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Purpose. To generate a signature based on anoikis-related genes (ARGs) for endometrial carcinoma (EC) patients and elucidate the
molecular mechanisms in EC.Methods. On the basis of TCGA-UCEC dataset, we identified specific anoikis-related genes (ARGs)
in EC. Cox-relative regressionmethods were used to generate an anoikis-related signature (ARS).+e possible biological pathways
of ARS-related genes were analyzed by GSEA. +e clinical potency and immune status of ARS were analyzed by CIBERSORT
method, ssGSEA algorithm, Tumor Immune Dysfunction and Exclusion (TIDE) analysis. Moreover, the expression patterns of
ARS genes were verified by HPA database. Results. Seven anoikis genes (CDKN2A, E2F1, ENDOG, EZH2, HMGA1, PLK1, and
SLC2A1) were determined to develop a prognostic ARS. Both genes of ARS were closely bound up with the prognosis of EC
patients. +e ARS could accurately classify EC cases with different clinical outcome and mirror the specific immune status of EC.
We observed that ARS-high patients could not benefit from immunotherapy. Finally, all the hub genes of ARS were proved to be
upregulated in EC tissues by immunohistology. Conclusion. ARS can be used to stratify the risk and forecast the survival outcome
of EC patients and provide prominent reference for individualized treatment in EC.

1. Introduction

Endometrial carcinoma is one of the most common ma-
lignant tumors in the female reproductive system [1]. Its
incidence rate is increasing year by year, showing a younger
trend. Studies have shown that, about 76,000 women
worldwide die of endometrial cancer each year, and its high
mortality and morbidity have become an important factor
threatening women’s health [2]. Although, EC patients at
early stage display a favorable clinical outcome, more than
30% of cases have distant metastasis with a lower survival
rate [3]. Given the shortcomings of a single gene for the
assessment of prognosis, uncovering the underlying
mechanism of metastasis and determining reliable multi-
biomarkers to forecast the prognosis of EC patients are
extremely urgent.

In recent years, several studies reported that cancer cells
carry extracellular matrix (ECM) during metastasis, and
anoikis occurs when tumor cells detach from the ECM
during metastasis. Anoikis is a specific form of cell apoptosis

caused by the detachment of cells from the ECM. Originally
identified in epithelial and endothelial cells, anoikis is
thought to be a physiological process associated with de-
velopment and tissue homeostasis. Apoptosis prevents de-
tached cells from readhering to other substrates for
abnormal proliferation and thus plays a central part in
protecting the organism. However, the inability to initiate
the loss-of-nest apoptosis programmay result in the survival
of adherent cells in suspension or proliferation in an ECM
different from the in situ one. Currently, diminished ability
to initiate apoptosis has become a hallmark of cancer and
contributes to the development of distal metastases from
tumor.

Several reports have verified that anoikis-related genes
(ARGs) play a central part in tumor metastatic cascade and
cancer progression, including gastric carcinoma (GC) [4],
lung cancer (LC) [5], breast carcinoma (BC) [6], and EC [7].
She and his colleagues revealed that overexpression of
FAIM2 is associated with dismal clinical outcome for lung
cancer, and silencing FAIM2may inhibit tumor cell viability
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and anoikis resistance [8]. KLF5, a novel prognostic bio-
marker in colorectal cancer, has been proved to regulate cell
proliferation and anoikis resistance. In EC, L1CAM could
facilitate epithelial mesenchymal transformation (EMT) by
boosting the development of cancer initiating cells in HEC-
1A cells, thereby promoting loss-of-nest apoptosis-resistant
and affecting patient prognosis [7].

Although anoikis has been proved to be associated with
prognosis in several tumors [5, 9, 10], prognostic indicators
based on ARGs have been rarely analyzed in EC. +erefore,
we focus on the relationship between integrated ARGs and
EC clinical outcome. In our study, we identified a powerful
ARG-based signature and exploit its clinical implications in
EC patients.

2. Methods

2.1. Data Processing. By integrating the data of the TCGA-
UCEC in +e Cancer Genome Atlas (TCGA, https://portal.
gdc.cancer.gov/), we obtained gene expression profiles and
clinical data of 520 EC patients. A total of 434 anoikis-related
genes (ARGs) were extracted from GeneCards, and genes
with a relevance score >0.4 were selected (Supplementary
Table S1). In order to obtain differentially expressed gene
(DEG) in EC, we conducted differentiation analysis for the
expression of all genes in the normal and tumor samples by
limma in R software (|fold change (FC)|� 1.0 and p

value <0.05). +en, differentially expressed ARGs were
collected by interacting with DEG sets.

2.2. Identification of Anoikis-Related Signature. We ran-
domly divided 520 EC patients into a training set and a test
set at a ratio of 1 :1 to develop an anoikis-related signature
(ARS). Firstly, we obtained candidate prognostic genes in the
training set through the univariate regression method based
on the differentially expressed ARGs. +en, LASSO penalty
analysis was employed to shrink the model of overfitting.
Finally, we conductedmultivariate Cox regression to set up a
novel ARS. +e risk score for each case was calculated using
the following formula: risk factor� (expression of the
ARG1× coefficient) + (expression of the
ARG2× coefficient) + . . .+ (expression of the ARGn × co-
efficient). According to the median value of the risk score, all
cases were split into the high- and low-risk score group. In
addition, the expression patterns of ARS model genes at
protein levels were analyzed by Human Protein Atlas (HPA)
website ((https://www.proteinatlas.org/) [11].

2.3. Establishment of an ARS-Based Nomogram. An inde-
pendent prognostic analysis was performed by combining
data from 520 patients with clinical information and risk
score and using the “survival” package. Moreover, ARS-
based nomogram was created based on risk score and other
clinicopathological traits to forecast the clinical outcome of
cases. Calibration curves were plotted to estimate the reli-
ability of ARS by comparing the predictive power of the line
graphs with the observed survival outcome.

2.4. Gene Set Enrichment Analysis (GSEA). GSEA was ap-
plied to examine the biological pathways and immune ac-
tivity associated with ARS based on the Hallmark and C7
gene sets v7.4. Enriched gene sets with p value <0.05 were
collected after 1000 substitutions.

2.5. Immunity Analysis of the Signature. Based on TCGA
RNA sequencing data, we quantified 22 types of immune cell
proportion using the CIBERSORTtool. P value <0.05 was set
as the threshold. In addition, we performed Tumor Immune
Dysfunction and Exclusion (TIDE, https://tide.dfci.harvard.
edu/) method to assess the immunotherapy response of EC
patients.

2.6. Statistical Analysis. R software (4.0.1) was used among
all statistical analyses. Kaplan–Meier (K–M) analysis was
applied to assess survival differences between the two
groups. +e reliability of the ARS models was tested using
receiver operating characteristic (ROC) analyses. Statistical
significance was set at p value <0.05 for all analyses.

3. Results

3.1. Determination of Differentially Expressed ARGs. +e
gene expression data of EC samples and normal control in
TCGA were analyzed, and a total of 5527 DEGs were col-
lected (Figure 1(a)). Next, these DEGs were overlapped with
434 ARGs extracted from GeneCards, resulting in 156
differentially expressed ARGs shared (Figure 1(b)).

3.2. Development and Validation of the ARS. We randomly
divided 520 EC patients into a training set (n� 260) and a
validation set (n� 260, Table 1). +e univariate Cox method
was employed to obtain 28 representative prognostic ARGs
in the training set. +en, we conducted LASSO-penalized
regression to eliminate the overfit gene of signature
(Figures 2(a) and 2(b)). Moreover, a signature of seven
ARGs (CDKN2A, E2F1, ENDOG, EZH2, HMGA1, PLK1,
and SLC2A1) was set up through the multivariate cox
analysis (Table 2). +e constructed ARS was developed using
the following formula: risk factor� (CDKN2A
× (0.1068)) + (E2F1× (0.0941)) + (ENDOG× (-0.2316)) +
(EZH2× (0.1626)) + (HMGA1× (0.8872)) + (PLK1×

(0.1673)) + (SLC2A1× (0.0228)]. Subsequently, a median
value of risk score was utilized to spilt the cases into the high-
risk score and low-risk score group.

In the training set, our nominated ARS can discriminate
risk score and clinical status of EC samples (Figures 3(a) and
3(b)). K–M analysis displayed that the ARS-high group had
dismal clinical outcome (Figure 3(c)). +e areas under the
ROC curves (AUC) were 0.755, 0.717, and 0.766 for 1-, 3-,
and 5-year survival, respectively (Figure 3(d)).+e testing set
and the entire cohort were applied to verify the predictive
performance of the ARS.+e layout of risk score and clinical
status of EC patients in the testing and entire sets are shown
in Figures 3(e) and 3(f ) and Figures 3(i) and 3(j). +e
prognosis differences between the two risk groups were also
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Figure 1: Characterization of differentially expressed anoikis-related genes (DEARGs). (a) Volcano plot of differentially expressed genes
(DEGs) in endometrial carcinoma (EC). (b) Venn diagram of DEGs and ARGs.

Table 1: Clinicopathologic characteristics of EC patients.

Features Training set Validation set Entire set
Total 260 (100%) 260 (100%) 520 (100%)
Age
≤60 99 (37.79%) 102 (39.23%) 201 (38.51%)
>65 163 (62.21%) 158 (60.77%) 321 (61.49%)

Stage
I-II 185 (70.61%) 192 (73.85%) 377 (72.22%)
III-IV 77 (29.39%) 68 (26.15%) 145 (27.78%)

Grade
G1-G2 118 (45.04%) 94 (36.15%) 212 (40.61%)
G3-G4 144 (54.96%) 166 (63.85%) 310 (59.39%)
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Figure 2: Identification of the anoikis-related signature (ARS). (a) LASSO regression analysis for the development of ARS. (b) LASSO
coefficient of anoikis-related genes in EC.
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Table 2: Seven anoikis-related signatures greatly correlated with survival outcome.

Gene Coefficient Hazard ratio (95% CI) P value
CDKN2A 0.1068 1.29 (1.16–1.45) <0.001
E2F1 0.0941 1.48 (1.21–1.82) <0.001
ENDOG -0.2316 0.71 (0.54–0.92) 0.011
EZH2 0.1626 1.52 (1.12–2.07) 0.007
HMGA1 0.8872 1.26 (1.04–1.53) 0.012
PLK1 0.1673 1.36 (1.07–1.73) 0.011
SLC2A1 0.0228 1.22 (1.02–1.46) 0.028
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Figure 3: Continued.
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confirmed in the testing and entire sets (Figures 3(g) and
3(k)). ROC methods indicated the predictive reliability of
ARS in both testing and entire sets (Figures 3(h) and 3(l)).

3.3. Determination of a Nomogram. To determine the inde-
pendence of the ARSmodel, the univariate andmultivariate cox
methods were applied. Univariate cox analysis disclosed that
age, stage, grade, and risk score were meaningful prognostic
indicators (Figure 4(a)). As revealed by the multivariate cox
analysis, risk score was still meaningful for prognosis, indicating
our proposed ARS can be independent of other clinical traits
(Figure 4(b)). To further exploit the prognostic value of theARS,
a nomogram was established by combining the clinical factors
and ARS model (Figure 4(c)). Afterward, the calibration curves
of 1-, 3-, and 5-year survival time showed the nomogram had a
powerful value for forecasting prognosis (Figure 4(d)).

3.4. GSEA Analysis of the ARS. We found that the greatly
enriched hallmarks were “IL2/STAT5 signaling,” “notch sig-
naling,” “P53 signaling,” “PI3K/AKT/mTOR signaling,” “TGF
β signaling,” and “Wnt/β-catenin signaling” (Figure 5(a)). In
terms of C7 immune gene sets, various immune functions were
enriched in the ARS-high group (Figure 5(b)).

3.5. Immune Activity Analysis of the ARS Model. To explore
the correlations between ARS and immune cells infiltration, we
carried out the CIBERSORTalgorithm to analyze the proportion
of the 22 immunocyte (Figure 6(a)). Afterward, the ssGSEA
method was employed to mirror the status of immune mi-
croenvironment (TME) in EC (Figure 6(b)). We observed that
activated dendritic cells,M0macrophages, andT-cells regulatory
(Tregs) were upregulated in the ARS-high group (Figures 6(a)–
6(c)). However, ARS-low group had lower infiltration levels of
neutrophils and resting dendritic cells (Figures 6(d) and 6(e)).

3.6. Correlation between ARS and Immune Checkpoint. In
view of the crucial role of checkpoint inhibitor-based im-
munotherapy, we analyzed the expression of immune
checkpoint markers in the two groups. +e results revealed

that PD-L1, PD-L2, CTLA4, TIM-3, and LAG3 were posi-
tively correlated with ARS-risk (Figure 7). +ese results
suggest that the ARS-high group is prone to generate an
immunosuppressive microenvironment.

3.7. Analysis of Immunotherapy Response. We further per-
formed TIDE to estimate the efficacy of immunotherapy in
two groups. Higher TIDE scores suggest a higher likelihood
of immune evasion, indicating that patients may not benefit
from immune checkpoint inhibitors (ICI) therapy. In our
analyses, the ARS-high group displays a higher TIDE score
than the ARS-low group (Figure 8(a)), pointing out that
patients with high ARS score would not benefit from ICI
therapy. Also, the ARS-high group had higher scores of CAF,
MDSC, and exclusion, but the dysfunction score was lower
in the ARS-high group (Figures 8(b)–8(e)).

3.8. Validation of the Hub Genes of the ARSModel. Based on
the HPA website, the expression patterns of model hub
genes were confirmed by immunohistochemistry. +e re-
sults are in line with our previous differential expression
analysis. We found that all hub genes of ARS were highly
expressed in EC cases (Figure 9).

4. Discussion

EC is one of the malignancies that imperils female’s health,
with a 5-year survival rate of 16% in patients with distant
metastasis. +is disease is hardly diagnosed at early stages
due to a shortage of reliable prognosis-related biomarkers.
Consequently, it is urgent to develop robust prognostic
indicators to enhance the prediction of EC prognosis.
Anoikis, a specific form of apoptotic cell death, was reported
to regulate the biological behavior of various tumors. For
example, CPT1A could confer anoikis resistance and facil-
itate metastasis in colorectal cancer (CRC) through the
regulation of fatty acid oxidation [9]. Mo reported that
IQGAP1 could enhance cell viability and inhibit anoikis by
activating the Src/FAK pathway, indicating that it can be a
reliable indicator for metastasis and prognosis of
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Figure 3: Predictive value of the ARS. (a) +e layout of increasing risk scores in the training set. (b) +e clinical outcome of EC cases in the
training set. (c) Kaplan–Meier curves of survival outcome between two groups in the training set. (d) ROC curves of predictive performance
of the ARS in the training set. (e–h) Similar results confirmed the validation and entire sets.
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hepatocellular carcinoma (HCC) [12]. Moreover, CCN2 was
proved to block lung cancer development via the DAPK-
related anoikis pathway [13]. +us, anoikis-related genes are
prospective treatment targets and prognostic markers for
tumors.

In this study, we first identified specific ARGs in EC
based on the TCGA-UCEC project. To generate a robust
ARGs-based signature for EC, all patients were separated
into training and testing cohorts. After performing stepwise
cox regression, we developed a seven-gene prognostic model

in the training set. +ere is a marked difference in prognosis
between two groups. And, the testing and the entire sets were
used to confirm the accuracy of our proposed signature. To
expand the performance of the ARS model, we generated an
ARS-based nomogram that combined age, stage, grade, and
risk score.+e calibration plots show that the nomogram has
a good fit for forecasting prognosis.

Our proposed ARS model was dramatically correlated
with survival outcome of EC cases. +e ARS consisted of
seven anoikis-related genes, including CDKN2A, E2F1,
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Figure 4: Construction of an ARS-based nomogram. Univariate (a) and multivariate cox regression (b) to estimate the independence of the
ARS. (c) A nomogram generated based on the ARS. (d) Calibration curves showing favorable accuracy of the nomogram.
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Figure 5: Gene set enrichment analysis. (a) Gene sets of hallmarks. (b) Gene sets of immune activity.
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Figure 6: Immune landscape of the ARS. (a) Relative proportion of immune infiltration of the EC. (b) Heatmap for ARS and immune
activity. (c–g) Box plots presenting remarkably immune cells between two groups.
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ENDOG, EZH2, HMGA1, PLK1, and SLC2A1. All these
signature genes have been proved to be closely bound up
with tumors. For instance, Luo et al. found that CDKN2A
was upregulated in hepatocellular carcinoma and associated
with dismal prognosis [14]. As a transcription factor of the
E2F family, E2F1 is shown to get involved in regulation of
cell cycle. Xu et al. studied the expression of E2F1 in GC
specimens and normal control and observed that overex-
pressed E2F1 could enhance TINCR expression at the
transcription level, resulting in oncogenic growth in GC
[15]. ENDOG, a nuclear-encoded endonuclease, affects
cancer cell viability and tumor prognosis via the PI3K/PTEN

axis. Notably, ENDOG silencing inhibited cell growth of
endometrial cancer, thyroid carcinoma, and glioblastoma
[16]. EZH2, a member of the polycomb-group (PcG) family,
is reported to be a novel target for tumor control [17]. In
ovarian cancer, EZH2 could retain cell stemness and confer
chemoresistance by promoting CHK1 signaling [18]. Also,
EZH2 mediates EMT of pancreatic cancer (PC) by binding
with miR-139-5p [19]. Han et al. reported that HMGA1 was
upregulated in EC cases and greatly associated with late
stage. It could exert a carcinogenic effect in EC by targeting
the Wnt/β-catenin pathway [20]. Gao showed that PLK1
affects cell proliferation and apoptosis by boosting MCM3
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Figure 7: Analysis of immune checkpoints in EC. (a) PD1. (b) PD-L1. (c) PD-L2. (d) CTLA4. (e) TIM-3. (f ) LAG3.
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phosphorylation in renal cell carcinoma (RCC). SLC2A1,
also named glucose transporter type 1 (GLUT1), could act as
an oncogene to facilitate tumor development through the
glycolysis pathway [21, 22].

To detect the potential biological pathways of the ARS,
GSEA algorithm was applied. We found that various tumour
signaling pathways were activated in the ARS-high group,
such as IL2/STAT5 signaling, notch signaling, P53 signaling,
PI3K/AKT/mTOR signaling, TGF β signaling, and Wnt/
β-catenin signaling. All these pathways have been previously
reported to get involved in EC growth and development. For
instance, AP24534 might induce a significant reduction in
STAT5 signaling on EC with higher FGFR2 mutations [23].
Guo et al. indicated that lncRNA-MEG3 has a lower ex-
pression in EC cases, and silencing MEG3 could restrict the
cell viability by triggering the notch pathway [24]. It is well
known that p53 could be used as a tumor suppressor gene
inhibiting tumor initiation and development. Liu and his
colleagues unearthed that downregulation of UBE2C could
suppress estradiol-induced EMT by promoting p53 ubiq-
uitination in EC, which provide a valuable therapeutic target
for EC patients [25]. Likewise, the PI3K/AKT/mTOR
pathway (PAM) also plays a crucial role in the tumorige-
nicity of EC. As revealed by Lin et al., silencing of FAM83B
could inhibit the activation of PAM, resulting in the sup-
pression of EC growth and metastasis [26].

Recently, immunotherapy has been identified as a new
treatment option for EC. +e tumor microenvironment
(TME), which consists of the ECM, stroma cells, tumour

vasculature, and various cells of immune system, stimulates
the initiation and progression of cancer [27, 28]. It is well
known that immunosuppressive cells could induce the oc-
currence of immune escape in TME, which in turn facilitate
tumor metastasis and progression. Tregs, a well-known type
of immunosuppressive cells, has been proved to be corre-
lated with prognosis of patients, indicating that Treg count
might be an effective prognostic marker for EC [29]. In
addition, Li and his colleagues reported that Treg has a
higher infiltration level in in the peripheral blood of EC cases
than healthy control [30]. Also, cancer-associated fibroblast
(CAF) is a major cell subpopulation in TME which affects
the biological behavior of EC through CAF-tumor cell cross-
talk [31]. Furthermore, CAF extracted from EC tissues could
secrete IL-6, which subsequently boosts c-Myc expression to
accelerate EC growth [32]. In our study, the ARS-high group
has higher infiltration levels of Tregs and CAFs, pointing out
that patients with high ARS score are more likely in state of
cancer immunosuppression.

We further detected whether ARS could offer valuable
reference for immunotherapy response. Immune checkpoints
are the classical molecules used to assess the efficacy of im-
munotherapy. Our analyses show that the PD-L1, PD-L2,
CTLA4, TIM-3, and LAG3 were greatly enriched in the ARS-
high group. Moreover, we found that the ARS-low group has
a lower TIDE score. All these results pointed out that patients
with high ARS score would not benefit from ICI therapy.

Although our proposed ARS displays a powerful per-
formance in forecasting prognosis of EC patients, the
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Figure 9: Validation of the hub genes of ARS. (a) CDKN2A. (b) E2F1. (c) ENDOG. (d) EZH2. (e) HMGA1. (f ) PLK1. (g) SLC2A1.
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present subject has some limitations. Firstly, all clinical
cohorts of EC cases analyzed in the current study were
exclusively obtained from the TCGAwebsite.+e potency of
the ARS model also needs to be verified by external cohorts.
Second, we will further confirm the expression pattern of
ARS genes by our local clinical specimens by immunohis-
tochemistry. Moreover, the underlying mechanisms of ARS
genes should be explored based on experimental analyses.

In summary, our study developed a novel anoikis-related
signature in EC. +e ARS of both biomarkers could ame-
liorate the prediction of EC survival outcome and reflect the
immune conditions and estimate the immunotherapy re-
sponse for EC patients. Our study brings a novel perspective
to the therapeutic strategy for patients with EC.
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