments performed
by the ENCODE Project Consortium [23,24]. The details
of the analysis pipeline are given inMaterials andMethods
(see also Figure 2 and Additional file 1: Figure S1a). Briefly,
for each miRNA-mRNA pair in an MTB, we calculated
the Pearson correlation of their expression across the
cell lines. For each MTB, we then counted the fraction
of pairs having correlation values more negative than a
certain threshold t, multiple values of which (from -0.1
to -0.7) were tested. A large fraction of pairs having
expression correlations more negative than the threshold
would indicate that the regulatory effects of the miRNAs
on the mRNAs were sufficiently strong to be observed
in the expression data. To make sure that the negative
correlations were not obtained by random chance, we
compared these fractions with the corresponding frac-
tions in random sets of expressed miRNAs and mRNAs of
the same sizes as the identified MTBs. A p-value was then
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Figure 1 Summary on the eight types of MTB. The different types are named according to (1) whether the defining submatrix of an MTB can only
contain 1’s (restrictive, R) or is allowed to contain 0’s (loose, L), and (2) whether the miRNAs (mi) are not allowed to have extra targets, the mRNAs (m)
are not allowed to be targeted by extra miRNAs, or the general case (gen) that both are allowed. In the formal mathematical definitions, r and c
correspond to the sets of row and column indices defining an MTB, where each row corresponds to an mRNA and each column corresponds to a
miRNA. aij is the value at row i and column j of the adjacency matrix. In the matrix representation, an example is shown for each type of MTB, where
the sub-matrix enclosed by the rectangle corresponds to the example MTB. For visualization purpose, they are drawn to occupy consecutive rows
and columns, but this is not required in the actual definitions of the MTB types. Values of irrelevant cells, i.e., those not on the rows and columns
defining the MTB, are omitted. In the graphical representation, the red nodes are the mRNAs and miRNAs defining the example MTB, red lines are
edges between them, and blue lines are edges connecting them to mRNAs or miRNAs outside the MTB. In the formulas for showing the number of
MTBs of each type, R and C are the full sets of miRNAs and genes in the miRNA-target network, respectively, and |R| and |C| are their sizes. The
function connected(i, j) means the nodes in the graphical representation corresponding to row i and column j are connected, which can be formally
defined as ∃i1, i2, ..., ik ∈ r, j1, j2, ..., jk ∈ s, s.t.aij1 = ai1 j1 = ai1 j2 = ai2 j2 = ... = aik jk = aik j = 1.

computed to determine if the fractions from the MTBs
were significantly higher than those from the random
background.

In addition, we wanted to check if the negative correla-
tions were simply a general phenomenon among miRNAs
and their targets regardless of their MTB memberships.
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Figure 2 Schematic figure explaining the workflow for testing the statistical significance of expression anti-correlation of miRNAs and
mRNAs in the sameMTBs. (a) An example MTB (submatrix in cells with red borders), corresponding randommiRNA-mRNA pairs (cells with green
borders) and other targets of the miRNAs that define the MTB (cells with blue borders). (b) The expression levels of the miRNAs and mRNAs from
multiple cell lines were collected. The expression correlation between each miRNA-mRNA pair in the MTB was computed. Similar correlation values
were also computed for the two background sets (not shown). (c) For each MTB and corresponding background sets, the computed correlation
values were recorded. (d) These correlation values were compared against a threshold t (-0.1 for example), and the fraction of correlation values
more negative than t was computed. The vector of these fractional values from the MTBs was then compared to the vectors from the two
background sets by a statistical test.

We therefore repeated the above procedure using a second
background set of miRNA-mRNA pairs that composed of
miRNAs and their targets not participated in the same
MTBs.
From the results for the expressed union set with Tar-

Base interactions (Figure 3), we see that for moderate
values of the correlation threshold (-0.1 to -0.4), for most
MTB types, significantly more miRNA-mRNA pairs in
theMTBs were anti-correlated in expression than random
miRNA-mRNA pairs (panels a and b). For example, con-
sidering miRNA-mRNA pairs with expression correlation
< -0.1, all MTB types except type R had a significantly
higher fraction of such pairs than randommiRNA-mRNA
pairs at the p=0.01 level.
Importantly, themiRNA-mRNApairs in theMTBs were

also significantly more anti-correlated in expression than

miRNA-target pairs not in the same MTBs (Figure 3c,d),
which suggests that the regulatory effects of miR-
NAs are either stronger or more clearly observed on
their targets within the same MTBs than their other
targets.
Significant p-values were obtained for both the MTBs

from the high-confidence set (panels a and c) and the
high-coverage set (panels b and d). We have also repeated
our procedure for the networks without the validated
miRNA-target interactions from TarBase (Additional
file 1: Figure S2), and when related miRNAs with the
same miRNA number but different modifiers (such as
5p and 3p) were grouped (Additional file 1: Figures
S3 and S4). In all cases, the same general conclusion
was drawn, that significantly more within-MTB miRNA-
mRNA pairs were strongly anti-correlated in expression
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Figure 3 Statistical significance of the negative correlations between the expression levels of miRNAs andmRNAs in the sameMTBs. The
p-values were computed based on the expressed union sets with TarBase interactions, for (a) the high-confidence set and (b) the high-coverage
set as compared to a random background sampled from all expressed mRNAs and miRNAs; and (c) the high-confidence set and (d) the
high-coverage set as compared to a background consisting of miRNA-mRNA pairs with interactions in the input network but are not in same MTBs.
In the figures, 1E-16 represents the smallest p-value that could be outputted by our program. MTB types with no identified MTBs are omitted.

than random pairs and miRNA-target pairs not in the
same MTBs. These consistent results show that MTB
is a robust method for identifying miRNA-mRNA mod-
ules with strong expression relationships despite the fact
that gene expression data were not used in defining the
MTBs.
Figure 4 shows the distributions of fractions of miRNA-

mRNA pairs satisfying the correlation threshold in an
example setting. It can be seen that for some MTBs,
almost all miRNA-mRNA pairs (with a fraction close
to 1) had expression correlations more negative than
threshold t = −0.2. More generally, about two-third of
the MTBs had more than 20% of their miRNA-mRNA
pairs satisfying this correlation threshold. In contrast, for
both random groups of miRNAs and mRNAs, and other
miRNA-target pairs, almost none of them had expression
correlation more negative than −0.2.
Comparing the different MTB types, the general types

that allow both the miRNAs to have extra-MTB targets
and the mRNAs to be targeted by extra-MTB miRNAs
(Rgen and Lgen) produced more MTBs as expected
(Figures 5, Additional file 1: Figure S5–S7). Interestingly,

the MTBs of these two types also contained miRNAs
and mRNAs with more significant anti-correlations, and
over a broader range of correlation threshold values
(Figure 3). In contrast, due to the rigid requirements
of type R, no MTBs of this type could be discovered
from the high-coverage set and few were identified from
the high-confidence set. Even when MTBs of this type
could be found, their miRNA-mRNA anti-correlations
of expression were not statistically significant. These
results confirm the importance of explicitly consider-
ing non-fully-connected miRNA-mRNA modules and
possible errors in the input miRNA-mRNA interaction
networks.

Non-expression features can be used to identify MTBs with
strongmiRNA-mRNA expression anti-correlation
While the MTBs in general contained a significantly
higher fraction of miRNAs and mRNAs with strong
expression anti-correlation, we were interested in know-
ing whether some simple features of the MTBs could
help identify the subset of MTBs with particularly
strong expression anti-correlation without referencing
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Figure 4 Example fractions of miRNA-mRNA pairs satisfying the correlation threshold. Type Lgen MTBs were identified from the
high-confidence expression union set of miRNA-target interactions with TarBase inputs. For each MTB, the fraction of miRNA-mRNA pairs with
expression correlation more negative than t = −0.2 among the 10 cell lines was computed. The distribution of these fractional values is shown by a
histogram. Also shown are the distributions of fraction values for random groups of miRNAs and mRNAs of the same sizes as the MTBs, and for
groups of miRNAs and their target mRNAs not within same MTBs.

the expression data. This would be particularly useful
in identifying the most interesting MTBs when expres-
sion data are not available. To explore this possibil-
ity, for each MTB we identified, we computed 7 non-
expression features, including the number of mRNAs
and miRNAs in it, the density of 1’s in the MTB, in
the same rows, columns or either but outside the MTB,
and the MTB type. We then used these features to
construct a Random Forest model [45] for predicting
the fraction of miRNA-mRNA pairs within the MTB
with expression correlation more negative than t =
−0.1. Based on the results of 10-fold cross-validation,
the average area under the receiver-operator character-
istics (AUC) of ten equal-width fraction classes was
0.97, which is significantly higher than what would be
expected for random predictions (AUC=0.5), indicating

that the features were useful in identifying the MTBs
with higher fractions of strong miRNA-mRNA expression
anti-correlation.
We then looked for the features most important for

identifyingMTBs with strong expression anti-correlations
between their member miRNAs and mRNAs. An exhaus-
tive search of feature combinations identified two features
that were consistently the most important in a 10-fold
cross-validation procedure, namely the number of
mRNAs in an MTB and the fraction of miRNAs outside
an MTB that target the mRNAs in the MTB. Basically,
MTBs with very strong anti-correlations between their
miRNAs and mRNAs have a relatively small number
of mRNAs and these mRNAs are targeted by few other
miRNAs outside the MTBs, which are consistent with
the intuition that MTBs with these properties are more

Figure 5 Statistics of theMTBs identified from the high-confidence integrated expressed union set with TarBase interactions. For each type
of MTB, the average number of mRNAs per MTB, average number of miRNAs per MTB and the number of MTBs identified by our algorithm are shown.
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autonomous, although the exact relationships of these
two features with the fractions passing the correlation
threshold are not linear in general.

Comparisonwith a previousmethod
To further check if MTBs represent novel miRNA-mRNA
modules, we compared them with the miRNA regulatory
modules (MRMs) identified by the Yoon and De Micheli
method [46] from the same networks. It is one of the
fewmethods in the literature that identify miRNA-mRNA
modules from amiRNA-target network without requiring
expression data as input. We applied the same procedure
described above to check the fraction of miRNA-mRNA
pairs within each MRM identified by this method with
expression correlation more negative than a threshold.
We then collected all these fractions, and compared them
with the corresponding fractions from the MTBs. Since
type Lgen was found to be most biologically relevant in
terms of miRNA-mRNA expression anti-correlation, in
this and subsequent analyses we focus on this type of
MTBs.
We found that for all threshold values between t = −0.1

and t = −0.7, there was constantly a higher fraction of
miRNA-mRNA pairs within the MTBs passing the anti-
correlation threshold than the MRMs identified by Yoon
and De Micheli method as reflected by p-values < 0.5
(Figure 6). In many settings, the difference in these frac-
tion values was statistically significant. For example, for
all threshold values between t = −0.1 and t = −0.5,
there was always a significantly higher fraction of miRNA-
mRNA pairs in the MTBs passing the anti-correlation
threshold than those in the MRMs at the p = 0.01 level

based on the high-confidence network with TarBase inter-
actions. These results further confirm that the MTBs suc-
cessfully identified groups of miRNAs and mRNAs with
strong expression relationships from the miRNA-target
networks alone.

Potential widespread expression buffering between
mRNAs in the sameMTBs
After checking the biological relevance of MTBs, we then
used them to study whether mRNAs commonly targeted
by some miRNAs buffer each other in terms of their
expression levels. We studied this question using three
different methods.
First, we reasoned that if different mRNAs buffer each

other, they should exhibit a positive correlation of expres-
sion levels across different cell types. To test if it was the
case, we applied a procedure similar to the one we used for
testing miRNA-mRNA anti-correlations described above.
Specifically, we asked whether a significantly higher frac-
tion of mRNA pairs in the same MTBs had expression
correlation more positive than a threshold t, as compared
to random mRNA pairs and mRNA pairs targeted by the
same miRNA but not in the same MTBs.
The results (Figure 7) show that indeed significantly

more mRNA pairs within type Lgen MTBs were strongly
correlated in expression than both types of background
mRNA pairs at various values of t from 0.1 to 0.4, no mat-
ter we considered the high-confidence or high-coverage
set of miRNA target predictions, and whether experi-
mentally validated pairs from TarBase were included or
not. The p-values in the comparison with mRNA pairs
targeted by same miRNAs but not in same MTBs as

Figure 6 Comparing MTBs with the miRNA regulatory modules (MRMs) identified by the Yoon and DeMicheli method. The p-values were
computed by comparing the fractions of correlations more negative than the threshold t of miRNA-mRNA pairs within MTBs, as compared to those
from the MRMs. In the figure, 1E-16 represents the smallest p-value that could be outputted by our program.
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Figure 7 Statistical significance of the positive Pearson correlations between the expression levels of mRNAs in the same type Lgen
MTBs. The p-values were computed by comparing the fractions of correlations more positive than the threshold t of the mRNA pairs within MTBs,
as compared to (a) a background consisting of randommRNA pairs, or (b) a background consisting of mRNA pairs targeted by a common miRNA in
the input interaction network but not in same MTBs. In the figures, 1E-16 represents the smallest p-value that could be outputted by our program.

background were particularly significant (Figure 7b), indi-
cating that MTBs helped discover mRNAs with strong
expression correlations that could be hard to observe if all
targets of a miRNA were considered together as a group.
We noticed that the positive correlations observed

between mRNAs in the same MTBs are necessary but not
sufficient for showing that they buffer each other. Since
most mRNAs in the same MTB are expected to be tar-
geted by the same miRNAs, a plausible alternative expla-
nation is that the positive correlations were simply due to
independent regulation by the same miRNAs without a
feedback mechanism for the mRNAs to affect the expres-
sion level of each other. We argue that this co-regulation
mechanism cannot fully explain the significant positive
correlations observed, because mRNAs targeted by same
miRNAs but not in same MTBs were not as correlated in
expression as those in the same MTBs. Also, one possible
situation in which mRNAs cannot back-regulate their tar-
geting miRNAs, and thus they cannot buffer other mRNA
targets, is when the miRNAs have saturated expression
levels across different cell types. This was also unlikely
the case since we observed significant anti-correlations
between miRNAs and their mRNA targets in the same
MTBs.
Nonetheless, the above arguments cannot rule out

the possibility that the main function of MTBs was to
identify the more reliable miRNA-target pairs from the
noisy interaction network, and thus co-regulation effects
between mRNAs in the same MTBs were still stronger
than other mRNAs targeted by the same miRNAs accord-
ing to the network.
To more directly distinguish between co-regulation and

buffering, we applied a second analysis method. The
main idea is that if some mRNAs buffer each other, the

expression level of one mRNA would provide some infor-
mation for explaining the expression level of another
mRNA, even when the expression level of the targeting
miRNAs have already been considered. In other words,
we wanted to test if one mRNA could help explain the
expression level of another mRNA that could not be
fully explained by the miRNA targets alone. This idea
can be quantified by using partial correlation. Suppose
R,T1 and T2 represent a miRNA regulator, target mRNA
1 and target mRNA 2, respectively. We define f (R,T1)
as the correlation between R and T1, and f (R,T1|T2) as
the expected correlation between R and T1 given the
level of T2. The difference between them, d(R,T1,T2) =
f (R,T1|T2) − f (R,T1) would be negative if T2 provides
additional information for explaining the expression anti-
correlation between R and T1, and it would be close to
0 if T2 provides no additional information, such as when
T1 and T2 were independently regulated by R. A simi-
lar method based on conditional mutual information was
previously used to identify sponge modulators in miRNA-
target networks [14].
Given R and T1 from an MTB, we compared the par-

tial correlation values using other mRNAs from the same
MTB as T2 with the values obtained by using other targets
of R outside the MTB as T2. The results (Figure 8) show
that as expected, significantly more mRNAs from the
same MTBs gave a strong negative value of d(R,T1,T2)
than other mRNA targets of the miRNAs, and the results
were consistently obtained from all four miRNA-target
networks. These results suggest that the mRNAs in an
MTB do help explain the expression levels of each other
in addition to what the regulating miRNAs can explain.
Finally, we reasoned that if two mRNAs buffer each

other, they should have an expression correlation stronger
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Figure 8 Statistical significance of the extra information provided by anmRNA in our MTBs in explaining the relationship between a
miRNA and anothermRNA in the sameMTB. The p-values were computed by comparing the fractions of d(R, T1, T2) (see Materials and methods)
more negative than the threshold t of the (R, T1, T2) combinations within MTBs, as compared to a background consisting of (R, T1, T2)
combinations where R comes from the same MTBs but T1 and T2 do not. In the figure, 1E-16 represents the smallest p-value that could be
outputted by our program.

than other mRNA pairs co-regulated by the samemiRNA,
even if we consider only those within the same MTBs. In
other words, for any twomRNAs T1 and T2 from the same
MTB, if d(R,T1,T2) is strongly negative, f (T1,T2) should
be strongly positive. To test if this was the case, we picked
the top x MTBs with most negative d(R,T1,T2) values
and bottom x MTBs with most positive d(R,T1,T2) val-
ues. We then repeated the correlation analysis above (the
first method) using either only the top MTBs or only the
bottoms ones. For the 112 parameter settings we tested
involving different input networks and different values
of x and t, the top MTBs had equal or more significant
p-values in 103 of the cases (92% of the 112 settings).
This result confirmed our intuition that the top MTBs
with potentially stronger expression buffering among
its member mRNAs had their expression levels more
correlated.
Taken together, the results of the three methods show

that the mRNAs in the same MTBs are significantly cor-
related in expression, and this cannot be explained purely
by the fact that they are regulated by the same miR-
NAs. We propose that one likely alternative explanation
is that these mRNAs buffer each other in terms of their
expression levels.

mRNAs in sameMTBs have related biological functions
In addition to expression correlations, another way to
check the biological relevance of MTBs is to test whether
the genes (mRNAs) in the same MTB are enriched in
particular functional categories. We collected the Gene

Ontology (GO) [47] annotation of the genes in eachMTB,
and computed the enrichment score of each GO term
using both hypergeometric tests and EASE scores [48].
We then collected the most significant enrichment score
of each MTB to form a distribution, and compared it
with the corresponding distribution of a background set
of mRNAs, where the background was either random sets
of mRNAs with the same sizes as the MTBs, or mRNAs
targeted by same miRNAs but not included in the same
MTBs.
From the results (Figure 9 and Additional file 1:

Figure S8), it is seen that the genes in the MTBs were
indeed more functionally related than both types of back-
groundmRNA sets. The results were largely unaffected by
the exact way to compute enrichment scores (hypergeo-
metric test p-values or EASE scores), although the results
based on MTBs obtained from the high-coverage set of
miRNA-target interactions were more significant.

Functional enrichment ofmRNAs in sameMTBs is not only
due to co-expression
Since the mRNAs in an MTB were correlated in expres-
sion in general, we further tested whether co-expression
alone was sufficient to explain the functional enrichment.
To test it, we sampled random sets of mRNAs with simi-
lar sizes and expression correlation profiles as the MTBs,
and computed the hypergeometric test p-values of the GO
terms of the mRNAs in each set. We then compared the
distribution of themost significant enrichment score from
each of these sets with the scores from the MTBs.
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Figure 9 Statistical significance of the functional enrichment scores of the genes from same type LgenMTBs. The p-values were computed
based on the expressed union sets with TarBase interactions, for (a) the high-confidence set and (b) the high-coverage set. In the figures, 1E-16
represents the smallest p-value that could be outputted by our program.

The functional enrichment scores of the MTBs were
found to be significantly stronger than the scores from the
random sets of genes with similar levels of co-expression
(Figure 10), especially when MTBs were identified from
the two high-coverage miRNA-target networks. These
results show that MTBs were able to identify groups of
functionally related genes better than using co-expression
information alone.

MTB as a way to annotate miRNA functions
Finally, we explored the potential application of MTBs
in identifying functionally related miRNAs. Currently,
functional annotation of miRNAs is far less complete
than protein-coding genes. Since each MTB represents
a largely autonomous module, we hypothesized that the
miRNAs in an MTB were functionally related to one
another and to the mRNAs in the same MTB. To check if
this was the case, for each MTB, we identified GO terms
that were significantly enriched (p<0.05) based on the

GO term annotations of the mRNAs. We then checked if
these enriched GO terms were also related to the func-
tions of the miRNAs in the same MTB. Table 2 shows
several interesting examples we identified.
In the first example (MTB 1), the mRNA encoding

AAK1, MAPK1 and PDK3 were annotated with the GO
term “protein serine-threonine kinase activity”. We found
that several miRNAs in MTB 1 are able to target
the activities of the MAPK family of serine-threonine
protein kinases. miR-320a has been shown to directly
target MAPK1 activity to control the expression of
pro-inflammatory cytokines in patients with myasthenia
gravis [49]. Other miRNAs in the same MTB, miR-17
[50,51] and miR-20b [50] can both target the MAPK sig-
naling cascades to regulate cell cycle phase transition [50]
and keratinocyte differentiation [51]. In addition, miR-93
also directly modulates the activity of the protein serine-
threonine kinase, LATS2 to control tumor angiogenesis
and metastasis in human breast cancer cells [52].

Figure 10 Comparison of the functional enrichment scores of the mRNAs in sameMTBs with random co-expressed mRNAs. In the figure,
1E-16 represents the smallest p-value that could be outputted by our program.
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Table 2 Illustrating examples of usingMTBs to
functionally annotate miRNAs

Enriched GO term

MTB ID Total number
of mRNAs

mRNAs annotated
with the GO term

miRNAs

GO:0004674 Protein serine/threonine kinase activity

1 4 AAK1, MAPK1, PDK3 miR-17, miR-20b,
miR-93, miR-320a

GO:0000792 Heterochromatin

2 4 CBX5, HMGA2,
RNF20

let-7b, let-7c, let-7d,
let-7e, let-7g,
miR-185

GO:0007219 Notch signaling pathway

3 3 CDK6, TNRC6B miR-15a, miR-34a,
miR-449a, miR-497

GO:0043161 Proteasome-mediated ubiquitin-dependent
protein catabolic process

4 19 EDEM1, UBE2W,
WWP2

miR-25, miR-32,
miR-363

Each row corresponds to one example MTB.

In MTB 2, genes encoding CBX5, HMGA2 and
RNF20 are annotated by the GO term “heterochro-
matin”. The expression of HMGA2, a non-histone pro-
tein with important roles in chromosomal architecture
and oncogenic transformation, is directly targeted by
the let-7 miRNA [53,54]. Interestingly, HMGA2 also
functions as a ceRNA of Tgfbr3 through the let-7
miRNA family that commonly targets them, resulting
in the promotion of lung cancer progression [55]. Fur-
thermore, genome-wide chromatin-binding analysis sug-
gested that let-7 and miR-185 are heterochromatin-
bound miRNAs that can associate with AGO2 in the
nucleus of senescent cells to mediate transcriptional gene
silencing of proliferation-promoting genes [56]. Together,
results from previously published studies supported our
MTB classification of miR-185 and let-7 as miRNAs
important in heterochromatin-binding and/or chromatin-
remodeling.
We next examined the functions of the miRNAs in

MTB 3, the mRNAs of which are annotated by the GO
term “Notch signaling pathway”. We found that miR-34a
inhibits cell proliferation in part by directly targeting the
expression of CDK6 [57], an important cell cycle regula-
tor whose expression is dependent on the Notch signaling
pathway in T cell development [58]. Likewise, the level of
miR-497 has been shown to inversely correlate with CDK6
expression to regulate cell cycle progression [59]. Fur-
thermore, both miR-34a and miR-449a have been shown
to target the expression of Notch1 [60,61], a member
of the Notch family of receptors in human cancer cell
lines. Two of the miRNAs in MTB 3 can also target lig-
ands of the Notch receptors: miR-34a is known to directly

target Delta-like 1 [62] whereas miR-15a targets the non-
canonical notch ligand, Delta-like 1 homolog [63].
Finally, in MTB 4, the mRNA-associated GO term

“proteasome-mediated ubiquitin-dependent protein
catabolic process” is also functionally related to the three
miRNAs in the MTB. miR-25 has been shown to directly
target the E3 ubiquitin ligase, WWP2 [64] to control the
reprogramming of somatic cells to induced pluripotent
stem cells. miR-363 directly inhibits a ubiquitin-specific
protease, USP28 to promote proteasome-mediated degra-
dation of Myc in human hepatocellular carcinoma [65].
miR-93, which lies in the miR-106b-25 cluster, has been
shown to target the expression of β-TRCP2, a component
of the SCF ubiquitin ligase complex important in the
ubiquitination and subsequent proteasomal degradation
of target proteins [66].
Collectively, these examples demonstrate that enrich-

ment analysis based on the annotation of GO terms to the
mRNAs in anMTB could be used as a way to annotate the
functions of miRNAs in the same MTB.

Discussion
In this study, we have shown that mRNAs in the same
MTBs have significant expression correlations that can-
not be explained purely by the fact that they are regulated
by the same miRNAs. We have used multiple methods to
show the high possibility that these mRNAs buffer each
other in terms of expression, which suggests that ceRNAs
could play an important role in the regulation of many
mRNAs. In order to fully test the generality of the ceRNA
hypothesis, it is necessary to perform perturbation exper-
iments to see how the alteration of the expression level
of one mRNA could affect other mRNAs regulated by
the same miRNAs. Without such experimental data, in
this study we do not aim at completely proving or dis-
proving the generality of the ceRNA hypotheses. Instead,
we think the MTBs represent small miRNA-target mod-
ules that could be very useful in identifying candidate
miRNAs and mRNAs of future experimental studies in
testing hypotheses related to ceRNA.
The fact that more significant p-values were observed

for the MTB types with higher error tolerance (such as
Rgen and Lgen) suggests that analysis results could indeed
be misled by the errors present in the networks, and that
trading off the purity of modules with some error toler-
ance is a reasonable strategy to handle the current noisy
miRNA-target networks. On the other hand, although
the Rgen and Lgen types of MTBs had the most statis-
tically significant results, there could also be interesting
cases identified by the other types. For instance, type R
MTBs theoretically represent fully autonomous modules
with complete target sharing among its member miRNAs,
which are ideal cases for studying the ceRNA hypothesis.
When miRNA-target networks become more complete
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and accurate in the future, more statistically significant
results may be obtained from this and the other types of
MTB with more stringent definitions.
One aspect of MTBs that we have not yet explored in

this study is their cell-type specificity. Since MTBs are
defined purely based on the miRNA-target connections,
the different miRNAs and mRNAs in an MTB may not be
all expressed in the same cell types. It would be interest-
ing to study whether different miRNAs in an MTB usually
co-express in the same cell types and co-regulate the com-
mon mRNA targets, or express in different cell types and
act as alternative regulators.
In this work, we have focused on the use of expression

data from ENCODE, which include matched mRNA and
miRNA expression data from the same cell lines. We have
also tested mRNA-mRNA positive correlations within our
identified MTBs using a larger data set originally obtained
from more than 73,000 microarray experiments [67].
Statistically significant results were again observed, but
within a narrower range of correlation threshold t. We
will test the concept of MTBs using larger data sets in the
future.
While we have defined eight different types of MTB,

actually they can all be described by a general framework.
A detailed discussion is given in the Additional file 1.
Briefly, a general MTB can be defined as a submatrix with
an associated score, which is a combination of (1) the
missing 1’s in the MTB, (2) extra 1’s in other rows of the
defining columns, and (3) extra 1’s in other columns of
the defining rows. Each of the eight MTB types corre-
sponds to a particular way to combine these three com-
ponents. While this general model appears to be more of
theoretical interests, it actually has a real application in
helping define MTBs from weighted networks in which
each miRNA-mRNA pair is given a weight that indicates
how likely they interact. Using such a weighted network
would provide more information for analysis and avoid
defining arbitrary thresholds to form a binary network.

Conclusion
In this study, we have introduced microRNA-target
biclusters (MTBs) as a method to systematically identify
largely autonomous modules purely from the connections
in a noisy miRNA-target network. To cater for mod-
ules involving miRNAs that do not target all mRNAs
in the module, and the presence of false positives and
false negatives in the network, we have defined eight dif-
ferent types of MTB with different levels of autonomy
and error tolerance. We have shown that for some MTB
types, especially those with higher error tolerance, the
identified modules are biologically relevant by having sig-
nificant anti-correlations between their member miRNAs
andmRNAs as compared to both randommiRNA-mRNA
pairs and miRNA-target pairs not in the same MTBs. We

have checked the robustness of our method using dif-
ferent input networks (high confidence or high coverage,
with or without experimentally validated interactions),
different values of the correlation threshold t in comput-
ing p-values, and whether to pre-group related miRNAs.
The results were consistent across a wide spectrum of
parameter settings.
The identified MTBs have enabled us to study how the

expression patterns of their member mRNAs are related,
with relatively small influence from other miRNAs and
mRNAs outside the MTBs. Using three different analysis
methods, namely direct expression correlation among the
mRNAs, gain of miRNA-mRNA anti-correlation infor-
mation by conditioning on another mRNA, and separate
correlation analyses ofMTBs with the strongest andweak-
est information gain, we have shown that there is strong
correlation between the expression levels of mRNAs in
the same MTBs that can well be explained by expression
buffering as stated in the ceRNA hypothesis. These results
show that although the regulatory effects of miRNAs are
only partially reflected by the expression levels of their tar-
get mRNAs, and mRNA expression is affected by other
regulatory mechanisms, it is still possible to use transcript
levels to study the effects of miRNAs by decomposing a
complex and noisy network of miRNA-target interactions
into small modules that can be analyzed individually.
In the long term, the methods proposed in this study

should be extended tomodel the hierarchical relationships
between different MTBs and incorporate other regulatory
mechanisms, to provide a more complete picture of the
complex interactions between various types of biological
objects in gene regulatory networks.

Materials andmethods
Construction of miRNA-target networks
We collected experimentally validated human miRNA-
target pairs from TarBase (v6.0) [21], which contained
one of the most comprehensive sets of validated miRNA-
mRNA interactions.We considered only the experimental
types that likely report directmiRNA-mRNA interactions,
namely PCR, ReportGeneAssay and Sequencing.
In addition, we gathered computationally predicted

human miRNA-mRNA interactions using 5 meth-
ods based on different prediction approaches, namely
miRanda (Aug 2010) [6], miRGen (v2.0) [68], PicTar
(Hg18) [69], PITA (v6) [70] and TargetScan (6.0) [71].
The dataset for miRanda used was the human predic-
tions with “Good mirSVR score, Conserved miRNA”,
downloaded from http://cbio.mskcc.org/microrna_data/
human_predictions_S_C_aug2010.txt.gz. The miRGen
data file was downloaded from http://diana.cslab.ece.
ntua.gr/data/public/TF_GENEID_miRNA_sorted.txt. The
dataset for PicTar was the PicTar2 predicted target
genes with conservation at the mammals’ level based on

http://cbio.mskcc.org/microrna_data/human_predictions_S_C_aug2010.txt.gz
http://cbio.mskcc.org/microrna_data/human_predictions_S_C_aug2010.txt.gz
http://diana.cslab.ece.ntua.gr/data/public/TF_GENEID_miRNA_sorted.txt
http://diana.cslab.ece.ntua.gr/data/public/TF_GENEID_miRNA_sorted.txt


Yip et al. BMC Genomics 2014, 15:1178 Page 15 of 21
http://www.biomedcentral.com/1471-2164/15/1178

RefSeq gene models and human hg18 reference assem-
bly, downloaded from http://dorina1.mdc-berlin.de/
rbp_browser/hg18.html, choosing all genes in database
in option 1 and all mammals’ miRNAs in database in
option 2. For PITA, the Human Top predictions of
miRNA targets were downloaded from http://genie.
weizmann.ac.il/pubs/mir07/catalogs/PITA_targets_hg18_
0_0_TOP.tab.gz. For TargetScan, the data used were
the predicted conserved targets, downloaded form
http://www.targetscan.org/vert_61/vert_61_data_download/
Predicted_Targets_Info.txt.zip.
The gene names in all data files were converted to offi-

cial gene symbols using the lookup table in HGNC [72].
Records with unrecognized gene names were ignored.
A high-confidence interaction network was constructed

by taking the union of the 1,000 highest-scoring predic-
tions from each method (where the number for miRGen
was slightly larger due to ties in prediction scores). A
second network was constructed by adding to this net-
work the experimentally validated interactions in TarBase.
Similarly, two high-coverage interaction networks were
constructed by taking the union of the 5,000 highest-
scoring predictions from each method, one with TarBase
interactions and one without.

Expression data
To study the expression levels of miRNAs and mRNAs
across different cell types, we collected RNA-seq data in
whole cells of human cell lines from ENCODE [23,24],
namely A549, AGO4450, BJ, GM12878, H1-hESC, HeLa-
S3, K562, MCF7, NHEK and SK-N-SH, which contained
the largest number of non-zero expression values for our
mRNAs and miRNAs among all the human cell lines
with RNA-seq data available from ENCODE at the time
of collection. We used long PolyA+ RNA data to com-
pute expression levels of mRNAs, and short total RNA
data for miRNAs. Expression levels were computed by the
number of reads mapped to each gene per kilobase per
million reads (RPKM).We combined values frommultiple
replicates of the same experiment by taking their average.
As our goal was to study expression relationships

between miRNAs and mRNAs, we focused on the set
of mRNAs and miRNAs with non-zero expression val-
ues in at least 8 of the 10 cell lines. Considering
only these miRNAs and mRNAs, we obtained the four
integrated networks used in our analyses, namely the
high-confidence/high-coverage expressed union network
with/without TarBase interactions (Table 1).

Definitions of MTBs and identification algorithms
As described in the Results section, we defined eightMTB
types that differ in whether missing 1’s are allowed in
the defining submatrix, and whether extra 1’s are allowed
in the defining rows and columns outside the MTB

(Figure 1). Here we provide detailed definitions of the
eight types, and describe the corresponding algorithms for
identifying the MTBs of each type from a miRNA-target
network. In our analyses, by default we considered only
MTBs containing at least two mRNAs and at least two
miRNAs. For the analysis of positive expression correla-
tions between mRNA pairs, in order to avoid having only
one correlation value per MTB, we further considered
only MTBs with at least 3 mRNAs.

Type R
Type R is the most restrictive type that requires each par-
ticipating miRNA to target all participating mRNAs but
no other mRNAs, and each participating mRNA to be tar-
geted by all participating miRNAs but no other miRNAs.
In the matrix representation, anMTB of this type is a sub-
matrix with all 1’s, and all other elements on the same
rows and columns are 0’s. Since each row and each column
can participate in at most one MTB, the total number of
MTBs is at most min(|R|, |C|), where R and C are the sets
of all rows (i.e., mRNAs) and all columns (i.e., miRNAs),
respectively, and the notation |X| denotes the size of any
set X.
We developed an algorithm to identify all MTBs of this

type from a miRNA-target network in linear time. The
basic idea is to use the columns with 1’s in a row as
its signature, and group all rows with the same signa-
ture together with the help of a hash table. Similarly, we
defined the signature of a column as the rows at which
it has 1’s, and grouped all columns with the same signa-
ture together. For each group of rows, if the columns in its
signature do not have 1’s at other rows, it forms an MTB
with these columns. Otherwise, by the definition of type
R MTB, the whole group of rows cannot be members of
any MTB. In this algorithm, whether there are other 1’s
in these columns can be efficiently checked by the follow-
ing method. Suppose r is the group of rows, c is the set
of columns defining its signature, and j is one of these
columns. All columns in c do not have other 1’s if and only
if j belongs to a group with signature r for all j ∈ c.
The pseudocode of the whole algorithm is given in

Additional file 1: Algorithm 1.

Type Rmi
Type Rmi is the same as type R except that the mRNAs of
anMTB are allowed to be targeted by additional miRNAs.
In the matrix representation, extra 1’s are allowed in other
columns of the defining rows. There can be an exponential
number of type Rmi MTBs, because if (r, c) is an MTB,
then (r, c′) is also an MTB for any set of columns c′ ⊂ c.
On the other hand, if we define a maximal MTB as one
that is not a submatrix of anotherMTB, then each column
can participate in at most one maximal MTB. Therefore
the total number of maximal MTBs is at most |C|.

http://dorina1.mdc-berlin.de/rbp_browser/hg18.html
http://dorina1.mdc-berlin.de/rbp_browser/hg18.html
http://genie.weizmann.ac.il/pubs/mir07/catalogs/PITA_targets_hg18_0_0_TOP.tab.gz
http://genie.weizmann.ac.il/pubs/mir07/catalogs/PITA_targets_hg18_0_0_TOP.tab.gz
http://genie.weizmann.ac.il/pubs/mir07/catalogs/PITA_targets_hg18_0_0_TOP.tab.gz
http://www.targetscan.org/vert_61/vert_61_data_download/Predicted_Targets_Info.txt.zip
http://www.targetscan.org/vert_61/vert_61_data_download/Predicted_Targets_Info.txt.zip
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We modified the algorithm for type R to identify all
maximal MTBs of type Rmi. For each column, we defined
its signature as the rows at which it has 1’s. We then
grouped all columns with the same signature with the help
of a hash table. Each resulting group of columns and the
rows in their signatures form a maximal type Rmi MTB,
with no additional checking required.
The pseudocode of the algorithm is given in Additional

file 1: Algorithm 2.

Type Rm
Type Rm is the transpose of type Rmi. It allows each
miRNA of an MTB to target other mRNAs outside the
MTB, but does not allow the mRNAs to have other target-
ingmiRNAs. Using the same argument for type Rmi, there
can be an exponential number of type Rm MTBs, but at
most |R| maximal MTBs.
The algorithm we used for identifying all maximal type

Rm MTBs is analogous to the one for type Rmi, except
that we grouped rows based on their signatures instead.
The pseudocode of the algorithm is given in Additional

file 1: Algorithm 3.

Type Rgen
Type Rgen maintains the requirement that all miRNAs
participating in an MTB must target all participating
mRNAs, but themiRNAs are allowed to have other targets
and the mRNAs are allowed to be targeted by other miR-
NAs. This type of MTBs is best described by the graphical
representation, where each MTB is a biclique, i.e., a com-
plete subgraph with all the miRNA nodes connecting to
all the mRNA nodes. Again, there can be an exponential
number of MTBs, as each subgraph of a type Rgen MTB
is also a type Rgen MTB. There can also be an exponen-
tial number of maximal type Rgen MTB. For example, if
there are 2|C| −1 rows and the signature of each row is the
same as its index, i.e., the first row has signature 000...001,
the second row has signature 000...010, the third row has
signature 000...011, and so on, then each of the 2|C| − 1
non-empty column combinations participates in a differ-
ent maximal MTB. Because of the exponential number of
possible maximal MTBs, and the fact that finding maxi-
mal bicliques is NP hard [73], in theory it is infeasible to
identify all maximal type Rgen MTBs in a miRNA-mRNA
network.
In practice, however, both the number of maximal type

Rgen MTBs and the size of each are small in the networks
we studied. We therefore used an iterative algorithm to
find all maximal type Rgen MTBs, based on the Apriori
algorithm proposed for association rule mining [74,75].
The basic idea is that if (r, c) is a type Rgen MTB, then for
any c′ ⊂ c, (r, c′) must also be a type Rgen MTB. One can
then iteratively discover MTBs with two columns, three
columns, and so on, by testing k-column sets in the k-th

iteration, constructed by merging two (k−1)-column sets
in the previous iteration.
The pseudocode of the algorithm is given in Additional

file 1: Algorithm 4.

Type L
The definition of type L MTB involves three rules. First,
each participating miRNA is allowed to target only some
of the participating mRNAs, but it cannot target any other
mRNAs. Second, each participating mRNA is allowed to
be targeted by only some of the participating miRNAs,
but it cannot be targeted by other miRNAs. Finally, in
the graphical representation, the nodes that represent the
participating rows and columns should all be connected,
i.e., there should be a path between any two nodes. In
other words, each type LMTB is a connected component.
Since each row and each column can participate in at most
one MTB, the total number of type L MTBs is at most
min(|R|, |C|).
We used a standard breadth-first search algorithm to

find all connected components, i.e., all type L MTBs, in
linear time.
The pseudocode of the algorithm is given in Additional

file 1: Algorithm 5.

Type Lmi
Type Lmi MTB differs from type L by allowing the par-
ticipating mRNAs of an MTB to be targeted by additional
miRNAs outside the MTB. Since each type Rmi MTB is
also a type Lmi MTB, there is at maximum an exponential
number of type Lmi MTBs in a miRNA-target network.
Since each column can participate in at most one maxi-
mal MTB, there are no more than |C| maximal type Lmi
MTBs.
It is easy to see that the set of maximal type LmiMTBs is

exactly the same as the set of maximal type L MTBs. The
algorithm for finding all maximal type L MTBs can thus
be used for finding all maximal type Lmi MTBs. However,
we did not adopt this approach for two reasons. First, by
doing so it would be meaningless to define type L and type
Lmi MTBs as two separate types. Second, a maximal type
Lmi MTB is likely to have many member miRNAs and
mRNAs not having interactions, leading to a low density
of interactions within the MTB.
We therefore developed an algorithm for finding high-

scoring type Lmi MTBs instead. The score of an MTB is
defined as the density of 1’s in the defining sub-matrix,
where the density of 1’s in an MTB is defined as the num-
ber of 1’s divided by the total number of elements in the
submatrix. The algorithm starts with the set of maximal
type Rmi MTBs, which all have an interaction density of
one by definition. We then removed MTBs that are too
similar to another one. After that, for each column not in
any MTB, we tested if it was reasonable to add it and all
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rows with a 1 in that column to the MTB. If the result-
ing density of 1’s in the new MTB did not drop below
a certain threshold (which we set to 0.3), we considered
the addition of the column as reasonable. If there were
multiple reasonable additions, we chose the one with the
highest resulting density of 1’s and repeated the process.
Otherwise, the current MTB was returned as one of the
high-scoring type Lmi MTBs.
The pseudocode of the algorithm is given in Additional

file 1: Algorithm 6.

Type Lm
Type Lm MTB is the transpose of type Lmi MTB. All the
discussions about type Lmi MTBs can be applied to type
LmMTBs by swapping the rows and columns.
The pseudocode of the algorithm for finding all high-

scoring type Lm MTBs is given in Additional file 1:
Algorithm 7.

Type Lgen
Type Lgen has the most relaxed definition among the
eight types, and is likely the most practical one. Each
miRNA in a type LgenMTB is allowed to target only some
of the mRNAs in the MTB, and is allowed to target other
mRNAs. Likewise, each mRNA is allowed to be targeted
by only some of the miRNAs in the MTB, and is allowed
to be targeted by other miRNAs. To avoid having com-
pletely unrelated miRNAs and mRNAs in the same MTB,
we maintained the connectedness requirement from type
L. Since type Rgen is a special case of type Lgen, there can
also be an exponential number of type Lgen MTBs. On
the other hand, the number of maximal MTBs is limited
by the number of connected components in the network,
which is at most O(min(|R|, |C|)).
Due to the exponential number of type Lgen MTBs,

both theoretically and practically, it is infeasible to return
all of them. On the other hand, it is also not meaningful
to return all maximal MTBs, since they are usually very
sparse and contain miRNAs and mRNAs that are only
weakly connected. Therefore as in the cases of type Lmi
and type Lm MTB, we adopted a different approach to
return high-scoring MTBs, which are MTBs with a high
density of 1’s within the defining submatrices. We devel-
oped an algorithm to find these high-scoringMTBs, based
on some ideas from a previously method proposed for
finding communities in partite networks [76]. First, we
used the algorithm for type Rgen MTBs to find all max-
imal bicliques, and called each of them a bicluster. We
then removed biclusters that are too similar to another
one. After this step, we iteratively added extra rows or
columns to each MTB in ways similar to the algorithms
for type Lmi and type Lm MTBs, except that when a col-
umn/rowwas added to anMTB, it was not required to also
add the rows/columns with 1’s in the adding column/row.

For each bicluster, the best addition was kept. The pro-
cess was repeated until nomoremRNAs ormiRNAs could
be added without causing the density to drop below a
threshold.
The pseudocode of the algorithm is given in Additional

file 1: Algorithm 8.

Workflow for expression correlation analyses
We used a unified workflow for studying the negative
correlations between miRNAs and mRNAs in an MTB
(Figure 2 and Additional file 1: Figure S1a). Each time we
considered one of the four integratedmiRNA-target inter-
action networks of expressed miRNAs and mRNAs as
input (Table 1, High-confidence/high-coverage expressed
union with/without TarBase interactions). MTBs of the
different types were identified from the network using the
algorithms described above. For each MTB, we calculated
the Pearson correlation between the expression levels of
each pair of participating miRNA and mRNA across the
human cell lines. We then summarized all these correla-
tions by computing the fraction of them more negative
than a correlation threshold t, multiple values of which
(-0.1 to -0.7 with a step size of 0.1) were tested. After
collecting all these fractions from the MTBs of a particu-
lar type, we compared them with the fractions from two
backgrounds. The first one involved 1,000 random sets
of expressed miRNAs and mRNAs with sizes matching
the size distribution of the actual MTBs. The second one
involved the same miRNAs and their other targets not
included in the sameMTBs as them. To quantify the com-
parisons, we used Wilcoxon rank-sum test to calculate a
one-sided p-value for each MTB type at each value of t.
A significant p-value would mean the fractions from the
MTBs were significantly higher than the set of fractions
in comparison. As our goal was to compare the results in
various parameter settings rather than emphasizing on the
significance of one particular set of results, the reported
p-values were not corrected for multiple hypothesis test-
ing. We remark that if one was to use the concept of MTB
to identify one set of reliable miRNA-target modules for
downstream analyses, the statistical significance of such
modules should be carefully corrected taking into account
the number of hypothesis tests performed.
We also repeated the analysis when different miRNAs

with the same miRNA numbers but different modifiers
(such as has-mir-121a and hsa-mir-121b) were grouped
together. The expression value of each group was defined
as the average expression of the member miRNAs.
In the same way, we also tested the positive correla-

tions between mRNAs in same MTBs, in which case we
computed the fractions of pairs with expression correla-
tion higher than a threshold t, where t took values from
0.1 to 0.7. The fractions obtained from mRNA pairs in
sameMTBs were first compared to fractions from random
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pairs of expressed mRNAs, and then to pairs of mRNAs
targeted by the same miRNAs but were not in the same
MTBs.

Predicting MTBs with strongmiRNA-mRNA expression
anti-correlation
We developed a method for predicting MTBs with strong
miRNA-mRNA expression anti-correlation when expres-
sion data are unavailable. For each MTB, we constructed
seven non-expression features, namely 1) its number of
mRNAs, 2) its number of miRNAs, 3) the density of 1’s
in its submatrix, 4) the density of 1’s in other rows of
the defining columns, 5) the density of 1’s in the other
columns of the defining rows, 6) the density of 1’s in the
other rows of the defining columns or the other columns
of the defining rows, and 7) the MTB type. Each MTB
was thus represented by a vector of seven numeric values.
The goal was to identify the anti-correlation class of each
MTB, where ten equal-width classes were defined based
on the distribution of average anti-correlation values of
the MTBs. We then took 9/10 of the MTBs to train a Ran-
dom Forest model using the implementation inWeka [77],
and tested its accuracy using the remaining 1/10 of MTBs
with their anti-correlation classes hidden. We repeated
the process with 10 random sets of training-testing data,
and reported their average area of the receiver operator
characteristics (AUC).

Comparison with miRNA regulatory modules from Yoon
and DeMicheli
We compared the miRNA-mRNA expression anti-
correlation with the miRNA regulatory modules (MRMs)
from Yoon and De Micheli [46]. We implemented this
method and applied it to find MRMs from each of our
input miRNA-target networks. For each identified MRM,
we computed the fraction of miRNA-mRNA pairs with
expression correlation more negative than a threshold t.
We then compared these fraction values with the frac-
tion values from our type Lgen MTBs using a one-sided
Wilcoxon rank-sum test. A significant p-value would indi-
cate that the fraction values from the MTBs were signifi-
cantly higher than the MRMs.

Workflow for testing whether correlated expression of
mRNAs were more likely due to buffering than
co-regulation
To test if the correlated expression of two mRNAs in the
sameMTB is due to buffering or co-regulation, we applied
amethod similar to the one in Sumazin et al. [14]. The idea
is to compute d(R,T1,T2) = f (R,T1|T2)− f (R,T1), where
R is a regulating miRNA, T1 and T2 are twomRNA targets
of it, f is the Pearson correlation function, and f (R,T1|T2)
is defined as the expected correlation between R and T1
after dividing the cell lines into two groups based on the

expression value of T2 (above mean and below mean). If
d(R,T1,T2) is negative, it would mean that the expression
relationship between R and T1 can be better explained
when the expression of T2 is known, and thus T1 and T2
are not independently regulated by R, but they affect each
other possibly due to buffering.
To globally test if the (R,T1,T2) combinations in our

MTBs have significantly more negative d(R,T1,T2) val-
ues than combinations involving the same R but T1 and
T2 outside our MTBs, we used a procedure similar to
checking the anti-correlations between miRNAs and tar-
gets in MTBs, but with the distribution of anti-correlation
values replaced by these d(R,T1,T2) values. The frac-
tion of (R,T1,T2) combinations with a d(R,T1,T2) value
more negative than a threshold t was computed for each
MTB, and the resulting distribution of fractions from all
MTBs was compared to the background distribution with
the same R’s but T1’s and T2’s outside the MTBs using a
one-sided Wilcoxon rank-sum test.
Based on the above calculations, we also collected x

MTBs with the most negative d(R,T1,T2) values and the
x with most positive d(R,T1,T2) values. We called the
former set of MTBs the “top” MTBs and the latter set
the “bottom” MTBs as the former set was expected to
exhibit stronger expression buffering among the mRNAs
in each of them. We then used our correlation pipeline
to test if the mRNA-mRNA correlations were significantly
stronger than other mRNA pairs targeted by the same
miRNAs but were not in the same MTBs based on differ-
ent values of the correlation threshold t. Considering the 4
input miRNA-target networks, 4 values of x (100, 200, 500
and 1000), and 7 values of t (0.1 to 0.7), we compared the
p-values from the top MTBs and from the bottom MTBs
under the 4 × 4 × 7 = 112 parameter settings.

Workflow for functional enrichment analyses
We also setup a workflow for evaluating the func-
tional relationships between the genes in same MTBs
(Additional file 1: Figure S1b). For eachMTB, we collected
the terms associated with each gene (mRNA) defined in
Gene Ontology [47]. For each term, we then computed a
p-value using hypergeometric test, to indicate the enrich-
ment of the term in this set of genes as compared to the
background set of all genes. To ensure robustness of our
results, we also computed EASE scores as defined on the
DAVID Web site [48], which can be considered a more
stringent version of the p-values. The most significant
p-value from each MTB was then collected to form a dis-
tribution, and it was compared to the most significant
p-values from random sets of mRNAs of the same sizes
of the MTBs. This comparison was quantified by a one-
sidedWilcoxon rank-sum test, where a significant p-value
would indicate that the genes in the MTBs were more
enriched in same functional terms than random gene sets.
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We also repeated the same analysis for sets of ran-
dom mRNAs with a similar size and a similar level of
co-expression as the MTBs.

Availability
The source code and compiled programs we used for
our analyses are available at http://yiplab.cse.cuhk.edu.hk/
MTB/.
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supplementary methods and supplementary figures.
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